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Abstract. Delayed Enhancement MR is an imaging technique by which non-
viable (dead) myocardial tissues appear with increased signal intensity. The
extent of non-viable tissue in the left ventricle (LV) of the heart is a direct indi-
cator of patient survival rate. In this paper we propose a two-stage method for
quantifying the extent of non-viable tissue. First, we segment the myocardium
in the DEMR images. Then, we classify the myocardial pixels as corresponding
to viable or non-viable tissue. Segmentation of the myocardium is challenging
because we cannot reliably predict its intensity characteristics. Worse, it may
be impossible to distinguish the infracted tissues from the ventricular blood
pool. Therefore, we make use of MR Cine images acquired in the same session
(in which the myocardium has a more predictable appearance) in order to create
a prior model of the myocardial borders. Using image features in the DEMR
images and this prior we are able to segment the myocardium consistently. In
the second stage of processing, we employ a Support Vector Machine to distin-
guish viable from non-viable pixels based on training from an expert.

1 Introduction

Delayed enhancement magnetic resonance (DEMR) is an image acquisition technique
applied typically to the left ventricle (LV), or the main pumping chamber of the heart,
whereby non-viable tissue may be identified. Tissues that are non-viable will not
benefit from interventions such as coronary by-pass or stent placement, etc. These ac-
tions serve to increase blood flow to a region, and while helpful for damaged regions
provide no advantages once a tissue is necrotic. Therefore, we seek to distinguish
non-viable heart tissue from healthy or damaged tissue so that unnecessary invasive
procedures may be avoided and patients whose condition might improve from revas-
cularization are identified.

Delayed Enhancement Magnetic Resonance (DEMR) is an image acquisition tech-
nique applied almost exclusively to the Left Ventricle (LV) whereby non-viable tis-
sues may be discriminated. Typically in DEMR, a paramagnetic contrast agent (Gd-
DTPA) is administered and the patient imaged after 20-30 minutes using a standard
inversion recovery MR protocol. Non-viable cardiac tissues appear with increased
signal intensity (see Figure la). It should be noted that during this 20-30 minute
waiting period other MR protocols are generally acquired, specifically Cine MR, a
time series over the cardiac cycle. Compared to DEMR, in Cine MR the LV myocar-
dium appears with much more uniform texture (see Figure 1b) with which contraction
of the myocardium can be visualized.
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The goal of our work is to automatically quantify the degree to which the left ven-
tricle of an individual is non-viable in short axis DEMR images. This quantification is
a two-step process. First, the left ventricle borders are segmented. Following this, tis-
sues belonging to the left ventricle are classified.

Segmentation of the LV in DEMR images is challenging since we cannot reliably
predict its intensity characteristics. Compared to segmentation of Cine MR images, in
which assumptions may be made about the relative intensities of air, blood, and mus-
cle, little can be said of the DEMR myocardium. Worse, non-viable tissues may have
intensities that render it indistinguishable from the blood pool. Thus, radiologists in
analyzing DEMR images often refer to a “corresponding” Cine image in which the
heart wall is visible. By “corresponding” we mean a Cine image that has the most
similar slice plane with respect to the heart and closest trigger time in the cardiac cy-
cle. Note that slice planes may not be identical due to patient motion or respitory arti-
facts; and, the ECG time of the DEMR may not exactly match the temporal sampling
of the Cine with respect to the ECG.

Non Viable

" Viable

Fig. 1a. DEMR image showing viable and non-viable myocardium. Fig. Ib An MR Cine acqui-
sition at approximately the same slice position and phase in the cardiac cycle.

In determining the myocardial border in the LV we take an approach similar to that
taken by radiologists who look back and forth between the DEMR and corresponding
Cine to infer the heart wall. We perform an automatic segmentation on a correspond-
ing Cine image using the technique by Jolly [2]. While this cine segmentation is gen-
erally quite good, we make it available to the user for editing (the only manual portion
of our procedure). This Cine segmentation is then employed as a prior in the segmen-
tation of the LV in the DEMR image.

Once the LV borders in the DEMR image are identified, classification of the myo-
cardial pixels is performed using a Support Vector Machine (SVM), a supervised ma-
chine learning technique in which the computer is taught to recognize a phenomenon
given a series of examples. The SVM is trained using ground truth provided by ex-
perts at Cleveland Clinic.
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2 Related Work

Very little has been published on automated techniques for classifying non-viable tis-
sues in DEMR and none, to our knowledge, on segmenting myocardial borders in
these images.

