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Abstract. Three methods for combining multiple clustering systems are
presented and evaluated, focusing on the problem of finding the corre-
spondence between clusters of different systems. In this work, the clusters
of individual systems are represented in a common space and their cor-
respondence estimated by either “clustering clusters” or with Singular
Value Decomposition. The approaches are evaluated for the task of topic
discovery on three major corpora and eight different clustering algo-
rithms and it is shown experimentally that combination schemes almost
always offer gains compared to single systems, but gains from using a
combination scheme depend on the underlying clustering systems.

1 Introduction

Clustering has an important role in a number of diverse fields, such as genomics
[1], lexical semantics [2], information retrieval [3] and automatic speech recogni-
tion [4], to name a few. A number of different clustering approaches have been
suggested [5] such as agglomerative clustering, mixture densities and graph par-
titioning. Most clustering methods focus on individual criteria or models and
do not address issues of combining multiple different systems. The problem of
combining multiple clustering systems is analogous to the classifier combination
problem, that has received increased attention over the last years [6]. Unlike
the classifier combination problem, though, the correspondence between clusters
of different systems is unknown. For example, consider two clustering systems
applied to nine data points and clustered in three groups. System A’s output is
oA = [1, 1, 2, 3, 2, 2, 1, 3, 3] and system B’s output is oB = [2, 2, 3, 1, 1, 3, 2, 1, 1],
where the i-th element of o is the group to which data point i is assigned. Al-
though the two systems appear to be making different decisions, they are in fact
very similar. Cluster 1 of system A and cluster 2 of system B are identical, and
cluster 2 of system A and cluster 3 of system B agree 2 out of 3 times, as cluster
3 of system A and cluster 1 of system B. If the correspondence problem is solved
then a number of system combination schemes can be applied.

Finding the optimum correspondence requires a criterion and a method for
optimization. The criterion used here is maximum agreement, i.e. find the cor-
respondence where clusters of different systems make the maximum number of
the same decisions. Second, we must optimize the selected criterion. Even if we
assume a 0 or 1 correspondence between clusters with only two systems of M
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topics each, a brute-force approach would require the evaluation of M ! possible
solutions. In this work, three novel methods are presented for determining the
correspondence of clusters and combining them. Two of the three methods are
formulated and solved with linear optimization and the third uses singular value
decomposition.

Another contribution of this work is the empirical result that the combination
schemes are not independent of the underlying clustering systems. Most of the
past work has focused on combining systems generated from a single clustering
algorithm (using resampling or different initial conditions), usually k-means. In
this work, we experimentally show that the relative gains of applying a combi-
nation scheme are not the same across eight different clustering algorithms. For
example, although the mixture of multinomials was one of the worse perform-
ing clustering algorithms, it is shown that when different runs were combined
it achieved the best performance of all eight clustering algorithms in two out of
three corpora. The results suggest that an algorithm should not be evaluated
solely on the basis of its individual performance, but also on the combination of
multiple runs.

2 Related Work

Combining multiple clustering systems has recently attracted the interest of
several researchers in the machine learning community. In [7], three different
approaches for combining clusters based on graph-partitioning are proposed and
evaluated. The first approach avoids the correspondence problem by defining a
pairwise similarity matrix between data points. Each system is represented by a
D×D matrix (D is the total number of observations) where the (i, j) position is
either 1 if observations i and j belong to the same cluster and 0 otherwise. The
average of all matrices is used as the input to a final similarity-based clustering
algorithm. The core of this idea also appears in [8–12]. A disadvantage of this
approach is that it has quadratic memory and computational requirements. Even
by exploiting the fact that each of the D×D matrices is symmetric and sparse,
this approach is impractical for high D.

