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Abstract. Automatic detection of lung nodules is an important prob-
lem in computer analysis of chest radiographs. In this paper we propose
a novel algorithm for isolating lung nodules from spiral CT scans. The
proposed algorithm is based on using four different types of deformable
templates describing typical geometry and gray level distribution of lung
nodules. These four types are (i) solid spherical model of large-size calci-
fied and non-calcified nodules appearing in several successive slices; (ii)
hollow spherical model of large lung cavity nodules; (iii) circular model
of small nodules appearing in only a single slice; and (iv) semicircular
model of lung wall nodules. Each template has a specific gray level pat-
tern which is analytically estimated in order to fit the available empirical
data. The detection combines the normalized cross-correlation template
matching by genetic optimization and Bayesian post-classification. This
approach allows for isolating abnormalities which spread over several
adjacent CT slices. Experiments with 200 patients’ CT scans show that
the developed techniques detect lung nodules more accurately than other
known algorithms.

1 Introduction

Automatic detection of lung nodules is an important problem in computer anal-
ysis of chest radiographs. One in every 18 women and every 12 men develop lung
cancer, making it the leading cause of cancer deaths. Early detection of lung tu-
mors (visible on the chest film as nodules) may increase the patient’s chance of
survival [2].

At present, low-dose spiral computed tomography (LDCT) is of prime interest
for screening (high risk) groups for early detection of lung cancer [2]. The LDCT
provides chest scans with very high spatial, temporal, and contrast resolution
of anatomic structures and is able to gather a complete 3D volume of a human
thorax in a single breath-hold [3]. The automatic screening typically involves
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two-stage detection of lung abnormalities (nodules). First, the initial candidate
nodules are selected and then the false candidates, called false positive nodules
(FPNs) are partially eliminated while preserving the true ones (TPNs).

At the first stage, conformal nodule filtering [4] or unsharp masking [5] can
enhance nodules and suppress other structures to separate the candidates from
the background by simple thresholding (to improve the separation, background
trend is corrected in [6] within image regions of interest). Circular nodule candi-
dates can be detected by template matching [5] or Hough transform [7]. Other
methods detect lung nodules by using morphological operators such as the al-
gorithm proposed in [8]. The drawbacks of this algorithm are it fails to detect
cavity lung nodules and has difficulties in detecting lung wall nodules.

The FPNs are excluded at the second stage by feature extraction and classi-
fication [6,9]. Such features as circularity, size, contrast [6], or local curvature [9]
are extracted by morphological techniques, and artificial neural networks (ANN)
are frequently used as post-classifiers [10]. The critical issue is to adequately dis-
criminate between the nodules and non-nodules.

In this paper nodule types are modelled with four central-symmetric de-
formable templates:(i) solid spherical model of large-size (above 10 mm) calci-
fied and non-calcified nodules appearing in several successive slices; (ii) hollow
spherical model of large lung cavity nodules; (iii) circular model of small nodules
appearing in only a single slice; and (iv) semicircular model of lung wall nod-
ules. This approach allows for isolating abnormalities which spread over several
adjacent CT slices.

Each template has a specific gray level pattern which is analytically estimated
in order to fit the available empirical data. Normalized cross-correlation is used
for template matching. The 3D or 2D position, size, and gray level pattern of each
template is adjusted to the most similar part of the segmented veins, arteries,
and lung abnormalities by a genetic optimization technique [11]. After all the
candidates are detected, a supervised Bayesian classification of geometric and
textural features of the candidate nodules partially excludes the FPNs.

2 Deformable Templates of Abnormalities

Our detection of lung nodules begins with two segmentation stages which consid-
erably reduce the search space. At the first stage shown in Fig. 1(a) and Fig. 1(b),
lung tissues are separated from the surrounding anatomical structures, e.g., ribs,
liver, and other organs, appearing in the chest CT scans. The second stage ex-
tracts arteries, veins, bronchi, and lung abnormalities (see Fig. 1(c)) from the
already segmented lung tissues. Segmentation algorithms are based on represent-
ing each CT slice as a sample of a Markov–Gibbs random field of region labels
and gray levels. Details of the algorithms are presented in [1], and in this paper
we focus only on the third stage of detecting and classifying the nodules among
the extracted objects. Figure 2(a) shows the empirical gray level distribution
over the extracted regions in Fig. 1(c). Both the nodules and normal tissues
such as arteries, veins, and bronchi, have almost the same gray level distribu-
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tions, so abnormality detection must include their geometrical shape. Four basic
classes of lung abnormalities are: small calcified; large calcified; non-calcified;
and cavity nodules. The first three classes tend to have solid spherical shapes,
whereas the cavity nodules are hollow spheres. Generally, the smaller nodules

(a) (b) (c)

Fig. 1. First two segmentation steps.
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Fig. 2. (a) The empirical gray level distribution over the extracted regions in Fig. 1(c)
(b) Nodule positions and shapes.

