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Abstract. Curvilinear structures (CLS) are locally one-dimensional, relatively
thin objects which complicate analysis of a mammogram. They comprise a
number of anatomical features, most especially connective tissue, blood vessels,
and milk ducts. The segmentation, identification and removal of such structures
potentially facilitate a wide range of mammographic image processing
applications, such as mass detection and temporal registration. In this paper, we
present a novel CLS detection algorithm which is based on the monogenic
signal afforced by a CLS physical model.  The strength of the proposed model-
based CLS detector is that it is able to identify even low contrast CLS. In
addition, a noise suppression approach, based on local energy thresholding, is
proposed to further improve the quality of segmentation. A local energy (LE)-
based junction detection method which utilises the orientation information
provided by the monogenic signal is also presented. Experiments demonstrate
that the proposed CLS detection framework is capable of producing well-
localized, highly noise-tolerated responses as well as robust performances as
compared to classical orientation-sampling approach.

1   Introduction

Mammographic image processing aims primarily to detect, classify, and measure
anatomical features such as masses and microcalcifications, and to monitor the
development of such features over time, view, and bilaterally. Amongst the
anatomical features that can be seen in mammograms, curvilinear structures (CLS)
are often the most pervasive but the most complex feature to segment. They
correspond to relatively dense connective stroma, milk ducts, and blood vessels, and
appear locally linear and thin.  The detection of CLS is often difficult because of their
low contrast, variable widths, and the often noisy parenchymal background against
which the feature has to be detected. The projective nature of mammography further
complicates detection. The detection and segmentation of CLS has been studied in
various applications such as the validation of calcification detectors and registration
[1,2].  Identifying the CLS is often a key step in distinguishing tumour spicules from
overlying CLS. Some previous researchers have tackled the problem of detecting and
removing the CLS. For example, Cerneaz [3] proposed a CLS detector based on
spatial second dimensional derivative operators. Zwiggelaar et. al. [4] suggested an
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nonlinear line strength operator to detect the linear structures in mammograms. In this
study, we extended the work of Schenk [5] on local energy (LE) feature detection
which is based on a steerable filter framework.

From the perspective of low-level feature detection, the CLS segmentation
problem can be regarded as a ridge detection task. However, most previous work on
feature detection has been focused on the edge detection, of which has the sudden
intensity change or higher local energy than the corresponding ridge. Kovesi’s [6]
Phase Congruency algorithm (based on previous work by Morrone and Owens)
defines a feature as an image location for which the local phase remains relatively
constant across a sufficient range of bandpass filters. Kovesi’s approach is
intrinsically one-dimensional, requiring a framework such as steerable filters to
extend it to images.  More recently, coupled with the Reisz transform, Felsberg [7]
has developed the construction of a two or more dimensional feature detection
scheme.  This has significant advantages over steerable filtering both in terms of the
robustness and speed of execution and isotropicity of filter responses. This paper
adapts the monogenic signal to the task of CLS detection and removal.

In the remaining of this paper, the framework and the algorithms of the CLS
detector are introduced. Subsequently, the effect of noise and the responses of the
algorithm of CLS with different widths are showed and its performance is discussed.
Finally, segmentation results on real mammographic images are presented.

2   Segmentation Methodologies

In this section, we introduce the CLS model, which approximates the intensity profile
of a CLS feature in a digitized image, and the multi-resolution ridge detection
algorithm based on the monogenic signal.

2.1   The Digitized Intensity Profile Model of CLS

The CLS model employed in our detection framework is adapted from the work of
Cerneaz, which introduced a two medium model that estimates the intensity profile of
the CLS. In this model, the CLS are assumed to have circular cross section when the
breast is not compressed. Since the CLS cannot be assumed orthogonal to the beam,
the cross section for mammography will be elliptical. To simplify the analysis, though
not the detection process, the x-ray beam is assumed to be monogenic, with no scatter.

Imagine that an x-ray beam goes through a compressed breast of thickness H and a
CLS with an elliptic cross-section area which is of radii a and b, in which radii a is
parallel to the film surface. Thus the x-ray path that transverses through the cross
section of the CLS can be represented by the function h(x):
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Thus the net beam attenuation of the two medium model will be
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where Eo is the energy of the monoenergetic incident beam, µ1 and µ2  are the x-ray
attenuation coefficients of the parenchyma and the CLS respectively. The basic model
is depicted in Fig. 1. By a linear approximation of the film characteristic curve, we
arrive at a film density function D:

10log ( )D Eγ β= , (3)

where β is the film speed and γ is the film gradient.
Based on this relationship, the pixel intensity profile on a digitised image can be

modeled, depending on which of two main categories of digitisation method is used:
film density and transmitted-light. For film density direct digitisation, the pixel
intensity profile is well approximated by Pd:
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Correspondingly, for transmitted-light, the profile is calculated by the equation Pl

which is showed below:
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In the two equations above, γ represents the film gradient, εp is the photon density,
m and q are the gradient and offset of the linear approximation of the film density
digitalisation curve respectively, and βφXcεp are the imaging parameters which are
functions of H and µ1. And in this study, 0.6  D  3.0, 0  P  255, γ=3, εp=17.4,
µ1=0.558, µ2=1.028, H=3.5.

