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1 Context: Stochastic Relational Learning

Inductive Logic Programming (ILP) [4] combines techniques from machine learn-
ing with the representation of logic programming. It aims at inducing logical
clauses, i.e, general rules from specific observations and background knowledge.
Because of focusing on logical clauses, traditional ILP systems do not model un-
certainty explicitly. On the other hand, state-of-the-art probabilistic models such
as Bayesian networks (BN) [5], hidden Markov models, and stochastic context-
free grammars have a rigid structure and therefore have problems representing
a variable number of objects and relations among these objects. Recently, vari-
ous relational extensions of traditional probabilistic models have been proposed,
see [1] for an overview. The newly emerging field of stochastic relational learning
(SRL) studies learning such rich probabilistic models.

2 The Balios Engine

Balios is an inference engine for Bayesian logic programs (BLPs) [3, 2]. BLPs
combine BNs with definite clause logic. The basic idea is to view logical atoms as
sets of random variables which are similar to each other. Consider the modelling
the inheritance of a single gene that determines a person’s P blood type bt(P).
Each person P has two copies of the chromosome containing this gene, one, mc(M),
inherited from her mother mother(M, P), and one, pc(F), inherited from her father
father(F, P). Such a general influence relation cannot be captured within BNs.
Knowledge Representation: Like BNs, BLPs separate the qualitative, i.e.,
the influence relations among random variables, from the quantitative aspects
of the world, i.e., the strength of influences. In contrast to BNs, however, they
allow to capture general probabilistic regularities. Consider the BLP shown in
Figure 1 modelling our genetic domain. The rule graph gives an overview of all
interactions (boxes) among abstract random variables (ovals). For instance, the
maternal information mc/1 is specified in terms of mothers mother/2, maternal
mc/1 and paternal pc/1 information. Each interaction gives rise to a local prob-
abilistic model which is composed of a qualitative and a quantitative part. For
instance, rule 2 in Figure 1(a) encodes that

“the maternal genetic information mc(P) of a person P is influenced by the
maternal mc(M) and paternal pc(M) genetic information of P’s mother M.
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Fig. 1. (a) A graphical BLP. We left out some specification of quantitative knowledge.
(b) Parts of the inferred BN specifying the distribution over bt(ute).

Light gray ovals represent abstract random variables such as maternal chromo-
somes mc(P). Smaller white circles on boundaries denote arguments, e.g., some
person P. Larger white ovals together with undirected edges indicate that ar-
guments refer to the same person as for mc(P) and mother(M, P). To quantify
the structural knowledge, conditional probability distributions (CPDs) are associ-
ated. Some information might be of qualitative nature only, such as mother(M, P).
The mother M of a person P does not affect the CPD but ensures the variable bind-
ings among mc(P),mc(M), and pc(M). Such “logical” nodes are shaded dark gray.

Next to relational probabilistic models, the range of knowledge representation
paradigms provided by Balios include e.g. BNs (with purely discrete variables,
purely continuous variables, or a mix of discrete and continuous variables), hid-
den Markov models, stochastic grammars, and logic programs.

Inference: To compute the distribution of a finite set of random variables given
some evidence, a BN is inferred. To do so, proof techniques from logic program-
ming are employed because the qualitative structure of a BLP corresponds to
a logic program. For instance rule 1 in Figure 1(a) corresponds to the clause
pc(P) : − father(F, P), pc(F), mc(F) . We assume range-restriction, i.e., each
variable P in the head pc(P) also occurs in the body father(F, P), pc(F), mc(F).

To compute the distribution over bt(ute), we first compute ute’s paternal
pc(ute) and maternal mc(ute) information due to rule 3. The associated CPD
quantifies the influence. Then, in the next iteration, we deduce the influence
relations of the chromosomal information of ute’s mother (rule 1) and father
(rule 2). In this way, we iterate. This yields a BN, see Figure 1(b), if the influence
relation is acyclic. In the presence of evidence, e.g., we know that the blood type
of ute’s sister nadine is a, we compute the union of the BNs for bt(ute) and
bt(nadine), and set a as evidence for bt(nadine) in the resulting network.

Combining Rules and Aggregate Functions: When there are multiple rules
firing, a combining rule such as noisy-or or noisy-and is used to quantify the
combined influence. This also allows for aggregate functions such as median and
mode. Consider modelling the ranking of a new book, see Figure 2. The overall
ranking depends on the rankings of individual customers who read the book. The
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Fig. 2. Modelling the ranking of a book in terms of aggregated individual rankings of
customers who read the book.

individual rankings are summarized in agg/1 which deterministically computes
the aggregate property over all customers who read the book. The overall ranking
of the book rank book/1 probabilistically depends on agg/1.
The Engine: Balios is written in Java. It calls Sicstus Prolog to perform
logical inference and a BN inference engine (e.g. Hugin or Elvira) to per-
form probabilistic inference. Balios features (1) a GUI graphically representing
BLPs, (2) compution the most likely configuration, (3) exact (junction tree) and
approximative inference methods (rejection, likelihood and Gibbs sampling), and
(4) parameter estimation methods (hard EM, EM and conjugate gradient). To
the best of the authors’ knowledge, Balios is the first engine of a turing-complete
probabilistic programming language featuring a graphical representation.

3 Demonstration and Concluding Remarks

The demonstration will include examples of Bayesian networks, hidden Markov
models, stochastic grammars, and Bayesian logic programs. We will explain the
graphical representation, show how to do inference (exact and approximative),
and will demonstrate parameter estimation from a database of cases.

At the moment the set of planned future features of Balios includes, but is
not limited to: effective methods for learning the structure of BLPs, see e.g. [3];
and relational influence diagrams to support decision making.
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