
Asynchronous and Anticipatory
Filter-Stream Based Parallel Algorithm

for Frequent Itemset Mining�

Adriano Veloso1, Wagner Meira Jr.1, Renato Ferreira1,
Dorgival Guedes Neto1, and Srinivasan Parthasarathy2

1 Computer Science Department, Universidade Federal de Minas Gerais, Brazil
{adrianov,meira,renato,dorgival}@dcc.ufmg.br

2 Department of Computer and Information Science, The Ohio-State University, USA
srini@cis.ohio-state.edu

Abstract. In this paper we propose a novel parallel algorithm for frequent item-
set mining. The algorithm is based on the filter-stream programming model, in
which the frequent itemset mining process is represented as a data flow controlled
by a series of producer and consumer components (called filters), and the data
flow (communication) between such filters is made via streams. When production
rate matches consumption rate, and communication overhead between producer
and consumer filters is minimized, a high degree of asynchrony is achieved. Fol-
lowing this strategy, our algorithm employs an asynchronous candidate genera-
tion, and minimizes communication between filters by transferring only the nec-
essary aggregated information. Another nice feature of our algorithm is a look
forward approach which accelerates frequent itemset determination. Extensive
evaluation shows the parallel performance and scalability of our algorithm.

1 Introduction

The importance of data mining and knowledge discovery is growing. Fields as diverse
as astronomy, finance, bioinformatics, cyber-security are among the many facing the
situation where large amounts of data are collected and accumulated at an explosive
rate. Analyzing such datasets without the use of some kind of data reduction/mining
is getting more and more infeasible and thus there has been an increasing clamor for
mining such data efficiently.

The problem is that mining such large and potentially dynamic datasets is a compute-
intensive task, and even the most efficient of sequential algorithms may become ineffec-
tive. Thus, implementation of non-trivial data mining algorithms in high performance
parallel computing environments is crucial to improving response times.

Mining frequent patterns/itemsets is the core of several data mining tasks. Much
attention has gone to the development of parallel algorithms for such tasks[2, 7–9, 12,
16]. However, there are yet several challenges as yet unsolved.

First, parallelizing frequent itemset mining can be complicated and communication
intensive. Almost all existing algorithms require multiple synchronization points.

� This work has been partially supported by CNPq-Brazil and by CNPq / CT-INFO / PTACS.

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 422–433, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Asynchronous and Anticipatory Filter-Stream Based Parallel Algorithm 423

Second, achieving good workload balancing in parallel frequent itemset mining is
extremely difficult, since the amount of computation to be performed by each comput-
ing unit does not depend only on the amount of data assigned to it. In fact, equal-sized
blocks of data (or partitions) does not guarantee equal (nor approximately equal) work-
loads, since the number of frequent itemsets generated from each block can be heavily
skewed[7]. Thus, an important problem that adversely affects workload balancing is
sensitivity to data skew.

Third, system utilization is an issue that is often overlooked in such approaches.
The ability to make proper use of all system resources is essential in order to provide
scalability when mining frequent itemsets in huge datasets.

In this paper we present a new parallel algorithm for frequent itemset mining, based
on the filter-stream programming model. Essentially, the mining process is viewed as a
coarse grain data flow controlled by a series of components, referred to as filters. A filter
receives some data from other filters, performs specific processing in this data, and feeds
other filters with the transformed/filtered data. Filters are connected via streams, where
each stream denotes a unidirectional data flow from a producer filter to a consumer
filter. This new approach for parallel frequent itemset mining results in interesting con-
tributions, which can be summarized as follows:

– The candidate generation can work in an asynchronous way, yielding a very effec-
tive approach for determining frequent itemsets. Also, the algorithm communicates
only the necessary aggregate information about itemsets.

– The parallel algorithm is also anticipatory, in the sense that it can look ahead if a
candidate is frequent without the necessity of examining it over all partitions first.
This ability becomes more effective when the dataset has a skewed itemset support
distribution, a common occurrence in real workloads. In some sense, it compensates
the general negative impact of data skewness in workload balancing.

– Finally, we demonstrate thought an extensive experimental evaluation that our algo-
rithm utilizes the available resources very effectively and scale very well for huge
datasets and large parallel configurations.