Fig. 1. The cross section of a CLS and its intensity profile. Left: The CLS model parameters as
described in section 2.1. Right: An example of the intensity profile generated by the model,
which is through transmitted-light digitalisation. The maximum pixel intensity is set to be 256.
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2.2   The Multi-resolution Ridge Detector

A multi-resolution approach is opted for because of the variable widths of vascular
structures. The CLS in mammogram are composed of large connective stroma,
arteries and veins as well as narrow capillaries and milk ducts, which covers a set of
vessels with width ranges from 1800 microns to 5 microns. However, in view of
current limits on sampling and signal-to-noise, we are only interested in detecting the
structures of widths between 1800 microns to 180 microns. This specification is
enough to cover most vascular structures in mammograms sampled at as fine as 50
microns per pixel.

From the model described in section 2.1 and visualized in Fig. 1, the response of
the filter should be localised at the ridges of CLS in order to get the “skeleton”
extracted. In this study, we adopt the notion of phase congruency (PC) in detecting
features [6]. This is a measure of the phase similarity of the Fourier components of a
point. Phase congruency of a point with spatial coordinate given by x can be defined
as follows:
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In order to compute PC, the local phase of the pixel must be estimated from the
analytical signal. In previous work, including that by Schenk [5], a set of steerable
filters are designed to estimate the local phase by analysing one dimensional cross
sections of the image at each point in several different orientations. This intrinsically
computationally intensive approach stems from the fact that the analytic signal, the
basis for local phase of a signal, is only defined for one dimension signals. However,
by using vector filters as suggested by Felsberg [7], a quadrature filter triple for the
image can be obtained. The odd filter is based on the Reisz transform
H(u1,u2)=(H1,H2), in which
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In this expression u1 and u2 are the Fourier variables.  This leads to a generalization
of the analytical signal, which is called the monogenic signal and which can be
described by the following formula:

1 2 1 2 1 1 2 2 1 2( , ) ( ( , ), ( )( , ), ( )( , ))Mf x x f x x h f x x h f x x= ∗ ∗ , (8)

where f is an appropriate filter or filter bank. For multi-resolution image processing,
those filters constitute a family which tries to analyse the image from different
perspective. One of the most common filter sets is the difference of two Gaussian
kernels, which has the advantage of effective analysis in both one- and two-
dimensional domains.

Based on the idea of ridge detection which is built on the support of monogenic
signal and phase congruency, the degree of scale span of the multiresolution filters are
designed based on the tuning on a set of CLS with certain widths. For example, if the
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CLS identified are then removed, the CLS width range should be as wide as possible.
On the other hand, if CLS segmentation is for registration purposes, only salient and
large vessels are needed so that the CLS detector should be biased towards CLS in the
higher scale. Thus the CLS model can improve the specificity and selectivity of the
detector under different applications.

Fig. 2. Performance of the CLS detector evaluation. Upper graph: The ridge strength (phase
congruency and the phase angle compound measure) of the 50 micron detector against 6
synthetic CLS with widths 180, 504, 828, 1152, 1476 and 1800 microns. The contrast on each
individual synthetic CLS is varied by the a-b ratio: the ratio of the horizontal and vertical radii of
the CLS shown in both Fig. 1 and Eq. 1. The a-b ratio ranges from 0.5 to 2 as depicted. Middle
graph: The performance of the detector against same synthetic CLS as upper graph with noise
added, and the performance of the detector with noise suppression by local energy (LE)
thresholding strategy. Lower graph: The performance of the detector compare with that of human
visual system. The left image is the original CSF image, and the response of the CLS detector is
shown on the right.
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3   Noise Suppression and Junction Detection

Another problem is noise. As CLS are typically low contrast and poor signal-to-noise
can badly affect the performance of the CLS detector, as one can see in Fig. 2. In the
proposed framework, we use local energy (LE) thresholding [8] to suppress the
undesirable response from noise. The local energy is related to phase congruency, in
discrete terms, as follows:

( ) ( ) n
n

LE x PC x A= ∑ , (9)

where An is the amplitude of the nth bandpass filter. The performance of LE
thresholding is showed in Fig. 2.