The second approach taken in [7], is that of a hypergraph cutting problem.
Each one of the clusters of each system is assumed to be a hyperedge in a
hypergraph. The problem of finding consensus among systems is formulated as
partitioning a hypergraph by cutting a minimum number of hyperedges. This ap-
proach is linear with the number of data points, but requires fairly balanced data
sets and all hyperedges having the same weight. A similar approach is presented
in [13], where each data point is represented with a set of meta-features. Each
meta-feature is the cluster membership for each system, and the data points are
clustered using a mixture model. An advantage of [13] is that it can handle miss-
ing meta-features, i.e. a system failing to cluster some data points. Algorithms
of this type, avoid the cluster correspondence problem by clustering directly the
data points.

The third approach presented in [7], is to deal with the cluster correspon-
dence problem directly. As stated in [7], the objective is to “cluster clusters”,
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where each cluster of a system is a hyperedge and the objective is to combine
similar hyperedges. The data points will be assigned to the combined hyper-
edge they most strongly belong to. Clustering hyperedges is performed by using
graph-partitioning algorithms. The same core idea can also be found in [10, 14–
16]. In [10], different clustering solutions are obtained by resampling and are
aligned with the clusters estimated on all the data. In both [14, 15], the different
clustering solutions are obtained by multiple runs of the k-means algorithm with
different initial conditions. An agglomerative pairwise cluster merging scheme is
used, with a heuristic to determine the corresponding clusters. In [16], a two-
stage clustering procedure is proposed. Resampling is used to obtain multiple
solutions of k-means. The output centroids from multiple runs are clustered with
a new k-means run. A disadvantage of [16] is that it requires access to the origi-
nal features of the data points, while all other schemes do not. Our work falls in
the third approach, i.e. attempts to first find a correspondence between clusters
and then combine clusters without requiring the original observations.

3 Finding Cluster Correspondence

In this paper, three novel methods to address the cluster correspondence problem
are presented. The first two cast the correspondence problem as an optimization
problem, and the third method is based on singular value decomposition.

3.1 Constrained and Unconstrained Search

We want to find the assignment of clusters to entities (metaclusters) such that
the overall agreement among clusters is maximized. Suppose R{c,s} is the D× 1
vector representation of cluster c of system s (with D being the total num-
ber of documents). The k-th element of R{c,s} is p(cluster = c|observation =
k, system = s). The agreement between clusters {c, s} and {c′, s′} is defined as:

g{c,s},{c′,s′} = RT
{c,s} · R{c′,s′} (1)

In addition, suppose that λ
{m}
{c,s} = 1 if cluster c of system s is assigned to

metacluster m and 0 otherwise, and r
{m}
{c,s} is the “reward” of assigning cluster c

of system s to metacluster m, defined as:

r
{m}
{c,s} =

1
|I(m)|

∑

{c′,s′}∈I(m)

g{c,s},{c′,s′} , {c′, s′} ∈ I(m) ⇐⇒ λ
{m}
{c′,s′} �= 0 (2)

We seek to find the argument that maximizes:

λ∗ = arg max
λ

M∑

m=1

S∑

s=1

Cs∑

c=1

λ
{m}
{c,s}r

{m}
{c,s} (3)

subject to the constraints
M∑

m=1

λ
{m}
{c,s} = 1, ∀c, s (4)
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Optionally, we may want to add the following constraint:

Cs∑

c=1

λ
{m}
{c,s} = 1, ∀s, m (5)

This is a linear optimization problem and efficient techniques exist for maximiz-
ing the objective function. In our implementation, the GNU Linear Program-
ming library was used1. The scheme that results from omitting the constraints
of equation (5) is referred to as unconstrained, while including them results in
the constrained combination scheme. The added constraints ensure that exactly
one cluster from each system is assigned to each metacluster and are useful when
Cs = C ∀s. The entire procedure is iterative, starting from an initial assignment
of clusters to metaclusters and alternating between equations (2) and (3).

The output of the clustering procedure is matrix F of size D × M , where
each column is the centroid of each metacluster. The F m column is given by:

F m =
1

|I(m)|
∑

{c,s}∈I(m)

RT
{c,s} (6)

This can be the final output or a clustering stage can be applied using the
F matrix as the observation representations. Note that the assignments can be
continuous numbers between 0 and 1 (soft decisions) and that the systems do not
need to have the same number of clusters, nor do the final number of metaclusters
need to be the same as the number of clusters. To simplify the experiments, here
we have assumed that the number of clusters is known and equal to the number
of topics, i.e. Cs = M = #of topics ∀s. The methodology presented here does
not assume access to the original features and therefore it can be applied in cases
irrespective of whether the original features were continuous or discrete.