2 Definitions and Related Work

DEFINITION 1. [ITEMSETS] For any set X , its size is the number of elements in X .
Let I denote the set of n natural numbers {1, 2, ..., n}. Each x ∈ I is called an item. A
non-empty subset of I is called an itemset. An itemset of size k, X = {x1, x2, ..., xk}
is called a k-itemset.

DEFINITION 2. [TRANSACTIONS] A transaction T i is an itemset, where i is a natural
number called the transaction identifier. A transaction dataset D = {T 1, T 2, ..., T m},
is a finite set of transactions, with size |D| = m. The support of an itemset X in D is the
number of transactions in D that contain X , given as σ(X ,D) = | {T i ∈ D |X ⊆ T i}|.

DEFINITION 3. [FREQUENT ITEMSETS] An itemset X is frequent in the dataset D
iff σ(X ,D)≥ σmin, where σmin is a user-specified minimum-support threshold, with
values 0 < σmin ≤| D |. The set of all frequent itemsets is denoted as F(σmin,D).

424 Adriano Veloso et al.

PROBLEM 1. [MINING FREQUENT ITEMSETS] Given σmin and a transaction dataset
D, the problem of mining frequent itemsets is to find F(σmin,D).

Several parallel algorithms for frequent itemset mining were already proposed in
the literature [2, 7–9, 16]. The majority of the proposed algorithms follow one of the
three main parallelizing strategies:

1. COUNT DISTRIBUTION: This strategy follows a data-parallel paradigm in which
the dataset is partitioned among the processing units (while the candidates are repli-
cated). One drawback of this strategy is that at the end of each iteration all process-
ing units must exchange local supports, incurring in several rounds of synchro-
nization. We alleviate this problem by presenting algorithms [14] that need only
one round of synchronization by employing an upper bound for the global negative
border [10]. FDM [7] is another algorithm built on the COUNT DISTRIBUTION

strategy. It employs new pruning techniques to reduce processing and communica-
tion1. Several other algorithms [2, 11] also follow this strategy.

2. CANDIDATE DISTRIBUTION: This strategy follows a paradigm that identifies dis-
joint partitions of candidates. A common strategy is to partition candidates based
on their prefixes, and this strategy can incur in poor workload balancing. PARE-
CLAT [16] is an algorithm that follows this strategy.

3. DATA DISTRIBUTION: This strategy attempts to maximize the use of all aggregate
main memory, but requires to transfer the entire dataset at the end of each iteration,
incurring in very high communication overheads.

Our parallel algorithm distributes both counts and candidates and has an excellent
asynchrony. Further, it presents benefits due to the use of a novel anticipation method.

3 The Filter-Stream Programming Model

The filter-stream programming model was originally proposed for Active Disks [1], to
allow the utilization of the disk resident processor in a safe and efficient way. The idea
was to exploit the extra processor to improve application performance in two ways.
First, alleviating the computation demand on the main processor by introducing the
extra, mostly idle processor. Second, it was expected that such computation would re-
duce the amount of data that needed to be brought from the disk to the main memory.
The proposed model, introduced the concept of disklets, or filters, which are entities
that perceive streams of data flowing in, and after some computation it would generate
streams of data flowing out. In a sense, it is very similar to the concept of UNIX pipes.
The difference is that while pipes only have one stream of data coming in and one go-
ing out, in the proposed model, arbitrary graphs with any number of input and output
streams are possible. Later, this concept was extended as a programming model suit-
able for the Grid environment [5]. A runtime system, called DATACUTTER (DC) was

1 Other interesting proposal introduced by the same authors is a metric for quantifying data
skewness. For an itemset X , let pi(X) denote the probability that X occurs in partition i. The
entropy of X is given as H = −

∑n

i
pi(X) × log(pi(X)). The skewness of X is given as

S(X) = log(n)−H(X)
log(n)

, where n is the number of partitions. A dataset’s total data skewness is
the sum of the skew of all itemsets weighted by their supports.

Asynchronous and Anticipatory Filter-Stream Based Parallel Algorithm 425

then developed to support such model. Applications from different domains have been
successfully implemented using DC [4, 6, 13]. Creating an application in DC consists
of decomposing the target application into filters. These filters are than scheduled for
execution in the machines comprising a Grid environment.