It is well-known that phase congruency is sensitive to noise as it is the trade-off of
its high sensitivity of features of low contrast. However, by thresholding LE, it is
found that the false positives can be suppressed. Moreover, the response of the
detector to CLS with widths over 1000 micron is still perfect even under a SNR as
low as -12. (Fig. 2)

Fig. 3. Sample output of the junction detection algorithm. Larger marks are the affirmed
junctions, which are inferred based on the neighbourhood orientation information and local
energy. The smaller ones are rejected candidates (i.e. number of branches <= 2).

Apart from noise removal, the local energy is also used to determine CLS
junctions. The detection of CLS junctions is based on a two-step process. The first
step is to find those pixels which have a local maximum of local energy, based on a
notion that the convergence, or intersection, of ridges will result in a point with high
local energy. In other words, we try to find junctions that are more “salient” than their
branches. In our approach, we search the CLS skeletons to find the local maxima of
LE, this will end up with a set of candidate points. In the second step, these candidate
points are then searched through a neighbourhood of radius r, where r=kLE(x). We
search inside the neighbourhood to find any CLS (branches) that point towards that
candidate point, by comparing the orientation of the CLS and the vector pointing to
the branch from the junction point. The orientation information can be computed from
the monogenic signal.  A junction is detected if the number of branches is more than
2. Some typical results of junction detection are shown in Fig. 3.
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4   Performance Evaluation

We have applied our CLS detector to a set of mammograms and some of the results
are shown in Fig. 4. In our tests, we have used mammograms digitised at resolutions
of 50 microns/pixel and 300 microns/pixel.

In addition, we are interested in comparing the capability of our CLS detector with
the capability of human vision (Fig. 2). A Contrast Sensitivity Function (CSF) test
image, which was originally a tool to study how the human visual system responds to
different contrast and spatial frequency [9], is used to test the responses of our feature
detector. Two findings can be derived from the test. Firstly, the dome-shaped
response resembles the human visual system. Secondly, the sensitivity of the detector
in low contrast regions in specific spectra is comparable to that of the human visual
system and may even surpass it. This facts further support that appropriate usage of
such a segmentation algorithm might enhance the ease of feature detection tasks for
radiologists.

Some of the sample results carried out on real images are displayed in Fig. 4. As
can be seen, the detector gives well-localized and contrast-insensitive responses on
most of the weak ridges of the CLS and is not sensitive to two-dimensional structures,
for example, masses. As shown in the figure, the CLS detector does not give false
responses to the edges of the mass and the boundary of the pectoral muscle. Also, in
regions with rapidly varying contrasts, for example, across the pectoral muscle and
near the breast boundary, the response of the detector is still strong and well-
localized. Some discontinuities can be observed from the response, which can be
solved by applying further processing techniques like Hough transform or by
morphological operations.

Fig. 4. Some results of the CLS detector on mammograms (digitized at a resolution of 50
micron per pixel). Here shows the response of the CLS detector in different parts of the
mammogram. From left to right: 1. a CLS crossing between the parenchyma and the pectoral
muscle; 2. a typical X-junction; 3. a region near the breast boundary; 4. a region around a mass.
All the parameters of the CLS detector is identical for these response demonstrated.
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5   Conclusions

We have proposed a CLS ridge detection algorithm in this paper. Departing from
previous approaches, this algorithm is based on the monogenic signal. As the
segmentation is phase-based, the algorithm is able to detect CLS in low-contrast.
When equipped with LE noise suppression, it has proven to be highly effective in
noise removal. A CLS intensity profile model has been incorporated into the design to
provide utilities for scale tuning and performance evaluation. In addition, the
performance of the CLS detector is compared with the capability of human vision
system by using a CSF image, which shows comparable performance of our design
with the naked eye. Overall, we showed that our novel CLS detection strategy is
superior in aiding or enhancing the potential, or current, CLS detection and
segmentation tasks in the industry, such as employing CLS junctions as landmarks in
mammogram registration, enhancing the reliability of mass detection by CLS
removal, or reduction of the false positives in microcalcifications detection (in which
most false positives are indeed intersections of capillaries). Moreover, as one-
dimensional vascular structures (e.g. blood vessels, lymph nodes) are pervasive
anatomical entities itself, we hope that our algorithm can be applied to linear structure
identification in other x-ray image processing and even to other modalities.
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