appear only in a single 2D slice like in Fig. 2(b), whereas the larger ones spread
over a 3D volume represented by several successive slices. The lung wall nodules
may also appear in one or more slices, depending on their size. However, they
are semicircular in shape as shown in Fig. 2(b). Our analysis of 2D CT slices
suggests that spatial changes of gray levels across the central cross-section of a
solid-shape 3D nodule or across a solid-shape 2D nodule can be approximated
with a central-symmetric Gaussian-like template q(r) = qmax exp

(
− (r/ρ)2

)
;

0 ≤ r ≤ R. Here, r is the radius from the template’s center and q(r) is the gray
level in a template point with Cartesian coordinates (ξ, η) with respect to the
center (i.e., r2 = ξ2+η2), qmax denotes the maximum gray level for the template,
R is the template radius depending on the minimum gray level qmin = q(R), and
the parameter ρ specifies how fast the signals decrease across the template.
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(a) (b)

(c) (d)

Fig. 3. Examples of the deformed templates for GA template matching process. (a)
Solid spherical models consisting of three slices to detect large calcified and non-calcified
nodules. (b) Hollow spherical models consisting of three slices to detect thick cavity
nodules. (c) Circular models to detect small nodules. (d) Semicircular models to detect
lung wall nodules.

3 Genetic Algorithm(GA) Template Matching

GA template matching is used to effectively search for the location of lung nod-
ules scattered within the lung areas. In this method, the genetic algorithm is
used to determine the target position in an observed image and to select a suit-
able radius to generate a template model for the template matching process.
Details of the GA process are described below.

3.1 Template Identification

The CT slices in our study have in-plane spatial resolution of 0.4 mm per pixel
so that the radius range for all lung nodules is R = 5–30 pixels. Because the
third spatial axis has lower resolution, for large solid and hollow lung nodules
we use the 3-layer template. Thin lung nodules appearing only in a single slice
have the circular templates. The lung wall nodules are of semicircular shape. We
assume that the template deformations, other than translations are restricted to
different scales (radii) of all the templates and also different (orientation) angles
of the semicircular templates. Examples of the deformed templates are presented
in Fig. 3. In order to get better matching between the template model and the
lung nodules we have to generate a template which has a density close to the
density of the segmented veins, arteries, and lung abnormalities which are shown
in Fig. 2(a). Gray level distribution density over the 2D Gaussian template can
be found as follows:
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ψ(q) = 2πr(q) (1)

since r(q) = ρ
√
lnqmax − lnq, then ψ(q) can be expressed as follows:

ψ(q) = 2πρ
√
lnqmax − lnq (2)

In order to compute the density for the template using Eq.(2), we need to
estimate the parameter ρ. For a template which has radius R, the parameter ρ
can be estimated from the following equation:

ρ = R (ln qmax − ln qmin)− 1
2 (3)

By using Eq.(3), the gray level distribution density over the 2D Gaussian
template can be expressed in the following closed form:

ψ(q|qmin, qmax) = 2πR

√
lnqmax − lnq

lnqmax − lnqmin
(4)

This relationship allows us to roughly estimate the template parameters qmax
and qmin from the empirical density in Fig. 2(a) (in this particular case qmax =
255 and qmin = 61). In particular, for the circular templates of the radii R = 5
and 30, the estimated ρ = 4.18 and 25.08, respectively. Figure 4 demonstrates
how close the empirical gray level distribution for the objects in Fig. 1(c) are to
the estimated distribution for the above two templates under its discretization.

In the case of the 3D solid spherical templates, the 2D template is first
identified for the central cross-section. Then the upper and lower cross-sections
are specified by the same parameters in the following equation (qt(r) =
qmax exp(−(r2 + t2)/ρ2)) where t is the slice thickness in pixels (t = 7 in our
experiments below). The radius of upper and lower circles is specified by the
relationship qt(R) = qmin.

The hollow spherical templates to detect cavity lung nodules are obtained in
a similar way by removing the central part of the solid templates up to 75% of
the radius R.

3.2 The GA Template Matching Process

As mentioned above GA is used to determine the target position in an observed
image and select a suitable radius to generate a template model. In this paper
we use the genetic algorithm with the following structure (for more details about
GA see [11]).

– Chromosome : Each chromosome has 28 bits, of which 23 determine the
target position. The 23 position bits are divided into 9-, 9-, and 5-bit sets
corresponding to the coordinates (x, y, z) respectively. The last 5 bits de-
termine the radius of the generated templates R. Once we know R, qmin,
and qmax we calculate ρ from Eq. 3. By using ρ, and qmax we generate the
corresponding template. Then similarities between the cut image and the
generated template are calculated.
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Fig. 4. Estimated template gray level distributions (ψ(q)) w.r.t. the empirical density
(f(q)).