The optimization procedure is very similar to any partition-based clustering
procedure trained with the Expectation-Maximization algorithm, like k-means.
In fact, this scheme is “clustering clusters”, i.e. expressing clusters in a com-
mon vector space and grouping them into similar sets. Although the problem is
formulated from the optimization perspective, any clustering methodology can
be applied (statistical, graph-partitioning). However, there are two reasons that
favor the optimization approach. First, it directly links the correspondence prob-
lem to an objective function that can be maximized. Second, it allows us to easily
integrate constraints during clustering such as equation (5). As it is shown in
section 5, the constrained clustering scheme offers gains over the unconstrained
case, when it is appropriate for the task.

3.2 Singular Value Decomposition Combination

The third combination approach we introduce is based on Singular Value De-
composition (SVD). As before, we will assume that all systems have the same
number of clusters for notational simplicity, though it is not required of the
1 http://www.gnu.org/software/glpk/glpk.html
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algorithm. Just as before, we construct matrix R of size D × SC (D is the
number of observations, S is the number of systems, C the number of clusters),
where each row contains the cluster posteriors of all systems for a given obser-
vation. R can be approximated as R ≈ U ∗ S ∗ Λt where U is orthogonal and
of size D × C, S is diagonal and of size C × C and Λ is orthogonal and of size
(SC) × C. The final metaspace is R ∗ Λ of size D × C. If we define ps(c|d) =
p(cluster = c|observation = d, system = s), c = 1 . . . C, s = 1 . . . S, d = 1 . . .D
and hC(l) = l − C�l/C	 (remainder of division), then the φd,c element of R ∗Λ
is given by:

φd,c =
S∑

k=1

λgc(k),cpk (hC(gc(k))|d) (7)

where gc(·) is a function that aligns clusters of different systems and is esti-
mated by SVD. In essence, SVD identifies the most correlated clusters, i.e. finds
gc(·) and combines them with linear interpolation. The λ weights provide a soft
alignment of clusters. After SVD, a final clustering is performed using the φd,c

representation.

4 Evaluating Clustering Systems

There is no consensus in the literature on how to evaluate clustering decisions. In
this work, we used two measures to evaluate the clustering output. The first is the
classification accuracy of a one-to-one mapping between clusters and true classes.
The problem of finding the optimum assignment of M clusters to M classes
can be formulated and solved with linear programming. If ri,j is the “reward”
of assigning cluster i to class j (which can be the number of observations they
agree), λi,j=1 if cluster i is assigned to class j and 0 otherwise are the parameters
to estimate, then we seek to find: maxλi,j

∑
i,j ri,jλi,j under the constraints∑

i λi,j = 1 and
∑

j λi,j = 1. The constraints will ensure a one-to-one mapping.
The second measure we used is the normalized mutual information (NMI)

between clusters and classes, introduced in [7]. The measure does not assume a
fixed cluster-to-class mapping but rather takes the average mutual information
between every pair of cluster and class. It is given by:

NMI =

∑M
i=1

∑M
j=1 ni,j log

(
ni,jD
nimj

)

√∑M
i=1 ni log ni

D

∑M
j=1 mj log mj

D

(8)

where ni,j is the number of observations cluster i and class j agree, ni is the
number of observations assigned to cluster i, mj the number of observation of
class j and D the total number of observations. It can be shown that 0 < NMI ≤
1 with NMI=1 corresponding to perfect classification accuracy.