Streams in DC represent unidirectional pipes. A filter can either write into or read
from the stream. The units of communication are fixed size buffers, agreed upon by
the two sides. Each stream has a name associated with it and the connecting of the
endpoints of a stream is done at execution time. Once it is done, buffers that are written
by the sender will eventually be available for reading on the recipient side. Delivery is
guaranteed, and there is no duplication.

The instantiation of the filters is performed by the runtime environment. One of the
most important concepts in DC is that of transparent filter copies. At execution time,
many instances of the same filter can be created. This provides a simple way to express
and implement parallelism, reduce the computation time and to balance the time spend
on the several stages of the computation. So, while the concept of the decomposition
of the application into filters is related to task parallelism, the possibility of having
multiple replicas of the same filter, on the other hand, is related to data parallelism. DC
nicely integrates both forms of parallelism into one orthogonal environment.

With respect to multiple copies of the same filter, or data parallelism, the difference
between one copy and another is the portion of the entire data each copy has seen. If
the filter needs to maintain a state, it is vital that data related to the same portion of the
entire data to be always sent to the same copy. Moreover, the data buffers being sent
onto the streams need to be transported from one copy of the originating filter to one
specific copy of the recipient filter.

For most cases, the selection of the actual destination of any given message buffer
actually consider the data in the message to be untyped. However, for applications that
maintain some state, it is important to have some understanding of the contents of the
message as to decide to which copy of the destination filter needs to be delivered. For
these cases, DC implements labelled streams which extend the notion of the buffer to a
tuple < l, m > where l is a label and m is the message. Associated with each stream
there is a label domain L and a hash function h which maps the label from L to h(l).
The label domain defines valid values for labels in that stream and the hash function
defines a domain which may be associated with filter replicas. With the labeled stream,
the stream can use a mapping from that value h(l) to the set of replicas to decide to
which copy of the filter should the buffer < l, m > be delivered.

4 Filter-Stream Based Parallel Algorithm

In this section we present our parallel algorithm for frequent itemset mining. We start
by discussing its rationale and then we raise some implementation issues.

For sake of filter definition, we distinguish three main tasks to determine whether a
k-itemset is frequent or not:

1. verify whether its (k − 1)-subsets are frequent; if so,
2. count its local supports; and,
3. check whether its global support is above the minimum-support.

426 Adriano Veloso et al.

Fig. 1. Algorithm Execution and Data Flow.

The verification filter V receives as input (represented by the stream Vi) the itemsets
found to be frequent so far and determines the itemsets that should be verified as be-
ing possibly frequent (the candidates), which are the output Vo. The counter filter C
receives a candidate itemset through its input stream Ci, scans the dataset and deter-
mines the support of that candidate itemset, which is sent out using the stream Co.
The support checker filter receives the support associated with an itemset through the
stream Si, checks whether the counter is above the support threshold and notifies the
proper verification filter via the stream So. We may express the computation involved
in determining the frequent itemsets by instantiating the three filters for each itemset,
as depicted in Figure 1. In this case, the stream Vo and Ci are connected, as well as
the streams Co and Si. The streams So are connected to streams Vi according to the
itemset dependence graph2. Formally, we have two label domains I and T associated
with itemsets and transactions, respectively. The streams So and Vi are associated with
the domain I, while the others with the itemset T .

In the context of filters/streams, there are two dimensions where the paralleliza-
tion of frequent itemset mining algorithms may be exploited: candidates and counts.
We employ both strategies in our algorithm. The verification and counter filters, when
created with multiple instances, employ a count distribution strategy, while the support
checker filter adopts the candidate division among its instances. This strategy puts to-
gether filters from several levels of the dependence graph (that is, filters associated with
itemsets of various sizes), using the label concept of our programming model. Although
the mapping functions in this case may not be simple, this approach both uses the avail-
able plataform efficiently and does not require any replica of the transaction dataset.
Further, the granularity of the parallelism that may be exploited is very fine, since we
may assign a single transaction or itemset to a filter, without changing the algorithm nor
even its implementation.