The classification techniques in the literature have typically relied on either visual
inspection of images [6], which precludes quantitation, or manual delineation of the
non-viable region [7,10], which can be time prohibitive. Semi-automatic segmenta-
tion techniques, based on the signal intensity characteristics of viable myocardium,
have been used extensively in previous studies [8]. Some of these studies have de-
fined a threshold for non-viable pixels as >2*std dev of the signal intensity of remote,
viable myocardium (which was defined manually) [8]; other studies have used 3*std
dev as the threshold [9]. More recently, Kolipaka et al. have validated these thresh-
olding techniques [3], demonstrating good agreement with manually thresholded im-
ages. Furthermore, this study showed that alternate thresholding methods, based on
the histogram of signal intensities in the LV blood pool or the histogram of LV myo-
cardium (including non-viable tissue) were too inconsistent for routine clinical im-
plementation.

This work differs from our previous work [1] in that we include the segmentation
of the myocardium; and, our feature space for the classification of non-viable tissues
has changed. We have reduced the number of features used in the SVM as we found
three of the features (e.g., thickness of the myocardium) to provide redundant infor-
mation for the task. With regard to general classification using SVM, El-Naqga’s work
on mammogram analysis is the closest to our work [12].

To perform our segmentation of the myocardial borders we employ non-rigid reg-
istration between the DEMR and Cine images (to approximate the location of the LV
in the DEMR) and between different Cine images (to interpolate the image character-
istics where there is no data). Noble et. al., successfully employed Cine to Cine non-
rigid registration to segment the LV in a method similar to ours [5]. They do not seg-
ment DEMR images, however, and direct Cine to DEMR registrations can only pro-
vide approximate deformation fields since the image characteristics differ so signifi-
cantly.

3 Methods

Let C, ,represent a 1 X mmatrix of Cine images with 7 adjacent slice positions
and mconsecutive phases equally spaced in time. Let V,represent the set of
n DEMR images with 71 adjacent slice positions. For a V; € \7,1 , let the correspond-

ing cine image be C;, € 611 . Such that
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where 7 represents the ECG trigger time of the image. We apply a myocardial border
detection algorithm to Ci‘k which employs a region segmentation combined with an
active contour formulation [2]. The result, which may be manually edited, is
Sc,{ (7) , the segmentation of the corresponding Cine image. Adjacent to the corre-

sponding cine image C;, is C, ., such that

fe <ty <t

i,

C

ik+1

3.1 Determination of Segmentation Prior

We register C;, and C,

i x+1Using a non-rigid variational approach [4]. The resulting
deformation field, U (X) , such that
C,xX)—C, . ,(UX)

is linearly interpolated

(lv, - tc, )
U’(;C’) — i il
(l.CiJn - l‘Ci‘l )
to calculate the deformation field at f, . This deformation field is then applied to

Sc,. (1)

U(x)

S (N =U"(S¢, (1)

to arrive at our segmentation prior, i.e., the segmentation of the cine acquisition inter-
polated to time 7, .

3.2 Localization of the LV in the DEMR Image

The center of the bloodpool in V is computed by registering C,.’k with V. resulting
in the deformation field D(X) such that

Gk (X) = Vi(D(X))
The segmentation S (r)is then deformed by D(X) to arrive at

oo (1) = D(S¢,, ()
The centroid of S

center
xCe’ﬂl@r = J. Scenfer(r)dr
SL'L’VI!A‘V
is the position from which we start our search of the LV in V;. Note that the defor-
mation field is too imprecise for any other inferences.
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3.3 Determination of the LV Borders in the DEMR Image

We deform the prior model, S to fit to the DEMR image Vl to maximize the

prior ?
probability that the resulting S, is the correct segmentation of V/ . In the fitting proc-
ess, we apply an affine registration with five parameters: translation in the x and y
and a scaling parameter @ . The

m’

dimensions 7 , shearing parameters § gand s

translation is bound by the distance of 10 pixels but is allowed to change without pen-
alty. Also, the shearing is bound by +60 degrees and +%?20 scaling again without any
penalty.

The scale bound, @, is based on the change in the size of the LV from slice level
i to an adjacent slice level, i + 1or i — 1. The slice level with the maximal change is
selected in the case of i # 1,m . We make the assumption that the change in scale due

to motion artifacts, through-plane motion, etc., will not be greater than w’ .

3.3.1 Computation of Scale Bound @’
For brevity we will assume the adjacent slice is i + 1. We register C,, with C,,,

resulting in the deformation field F'(X) such that C, , (X) = C,,,  (F(X))

We then calculate the average of the deformation between the endo and epi contours

of S, (r)
g= §FEdr— $F&ar

SC,: k epi SCi,k endo

g,

The scale bound, @’ is then the norm of g, @’ =

3.3.2 Penalty upon Scaling

Unlike translation, 7 , a penalty is incurred on scaling. This penalty is a coefficient in
our energy formulation that is maximized (to be described in Section 3.3.3). The pen-
alty varies from 1 (no penalty) to e’ (maximal penalty resulting from a scaling equal

to the scale bound @’ ) and is bell shaped.
In our implementation the scale @ is iteratively increased by 1.5% from a value of