5 Experiments

The multiple clustering system combination schemes that are introduced in this
paper are general and can, in principle, be applied to any clustering problem. The
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task we have chosen to evaluate our metaclustering schemes is topic discovery,
i.e. clustering documents according to their topic. Topic discovery is an especially
hard clustering problem because of the high dimensionality of the data points
and the redundancy of many features. To simplify our experiments, the number
of topics is assumed to be known. This is an assumption that is not true in many
practical cases, but standard techniques such as Bayesian Information Criterion
[17] can be used to select the number of topics. It should be noted that the
unconstrained and SVD combination schemes do not require the same number
of clusters for all systems. On the other hand, the constrained clustering scheme
was proposed based on this assumption.

5.1 Corpora

The techniques proposed in this work are applied on three main corpora with
different characteristics. The first corpus is 20Newsgroups2, a collection of 18828
postings into one of 20 categories (newsgroups). The second corpus is a subset
of Reuters-215783, consisting of 1000 documents equally distributed among 20
topics. The third corpus is Switchboard-I release 2.0 [18], a collection of 2263
5-minute telephone conversations on 67 possible topics. Switchboard-I and to a
smaller extent 20Newsgroups, are characterized with a spontaneous, less struc-
tured style. On the other hand, Reuters-21578 contains carefully prepared news
stories for broadcasting. 20Newsgroups and the subset of Reuters are balanced,
i.e. documents are equally divided by topics, but Switchboard-I is not. Also, the
median length of a document varies significantly across corpora (155 words for
20Newsgroups, 80 for the subset of Reuters-21578 and 1328 for Switchboard-I).
Standard processing was applied in all corpora. Words in the default stoplist of
CLUTO (total 427 words) are removed, the remaining stemmed and only tokens
with T or more occurrences (T=5 for 20Newsgroups, T=2 for Reuters-21578 and
Switchboard-I) are retained. These operations result in 26857 unique tokens and
1.4M total tokens in 20Newsgroups, 4128 unique tokens and 50.5K total tokens
in Reuters, and 11550 unique and 0.4M total tokens in Switchboard.

5.2 Clustering Algorithms

A number of different clustering systems were used, including the mixture of
multinomials (MixMulti) and the optimization-based clustering algorithms and
criteria described in [19]. The MixMulti algorithm clusters documents by es-
timating a mixture of multinomial distributions. The assumption is that each
topic is characterized by a different multinomial distribution, i.e. different counts
of each word given a topic. The probability of a document d is given by: p(d) ∝∑M

c=1 p(c)
∏

w∈Wd
p(w|c)n(w,d) where M is the number of topics, Wd is the set

of unique words that appear in document d, p(w|c) is the probability of word w
given cluster c and n(w, d) is the count of word w in document d. The cluster

2 http://www.ai.mit.edu/˜jrennie/20Newsgroups/
3 http://www.daviddlewis.com/resources/testcollections/
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Table 1. Performance of different combination schemes on various clustering algo-
rithms for 20Newsgroups.

Single Best of SVD Constr. Unconstr. No
Run 100 runs Combin. Combin. Combin. Combin.

I1

Accuracy .422 .412 .418 .417 .408 .459
NMI .486 .485 .481 .480 .463 .500

I2

Accuracy .575 .603 .634 .615 .639 .624
NMI .601 .621 .637 .628 .640 .637

E1

Accuracy .579 .604 .648 .641 .610 .635
NMI .588 .606 .639 .631 .628 .633

G1

Accuracy .535 .561 .581 .562 .578 .576
NMI .561 .585 .593 .581 .582 .589

G′
1

Accuracy .576 .608 .642 .630 .563 .644
NMI .584 .603 .631 .622 .620 .632

H1

Accuracy .570 .584 .636 .641 .549 .642
NMI .593 .610 .629 .627 .592 .628

H2

Accuracy .586 .611 .656 .639 .602 .641
NMI .598 .616 .646 .634 .628 .638

MixMulti
Accuracy .534 .620 .679 .677 .621 .651
NMI .587 .625 .662 .656 .651 .662

c that each document is generated from is assumed to be hidden. Training such
a model is carried out using the Expectation-Maximization algorithm [20]. In
practice, smoothing the multinomial distributions is necessary. The mixture of
multinomials algorithm is the unsupervised analogue of the Naive Bayes algo-
rithm and has been successfully used in the past for document clustering [21].
Mixture models, in general, have been extensively used for data mining and
pattern discovery [22].