The execution of the algorithm starts with the counter filters. Each counter filter
has access to its local dataset partition, and the first step is to count the 1-itemsets, by
scanning its partition and building the tidsets3 of the 1-itemsets. At this point, a label

2 The vertices in the dependence graph are the itemsets and the edges represent which itemsets
that are subsets of a given itemset and must be frequent so that the former may be also frequent.

3 The set of all transaction identifiers in which a given itemset has occurred. Other data struc-
tures, such as diffsets [15], can also be used.

Asynchronous and Anticipatory Filter-Stream Based Parallel Algorithm 427

is assigned to each counted candidate, and such label is coherent across all filters (i.e.,
a candidate has the same label in all filters). The next step is to discover the frequent
1-itemsets, and so each counter filter sends a pair {candidate label, local support} to
a support checker filter. For each candidate received, the support checker filter simply
sums its local supports. When this value reaches the minimum-support threshold, the
support checker filter determines that the candidate is frequent, and broadcasts its label
to all verifier filters.

Each verifier filter receives the candidate label from the support checker filter and
interprets that the candidate associated with the label is frequent. As the labels of fre-
quent 1-itemsets arrive at verifier filters, it is possible to start counting the 2-itemsets
that are enumerated from those frequent 1-itemsets. In order to control this process,
each verifier filter maintains a prefix-tree that efficiently returns all candidates that must
be counted. Note that, because the support checker filter communicates via broadcast
and the prefixes are lexicographically ordered, all candidates are verified and counted
according to the same order across the filters, being easy to label a candidate, since its
label is simply a monotonically increasing number. As soon as a candidate is counted,
the counter filter sends another pair {candidate label, local support} to the support
checker filter, and the process continues until a termination condition is reached and all
frequent itemsets were found. From this brief description we distinguish three major
issues that should be addressed for implementing our algorithm: performance, anticipa-
tion, and termination condition.

Performance: Each filter produces and consumes data at a certain rate. The best perfor-
mance occurs when the instances of filters are balanced with respect to each other and
the communication overhead between the filters is minimized. That is, the data produc-
tion rates of the producer filters should match the data comsuption rates of the consumer
filters. In our case, the number of counter filters must be larger than the number of the
other two filters, since counter filters perform a more computational intensive task than
the other filters. The optimal number of instances for each filter may vary according to
dataset characteristics (i.e., size, density etc.).

Anticipation: A support checker filter does not need to wait for all local supports of a
given candidate to determine if it is frequent. In fact, the support checker filter can an-
ticipate this information to the verifier filters, increasing the throughput of the support
checker filter and consequently accelerating the whole process. Clearly, data distribu-
tion has a major hole in the effectiveness of the anticipation process. In fact, skewed
distributions will provide the best gains.

Termination Condition: The execution terminates iff all filters have no more work to be
done. However, it is difficult to detect this condition because of the circular dependence
among filters. Fortunately, our algorithm has one property that facilitates the termina-
tion detection − the candidates are generated in the same order across filters, so that
the candidate label may work as a local global clock, which is synchronized when all
candidate labels are equal among all filters. At this point, there is no more work to be
done.

428 Adriano Veloso et al.

5 Experimental Evaluation

In this section we present experimental results of our parallel algorithm. Sensitivity
analysis on our algorithm was conducted on data distribution, data size, and degree
of parallelism. We used both real and synthetic datasets as inputs to the experiments.
The real dataset used is called KOSARAK, and it contains click-stream data of a Hun-
garian on-line news portal (KOSARAK has approximately 900,000 transactions). The
synthetic datasets, generated using the procedure described in [3], have sizes varying
from 560MB (D3.2MT16I12) to 2.2GB (D12.8MT16I12). To better understand how
data distribution (i.e., data skewness) affects the performance of our parallel algorithm,
we distributed the transactions among the partitions in two different ways:

– Random Transaction Distribution (DR): Transactions are randomly distributed
among equal-sized partitions. This strategy tends to reduce data skewness, since
all partitions have an equal probability to contain a given transaction.

– Original Transaction Distribution (DO): The dataset is simply splited into blocked
partitions, preserving its original data skewness.