– Fitness: We define the fitness of an individual template as the ”similarity”
calculated by the normalized cross-correlation of two images a, and b [12],
as

Similaritya,b =

∑n
i=1

∑n
j=1(aij −ma)(bij −mb)√∑n

i=1
∑n

j=1(aij −ma)2
√∑n

i=1
∑n

j=1(bij −mb)2

where ma = 1
n

∑n
i=1

∑n
j=1 aij ,mb = 1

n

∑n
i=1

∑n
j=1 bij , the values a and b

signify the images for comparison. The aij is the value of a pixel at site (i, j)
in image a, similarly bij .

The matching algorithm runs separately for each type of lung abnormality (Note
that for semicircular template model we add another part in the chromosome
that represent the angle). All spatial locations where the similarity score is
greater than a certain threshold (in our experiments 0.8) are extracted as can-
didate nodules.

4 Post-classification of Nodule Features

Because actual lung nodules are not exactly spherical, circular, or semicircular,
some true nodules can be missed. A number of false positive nodules (FPNs) can
also be encountered during the initial extraction of the candidates. To reduce the
error rate, post-classification of the candidate nodules is performed with three
textural and geometric features of each detected nodule: (i) radial non-uniformity
U = max

θ
(d(θ))−min

θ
(d(θ)) of its borders (here, d(θ) is the distance at the angle

θ between the center of the template and the border of the segmented object
in Fig. 1(c)); (ii) mean gray level (qave) over the 3D or 2D nodular template,
and (iii) the 10%-tile gray level for the marginal gray level distribution over
the 3D or 2D nodular template. To distinguish between the FPNs and true
positive nodules(TPNs), we use Bayesian supervised classifier learning statistical
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characteristics of these features from a training set of false and true nodules. All
three features (i)–(iii) are used to classify the FPNs in lung, while only the last
two features can be applied to the lung wall nodules.

5 Experimental Results and Conclusions

The algorithm was tested on the CT scans of 200 subjects enrolled to the screen-
ing study. Among them, 21 subjects had abnormalities in their CT scans and
179 subjects were normal (this classification validated by a radiologist). At stage
one, the template matching extracted 110 true candidates (out of the true 130
nodules) and 49 FPNs.

The classification at stage two reduced the number of the FPNs to 12 but
simultaneously rejected three true nodules. Thus the final number of the TPNs
became 107 out of 130 giving the overall correct detection rate of 82.3% with
the FPNs rate of 9.2%. Table 1 presents the numbers of TPNs and FPNs before
and after the post-classification stage.

Table 1. Detection rate for different types of abnormalities (TPNs : the nodules de-
termined by a radiologist).

Type of Lung True detecting False detecting True detecting False detecting
Nodules nodules before nodules before nodules after nodules after

removing FPNs removing FPNs removing FPNs removing FPNs
Lung wall 28 : 29 8 27 : 29 2
Calcified 46 : 49 4 46 : 49 1

Non-calcified 12 : 18 5 12 : 18 3
Cavity 8 : 11 7 8 : 11 1
Small 17 : 23 25 15 : 23 5

Table 2. Detection rate for different types of abnormalities by using the algorithm
proposed in [12] (TPNs : the nodules determined by a radiologist).

Type of Lung True detecting False detecting True detecting False detecting
Nodules nodules before nodules before nodules after nodules after

removing FPNs removing FPNs removing FPNs removing FPNs
Lung wall 14 : 29 86 13 : 29 17
Calcified 31 : 49 35 31 : 49 9

Non-calcified 14 : 18 25 14 : 18 14
Cavity - - - -
Small 10 : 23 34 9 : 23 12
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To illustrate the efficiency of the proposed algorithm we compare the results
obtained by the proposed algorithm with the results obtained by other algo-
rithms. To the best of our knowledge, there is only one related work [12] that
detects lung nodules from spiral CT scan by using a template matching method.
The proposed algorithm by Lee [12] detects only three types of nodules: large
lung nodules, small lung nodules, and lung wall nodules by using fixed tem-
plates and the parameters for each template are selected manually from the
given data set. We ran Lee’s algorithm on the same data sets. The algorithm
detects at stage one, 69 true candidates (out of the true 130 nodules) and 180
FPNs. The classification at stage two reduced the number of FPNs to 52 but si-
multaneously rejected two true nodules. Thus the final number of TPNs became
67 out of 130 giving the overall correct detection rate of 51.5% with the FPNs
rate of 40%. Table 2 presents the details of the results obtained by the algo-
rithm proposed in [12]. It is clear from Table 2 that this algorithm fails to detect
large numbers of true nodules because this algorithm used fixed size templates
and these templates sometimes give low correlation between the template and
the true nodules. They estimate the parameters that determine the gray levels
manually, and they use them for the whole volume. At times this is not the
best estimation because the distribution for the gray level can change from one
slice to another (depends on the cross section that scanned it, and the organs
that appear in that cross section). In our proposed algorithm we estimate these
parameters analytically using Eq. (3) for each CT slice.

Our experiments show that the proposed adaptive deformable templates,
with analytical parameter estimation, allow for detection of more than 80%
of the true lung abnormalities. The number of simultaneously detected false
nodules can be considerably reduced by accounting for simple geometrical and
textural features of the candidate nodules.
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