The software package CLUTO4 was used for the optimization-based algo-
rithms. Using CLUTO, a number of different clustering methods (hierarchical,
partitional and graph-partitioning) and criteria can be used. For example, the
I2 criterion maximizes the function

∑M
k=1

√∑
u,v∈ck

cos(u, v), where ck is the
set of documents in cluster k and u, v are the tfidf vector representations of
documents u, v respectively. The I2 criterion attempts to maximize intra-cluster
similarity. Other criteria, like E1, attempt to minimize inter-cluster similarity

4 http://www-users.cs.umn.edu/˜karypis/cluto/
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and yet other criteria, like H2, attempt to optimize a combination of both. For
more information on the optimization criteria and methods, see [19].

Having determined the clustering algorithms to use, the next question is how
to generate the systems to be combined. We may combine systems from different
clustering algorithms, pick a single algorithm and generate different systems by
resampling, or pick a single algorithm and use different initial conditions for each
system. In this work we chose the last option.

5.3 Results

On all results reported in this work the direct clustering method was used for
the CLUTO algorithms. For the single run case, the number reported is the
average of 100 independent runs. For the best of 100 runs case, the number is the
average of 10 runs where each run selects the system with the highest objective
function out of 100 trials. A trial is an execution of a clustering algorithm with a
different initial condition. For the metaclustering schemes, the final clustering is
performed, with the default values of CLUTO. 100 runs of the CLUTO algorithm
are performed and the one with the highest objective function selected.

In Table 1, the performance of the three combination schemes applied on
eight different clustering algorithms on 20Newsgroups is shown. For every clus-
tering algorithm except I1, we can observe significant gains of the combination
schemes compared to a single run or selecting the system with the highest ob-
jective function. The results show that the SVD combination outperforms the
constrained combination which in turn outperforms the unconstrained combi-
nation. This suggests that the constraints introduced are meaningful and lead
to improved performance over the unconstrained scheme. Also shown in Table
1 are the results from not using any combination scheme. This means that the
clusters of different systems are not combined but rather the cluster posteriors
for all systems are used as a new document representation. This corresponds to
using matrix R from subsection 3.2 without any dimensionality reduction. This
is the approach taken in [13]. From Table 1, we see that for the MixMulti case
there are gains from using SVD combination rather than using no combination of
clusters at all. For other systems, gains are small or differences are insignificant,
except for I1 again where accuracy degrades significantly.

In Table 2, the performance of the three combination schemes over the same
eight algorithms on a 1000-document subset of Reuters-21578 is shown. The
same trends as in Table 1 seem to hold. Combination appears to offer significant
improvements for all clustering algorithms, with SVD combination having a lead
over the other two combination schemes. In most cases, SVD combination is
better than the best individual clustering system. As in Table 1, the constrained
scheme is superior to unconstrained but not as good as SVD combination.

In Table 3 the experiments are repeated for the Switchboard corpus. In con-
trast to previous tables, the combination schemes do not offer an improvement
for the CLUTO algorithms and for the unconstrained scheme there is even a
degradation compared to the single run case. However, the mixture of multino-
mials records a very big improvement of about 40% on classification accuracy.
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Table 2. Performance of different combination schemes on various clustering algo-
rithms for a 1000-document subset of Reuters-21578.

Single Best of SVD Constr. Unconstr. No
Run 100 runs Combin. Combin. Combin. Combin.