We start by analyzing the parallel efficiency of our algorithm. We define the parallel
efficiency as: µp,q = Tp

q/p×Tq
, where Tp is the total execution time when p processors

are being employed. A parallel efficiency equals to 1 means linear speedup, and when it
gets above 1 it indicates that the speedup is super-linear. Table 1 shows how the parallel
efficiency varies as a function of dataset size, transaction distribution and degree of
parallelism. Parallel efficiency gets much better when the anticipating procedure is used
and dataset is larger. Parallel efficiency continues to be high even for larger degrees of
parallelism, reaching 7% of improvement in the best case.

Table 1. Parallel Efficiency.

Dataset Distribution Anticipating T8 (sec) µ8,16 µ16,32

D6.4MT16I12 DO NO 126.38 1.07 0.88
D6.4MT16I12 DO YES 124.11 1.07 1.06
D6.4MT16I12 DR NO 94.93 1.02 0.89
D6.4MT16I12 DR YES 92.13 1.02 0.99
D12.8MT16I12 DO NO 194.74 1.05 0.98
D12.8MT16I12 DO YES 188.18 1.07 1.07
D12.8MT16I12 DR NO 168.35 1.00 0.97
D12.8MT16I12 DR YES 165.96 1.02 1.01
KOSARAK DO NO 642.82 0.96 0.85
KOSARAK DO YES 639.14 1.00 0.95
KOSARAK DR NO 640.87 0.97 0.94
KOSARAK DR YES 639.91 0.99 0.95

We also evaluated our algorithm by means of traditional speedup and scaleup ex-
periments. Figure 2 shows speedup and scaleup numbers obtained from the synthetic

Asynchronous and Anticipatory Filter-Stream Based Parallel Algorithm 429

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35

V
a

lu
e

#Processors

Speedup − D6.4MT16I12 − σmin=6,400 (0.1%)

Ideal
Do − No anticipating

Do − Anticipating
Dr − No anticipating

Dr − Anticipating

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35

V
a

lu
e

#Processors

Speedup − D12.8MT16I12 − σmin=12,800 (0.1%)

Ideal
Do − No anticipating

Do − Anticipating
Dr − No anticipating

Dr − Anticipating

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35

V
a

lu
e

#Processors

Speedup − Korasak − σmin=500 (0.05%)

Ideal
Do − No anticipating

Do − Anticipating
Dr − No anticipating

Dr − Anticipating

 0.9

 0.95

 1

 1.05

 1.1

 5 10 15 20 25 30 35

V
a

lu
e

#Processors

Scaleup − D3.2M−D12.8MT16I12 − σmin=3,200−12,800 (0.1%)

Ideal
Do − No anticipating

Do − Anticipating
Dr − No anticipating

Dr − Anticipating

Fig. 2. Speedup and Scaleup Numbers (in relation to 8 processors).

and real datasets. Again, we varied the size, transaction distribution and degree of par-
allelism. For the speedup experiments with synthetic data we employed datasets with
different sizes (6,400,000 and 12,800,000 transactions), and for the two datasets em-
ployed we observed superlinear speedups when the anticipation procedure is used. We
also observed a superlinear speedup without the anticipation, but in this case the dataset
has a random transaction distribution. Further, the speedup number tends to get better
for larger datasets, since there is less variability. Impressive numbers were also observed
with real data, and the best result was achieved with original (skewed) transaction dis-
tribution and using the anticipation procedure.

For the scaleup experiments, we varied dataset size and degree of parallelism in
the same proportion. Dataset size ranges from 3,200,000 transactions (with 8 proces-
sors) to 12,800,000 transactions (with 32 processors). As we can see in Figure 2, our
parallel algorithm also presents ultra scalability when the anticipation procedure is em-
ployed, or a random transaction distribution is used. Even when using original transac-
tion distribution without anticipation, our algorithm shows to be very scalable, reaching
approximately 95% of scalability.