1 to @’ (similarly decreased to - @) with the total energy formulation is evaluated at
each step. Thus, at iteration J , the scale @is @ = (1.015)”.
The penalty for a scale @ is based on the ratio of the iteration number, ¥ , and the

iteration number corresponding to the maximal number of iterations,
/4 log; 5@

¥’ where @’ = (1.015) 7" Specifically, e’ ; which may be rewritten as €'°#05".
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3.3.3 Energy Maximization
The energy formulation that is maximized by affine registration procedure is ex-
pressed as

Sy, (r) = ArgMax{ (" ") {W, j E(av,s,S, (r)+D)dr+

q°m
7,q,m,@ s,
\7

W, JEan s, S 0+ e fE o)

. =
Sy, 55,8V, o (DT

q m

where E,(X) and E,(X) are the inner and outer edge images created by applying a

steering filter and detecting directional dark to bright edges and bright to dark edges
respectively. Our steering filter is a modified Sobel Filter that adapts its convolution

kernel by using the relative location of the convolved pixel with respect to X_,,,,, -

E3(f) is the “bloodpoolness”’image created by making an estimation of bloodpool’s

mean intensity via the intensities of the central pixels as calculated during the local-
ization procedure.

3.4 Classification

We employ an SVM to perform the classification of myocardial pixels once the bor-
ders have been detected. We prefer this approach over automatic thresholding since
the distribution of gray levels in the myocardium is not strictly a bimodal distribution
of non-viable (bright) and viable (dark) pixels. This is due to partial voluming effects
and the degree of damage.

For our kernel function of the SVM we use a Gaussian radial basis function of the
form:

o ry 2
k(G (F),p () = ¢ P0-sel 2o
where ¢_ is the vector of features. It may be shown that kernels of this form (follow-

ing Mercer’s conditions [11]) have corresponding optimization problems that are
convex, thus lacking local minima.

To determine O in our kernel as well as K , a compromise between maximizing
the margin and minimizing the number of training set errors, we employed the “leave-
one-out strategy”. For more details see [1]

The following three features make up (5 : The first feature, @, , is the intensity of a
Z I
— I
pixel, I, relative to the average myocardial intensity, [ ,, = —~=— thus @ = —
21 I,
peM
The second of these features is the standard deviation @, = std(I,) of the rela-
tive pixel intensities with respect to its next neighbors. The final feature @, is related
to the image as a whole and not to a single pixel. We call this feature myocardial
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1
contrast and it is defined as ¢3 =M i.e., the ratio of the mean myocardial intensity
1

I,, and the mean image intensity / of the image.

3.5 Image Acquisition Parameters

Forty-five patients with known multi-vessel chronic ischemic heart disease underwent
DEMR (Sonata, Siemens Medical Solutions, Erlangen, Germany) using an IR Turbo-
FLASH sequence (FOV 300-360mm2, TE 4ms, TR 8ms, flip angle 30 deg, TI 190-
470ms), approximately 20 minutes after intravenous 0.2mmol/kg Gd-DTPA injection,
with (n=9) or without (n=31) phase sensitive reconstruction. TrueFISP cine images
(FOV 260-360mm, TE 1.5msec, TR 25-43msec, 49-650) were also acquired. For both
types of imaging, 3 representative short-axis slices (thickness 6-10mm) were acquired
at the base, mid-ventricle and apex of the left ventricle during repetitive 10-15 second
breath-holds.

Fig. 2. Left to Right: A DEMR image. Our automatic segmentation. Our classification of non-
viable tissues (black indicated non-viability). Agreement with the expert (black pixels indicate
agreement; white pixels indicate disagreement).

4 Results

Our 45 patients were broken down in to training (31 patients) and testing (14 patients)
groups. For the training group the myocardial borders were manually drawn and the
pixels classified as viable or non-viable by an expert. Appropriate SVM parameters
were found to be 0 =0.01 and K = 20. For the testing group, segmentations and
classifications were obtained automatically. For each of the 42 (14 test patients with 3
slices levels each) DEMR images, the myocardial borders on the corresponding Cine
images were automatically segmented and an expert oversaw any additional editing.

To evaluate the segmentation results, the expert delineated the ground truth myo-
cardial borders on the DEMR images using the Argus package from Siemens. Using
this ground truth we found our technique’s contour pixel location error to be 1.54 pix-
els on average with the standard deviation of 0.39 pixels over the 42 images.
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The 42 DEMR image slices segmented above were then classified using the SVM.
Our classification module achieved to 88.39% accuracy rate with a standard deviation
of 6.15%, sensitivity of %81.34 and specificity of 92.28%. Figure 2 shows the results
on one set.

5 Conclusions

We have presented preliminary results on the automatic segmentation and classifica-
tion of non-viable tissue in DEMR images. In future work we hope to include affine
transformations of the segmentation priors as well as a degree of local deformation.
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