I1

Accuracy .636 .644 .696 .669 .673 .686
NMI .697 .697 .735 .711 .725 .726

I2

Accuracy .709 .797 .838 .838 .764 .808
NMI .760 .805 .821 .819 .797 .814

E1

Accuracy .710 .797 .855 .837 .773 .849
NMI .745 .790 .830 .819 .799 .822

G1

Accuracy .652 .660 .707 .721 .705 .709
NMI .699 .716 .723 .727 .723 .727

G′
1

Accuracy .692 .771 .814 .816 .782 .827
NMI .730 .771 .797 .800 .790 .804

H1

Accuracy .709 .822 .844 .834 .789 .835
NMI .758 .820 .821 .819 .801 .817

H2

Accuracy .719 .814 .854 .849 .799 .828
NMI .761 .812 .837 .833 .813 .833

MixMulti
Accuracy .502 .525 .582 .543 .542 .586
NMI .597 .609 .658 .644 .633 .651

It is interesting to note that for the Switchboard corpus, although the mix-
ture of multinomials method was by far the worse clustering algorithm, after
SVD combination it clearly became the best method. The same happened for
the 20Newsgroups corpus where the mixture of multinomials was among one of
the worse-performing methods and after SVD combination it became the best.
These results suggest that when developing clustering algorithms, issues of the
performance of metaclustering are distinct than issues of performance of single
systems.

5.4 Factor Analysis of Results

In this subsection we try to determine the relative importance of two factors in
the combination schemes: the mean and variance of the classification accuracy
of individual systems. Comparing Table 1 or 2 with Table 3 the gains in 20News-
groups or Reuters are higher than Switchboard and the variance of individual
systems is higher in 20Newsgroups and Reuters than Switchboard. To assess the
effect of each one of these two factors (mean and variance of individual systems)
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Table 3. Performance of different combination schemes on various clustering algo-
rithms for Switchboard.

Single Best of SVD Constr. Unconstr. No
Run 100 runs Combin. Combin. Combin. Combin.

I1

Accuracy .819 .848 .826 .820 .789 .836
NMI .908 .914 .913 .907 .898 .915

I2

Accuracy .831 .863 .841 .837 .807 .845
NMI .913 .920 .920 .918 .910 .922

E1

Accuracy .798 .819 .819 .777 .736 .818
NMI .882 .886 .890 .883 .863 .891

G1

Accuracy .711 .711 .765 .751 .741 .762
NMI .868 .870 .887 .877 .875 .888

G′
1

Accuracy .789 .808 .811 .801 .749 .803
NMI .875 .878 .880 .877 .859 .878

H1

Accuracy .826 .861 .842 .811 .757 .841
NMI .910 .918 .918 .899 .895 .918

H2

Accuracy .814 .845 .840 .817 .773 .830
NMI .897 .903 .905 .900 .886 .901

MixMulti
Accuracy .635 .699 .888 .756 .739 .876
NMI .787 .818 .924 .899 .892 .921

we generated 300 systems and chose a set of 100 for metaclustering depending
on high/medium/low variance and similar mean (Table 4) or high/medium/low
mean and similar variance (Table 5). The results of Table 4 do not show a signif-
icant impact of variance on the combination results. The results of Table 5 show
a clear impact of the mean on the combination results. However, from Tables 1,
2 and 3 we know that the performance of the combined system does not depend
simply on the performance of the individual systems: the MixMulti result for
Switchboard compared with the CLUTO results is a counterexample. It appears
that there are unexplained interactions of mean, variance and clustering algo-
rithms that will make the combination more successful in some cases and less
successful in other cases.

6 Summary

We have presented three new methods for the combination of multiple cluster-
ing systems and evaluated them on three major corpora and on eight different
clustering algorithms. Identifying the correspondence between clusters of differ-



Combining Multiple Clustering Systems 73

Table 4. Effect of combining sets of 100 systems with approximately the same mean
and different levels of variance. The (stdev,acc) cells contain the standard deviation
and mean of classification accuracy for each set. Systems are generated with the E1

criterion on 20Newsgroups and combined with SVD.

Low Medium High
Variance Variance Variance

(stdev,acc) (.010,.577) (.023,.578) (.056,.580)

Accuracy .640 .631 .635
NMI .630 .629 .633

Table 5. Effect of combining sets of 100 systems with approximately the same variance
and different levels of mean. The (stdev,acc) cells contain the standard deviation and
mean of classification accuracy for each set. Systems are generated with the E1 criterion
on 20Newsgroups and combined with SVD.