As seem in both speedup and scaleup experiments, the anticipation is more effec-
tive in the presence of data skewness, since the probability of a frequent itemset be sent
to the verifier filter using less partitions is higher. Figure 3 shows the average number

430 Adriano Veloso et al.

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35

V
a

lu
e

#Processors

Average #Partitions − D6.4MT16I12 − σmin=6,400 (0.1%)

Do − No anticipating
Do − Anticipating

Dr − No anticipating
Dr − Anticipating

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35

V
a

lu
e

 (
s
e

c
s
)

#Processors

Average time to trigger − D6.4MT16I12 − σmin=6,400 (0.1%)

Do − No anticipating
Do − Anticipating

Dr − No anticipating
Dr − Anticipating

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35

V
a

lu
e

#Processors

Average #Partitions − D12.8MT16I12 − σmin=12,800 (0.1%)

Do − No anticipating
Do − Anticipating

Dr − No anticipating
Dr − Anticipating

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35

V
a

lu
e

 (
s
e

c
s
)

#Processors

Average time to trigger − D12.8MT16I12 − σmin=12,800 (0.1%)

Do − No anticipating
Do − Anticipating

Dr − No anticipating
Dr − Anticipating

Fig. 3. Effects of Anticipating: Necessary Partitions and Average Time to Trigger.

of partitions necessary to trigger an itemset as frequent. Note that, without any antic-
ipation, all partitions must be analyzed, but when the anticipation procedure is used,
the number of partitions that must be analyzed to trigger a frequent itemset is smaller
and varies with data skewness. As expected, the same trend is also observed in the av-
erage time to trigger a frequent itemset. Further, smaller itemsets usually are detected
to be frequent earlier. In Table 2 we present the anticipation gain, that is, how long in
advance the itemset is found to be frequent. In a 32-processor configuration using the
D12.8MT16I12 dataset the gain varied from 60% to 7%. This observation is particularly
interesting because the number of short-sized itemsets is much greater than large-sized
itemsets, in particular 2- and 3-itemsets.

Table 2. Anticipation gain for D12.8MT16I12 using 32 processors.

Itemset size 1 2 3 4 5 6
Anticipation gain 60.6% 47.0% 44.5% 16.2% 6.0% 7.2%

In order to better understand the dynamics of the parallel algorithm, we introduce
some metrics that quantify the various phases of the algorithm. We may divide the
determination of the support of an itemset into four phases:

Asynchronous and Anticipatory Filter-Stream Based Parallel Algorithm 431

Activation: The various notifications necessary for an itemset become a candidate may
not arrive at the same time, and the verification filter has to wait until the conditions
for an itemset be considered candidate are satisfied.

Contention: After the itemset is considered a good candidate, it may wait in the pro-
cessing queue of the counter filter.

Counting: The counter filters may not start simultaneously, and the counting phase
is characterized by counter filters calculating the support of a candidate itemset in
each partition.

Checking: The local supports coming from each counter filter may not arrive at the
same time in the support checker filter, and the checking phase is the time period
during which the notifications arrive.

Next we are going to analyze the duration of these phases in both speedup and
scaleup experiments. The analysis of the speedup experiments explains the efficiency
achieved, while the analysis of scaleup experiments shows the scalability.

In Table 3 we show the duration of the phases we just described for configurations
employing 8, 16, and 32 processors for mining the D12.8MT16I12 dataset. The right-
most column also shows the average processing cost for counting an itemset, where we
can see that this cost reduces as the number of processors increase, as expected. The
same may be observed for all phases, except for the Activation phase, whose duration
seems to reach a limit around 1 second. The problem in this case is that the number
of processors involved is high and the asynchronous nature of the algorithm makes the
reduction of the Activation time very difficult.

Table 3. Speedup Experiment: Profiling (secs).

Proc Activation Contention Counting Checking Processing
8 2.741046 5.564751 9.412093 8.469050 0.001645

16 1.264842 2.058052 4.893773 4.691232 0.000759
32 1.229330 0.273229 1.129718 1.986129 0.000369

Verifying the timings for the scaleup experiments in Table 4, we verify the scala-
bility of our algorithm. We can see that an increase in the number of processors and
in the size of the dataset does not affect significantly the measurements, that is, the
algorithm implementation does not saturate system resources (mainly communication)
when scaled.

Table 4. Scaleup Experiment: Profiling (secs).