Low Medium High
Mean Mean Mean

(stdev,acc) (.018,.538) (.010,.577) (.019,.617)

Accuracy .581 .641 .669
NMI .616 .632 .647

ent systems was achieved by “clustering clusters”, using constrained or uncon-
strained clustering or by applying SVD. We have empirically demonstrated that
the combination schemes can offer gains in most cases. Issues of combination of
multiple runs of an algorithm can be important. The combination of different
runs of mixture of multinomials algorithm was shown to outperform seven state-
of-the-art clustering algorithms on two out of three corpora. In the future we
will attempt to gain a better understanding of the conditions under which poor
individual systems can lead to improved performance when combined.

References

1. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller,
H., Loh, M., Downing, J., Caligiuri, M.: Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science 286 (1999)
531–537

2. Schütze, H.: Automatic word sense discrimination. Computational Linguistics 24
(1998) 97–124

3. Zamir, O., Etzioni, O.: Grouper: a dynamic clustering interface to Web search
results. Computer Networks 31 (1999) 1361–1374

4. Bellegarda, J.: Large vocabulary speech recognition with multispan statistical
language models. IEEE Trans. on Speech and Audio Processing 8 (2000) 76–84

5. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing
Surveys 31 (1999) 264–323



74 Constantinos Boulis and Mari Ostendorf

6. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36 (1999) 105–139

7. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for com-
bining multiple partitions. Machine Learning Research 3 (2002) 583–617

8. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-
based method for class discovery and visualization of gene-expression microaray
data. Machine Learning 52 (2003) 91–118

9. Fred, A., Jain, A.: Data clustering using evidence accumulation. In: Proc. of the
International Conference on Pattern Recognition. (2002) 276–280

10. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering proce-
dure. Bioinformatics 19 (2003) 1090–1099

11. Zeng, Y., Tang, J., Garcia-Frias, J., Gao, G.: An adaptive meta-clustering ap-
proach: Combining the information from different clustering results. In: Proc.
IEEE Computer Society Bioinformatics Conference. (2002) 276–281

12. Fern, X., Brodley, C.: Random projection for high dimensional data: A cluster
ensemble approach. In: Proc. of the 20th International Conf. on Machine Learning,
(ICML). (2003) 186–193

13. Topchy, A., Jain, A., Punch, W.: A mixture model for clustering ensembles. In:
Proc. of SIAM Conference on Data Mining. (2004)

14. Dimitriadou, E., Weingessel, A., Hornik, K.: A combination scheme for fuzzy
clustering. Inter. J. of Pattern Recognition and Artificial Intelligence 16 (2002)
901–912

15. Frossyniotis, D., Pertselakis, M., Stafylopatis, M.: A multi-clustering fusion algo-
rithm. In: Proc. of the 2nd Hellenic Conference on Artificial Intelligence. (2002)
225–236

16. Bradley, P., Fayyad, U.: Refining initial points for K-Means clustering. In: Proc.
15th International Conf. on Machine Learning, (ICML). (1998) 91–99

17. Schwartz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2)
(1978) 461–464

18. Godfrey, J., Holliman, E., McDaniel, J.: Switchboard: Telephone speech corpus for
research development. In: Proc. of ICASSP. (1992) 517–520

19. Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion
functions for document clustering. Machine Learning (2004) 311–331

20. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society Series B, 39(1)
(1977) 1–38

21. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Learning to classify text from
labeled and unlabeled documents. In: Proc. of AAAI. (1998) 792–799

22. Cheeseman, P., Stutz, J.: Bayesian classification (AutoClass): Theory and results.
In: Advances in Knowledge Discovery and Data Mining, AAAI Press/MIT Press
(1996)


	1 Introduction
	2 Related Work
	3 Finding Cluster Correspondence
	3.1 Constrained and Unconstrained Search
	3.2 Singular Value Decomposition Combination

	4 Evaluating Clustering Systems
	5 Experiments
	5.1 Corpora
	5.2 Clustering Algorithms
	5.3 Results
	5.4 Factor Analysis of Results

	6 Summary
	References