Proc Activation Contention Counting Checking Processing
8 2.741046 5.564751 9.412093 8.469050 0.001645

16 2.628118 5.538353 9.349371 8.403360 0.001596
32 2.439369 5.021002 10.311501 8.906631 0.001594

432 Adriano Veloso et al.

6 Conclusion and Future Work

In this paper we proposed an algorithm to conduct parallel frequent itemset mining. The
proposed algorithm is based on the filter-stream programming model, where the com-
putation of frequent itemsets is expressed as a circular data flow between distinct com-
ponents or filters. Parallel performance is optimized, and a high degree of asynchrony is
achieved by using the right number of each filter. Further, we propose a very simple an-
ticipation approach, which accelerates frequent itemset determination (specially in the
presence of data skew). It was empirically showed that our algorithm achieves excellent
parallel efficiency and scalability, even in the presence of high data skewness.

Future work includes the development of parallel filter-stream based algorithms for
other data mining techniques, such as maximal/closed frequent itemsets and frequent
sequential patterns. Utilization of our algorithms in real applications is also a possible
target.

References

1. A. Acharya, M. Uysal, and J. Satlz. Active disks: Programming model, algorithms and
evaluation. In Proc. of the Intl. Conf. on Architectural Support for programming Languages
and Operating Systems (ASPLOS VIII), pages 81–91. ACM Press, Oct 1998.

2. R. Agrawal and J. Shafer. Parallel mining of association rules. Transactions on Knowledge
and Data Engineering, 8(6):962–969, 1996.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the Intl.
Conf. on Very Large Databases (VLDB), pages 487–499, SanTiago, Chile, June 1994.

4. M. Beynon, C. Chang, U. Catalyurek, T. Kurc, A. Sussman, H. Andrade, R. Ferreira, and
J. Saltz. Processing large-scale multi-dimensional data in parallel and distributed environ-
ments. Parallel Computing, 28(5):827–859, 2002.

5. M. Beynon, T. Kurc, A. Sussman, and J. Saltz. Design of a framework for data-intensive
wide-area applications. In Proc of the Heterogeneous Computing Workshop (HCW), pages
116–130. IEEE Computer Society Press, May 2000.

6. U. Catalyurek, M. Gray, T. Kurc, J. Saltz, and R. Ferreira. A component-based implementa-
tion of multiple sequence alignment. In Proc. of the ACM Symposium on Applied Computing
(SAC), pages 122–126. ACM, 2003.

7. D. Cheung and Y. Xiao. Effect of data distribution in parallel mining of associations. Data
Mining and Knowledge Discovery, 3(3):291–314, 1999.

8. E. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. Trans-
actions on Knowledge and Data Engineering, 12(3):728–737, 2000.

9. M. Joshi, E. Han, G. Karypis, and V. Kumar. Efficient parallel algorithms for mining associ-
ations. Parallel and Distributed Systems, 1759:418–429, 2000.

10. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge dis-
covery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

11. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. An efficient parallel and distributed
algorithm for counting frequent sets. In Proc. of the Intl. Conf. on Vector and Parallel Pro-
cessing (VECPAR), pages 421–435, Porto, Portugal, 2002.

12. S. Parthasarathy, M. Zaki, M. Ogihara, and W. Li. Parallel data mining for association rules
on shared-memory systems. Knowledge and Information Systems, 3(1):1–29, 2001.

13. M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz. Ex-
ecuting multiple pipelined data analysis operations in the grid. In Proc. of the ACM/IEEE
Conf. on Supercomputing, pages 1–18. IEEE Computer Society Press, 2002.

Asynchronous and Anticipatory Filter-Stream Based Parallel Algorithm 433

14. A. Veloso, M. Otey, S. Parthasarathy, and W. Meira. Parallel and distributed frequent item-
set mining on dynamic datasets. In Proc. of the High Performance Computing Conference
(HiPC), Hyderabad, India, December 2003. Springer and ACM-SIGARCH.

15. M. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining (SIGKDD). ACM, August 2003.

16. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New parallel algorithms for fast discovery
of association rules. Data Mining and Knowledge Discovery, 4(1):343–373, December 1997.

	1 Introduction
	2 Definitions and Related Work
	3 The Filter-Stream Programming Model
	4 Filter-Stream Based Parallel Algorithm
	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

