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Abstract. The purpose of this study is to propose a new online and
nonlinear PCA(OL-NPCA) method for feature extraction from the in-
cremental data. Kernel PCA(KPCA) is widely used for nonlinear feature
extraction, however, it has been pointed out that KPCA has the follow-
ing problems. First, applying KPCA to patterns requires storing and
finding the eigenvectors of a kernel matrix, which is infeasible for a large
number of data N. Second problem is that in order to update the eigen-
vectors with an another data, the whole eigenspace should be recom-
puted. OL-NPCA overcomes these problems by incremental eigenspace
update method with a feature mapping function. According to the ex-
perimental results, which comes from applying OL-NPCA to a toy and
a large data problem, OL-NPCA shows following advantages. First, OL-
NPCA is more efficient in memory requirement than KPCA. Second
advantage is that OL-NPCA is comparable in performance to KPCA.
Furthermore, performance of OL-NPCA can be easily improved by re-
learning the data. For classification extracted features are used as input
for least squares support vector machine. In our experiments we show
that proposed feature extraction method is comparable in performance
to a Kernel PCA and proposed classification system shows a high classi-
fication performance on UCI benchmarking data and NIST handwritten
data set.

Keywords: Incremental nonlinear PCA, Kernel PCA, Feature mapping
function, LS-SVM

1 Introduction

In many pattern recognition problem it relies critically on efficient data represen-
tation. It is therefore desirable to extract measurements that are invariant or in-
sensitive to the variations within each class. The process of extracting such mea-
surements is called feature extraction. Principal Component Analysis(PCA)[1] is
a powerful technique for extracting features from possibly high-dimensional data
sets. For reviews of the existing literature is described in [2][3][4]. Traditional
PCA, however, has several problems. First PCA requires a batch computation
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step and it causes a serious problem when the data set is large i.e., the PCA
computation becomes very expensive. Second problem is that, in order to update
the subspace of eigenvectors with another data, we have to recompute the whole
eigenspace. Finial problem is that PCA only defines a linear projection of the
data, the scope of its application is necessarily somewhat limited. It has been
shown that most of the data in the real world are inherently non-symmetric and
therefore contain higher-order correlation information that could be useful[5].
PCA is incapable of representing such data. For such cases, nonlinear trans-
forms is necessary. Recently kernel trick has been applied to PCA and is based
on a formulation of PCA in terms of the dot product matrix instead of the co-
variance matrix[8]. Kernel PCA(KPCA), however, requires storing and finding
the eigenvectors of a N x N kernel matrix where N is a number of patterns. It
is infeasible method when N is large. This fact has motivated the development
of incremental way of KPCA method which does not store the kernel matrix.
It is hoped that the distribution of the extracted features in the feature space
has a simple distribution so that a classifier could do a proper task. But it is
point out that extracted features by KPCA are global features for all input
data and thus may not be optimal for discriminating one class from others[6].
This has naturally motivated to combine the feature extraction method with
classifier for classification purpose. In this paper we propose a new classifier for
on-line and nonlinear data. Proposed classifier is composed of two parts. First
part is used for feature extraction. To extract nonlinear features, we propose a
new feature extraction method which overcomes the problem of memory require-
ment of KPCA by incremental eigenspace update method incorporating with an
adaptation of feature mapping function. Second part is used for classification.
Extracted features are used as input for classification. We take Least Squares
Support Vector Machines(LS-SVM)[7] as a classifier. LS-SVM is reformulations
to the standard Support Vector Machines(SVM)[8]. SVM typically solving prob-
lems by quadratic programming(QP). Solving QP problem requires complicated
computational effort and needs more memory requirement. LS-SVM overcomes
this problem by solving a set of linear equations in the problem formulation.
Paper is composed of as follows. In Section 2 we will briefly explain the in-
cremental eigenspace update method. In Section 3 nonlinear PCA is introduced
and to make nonlinear PCA incrementally feature mapping function is explained.
Proposed classifier combining LS-SVM with proposed feature extraction method
is described in Section 4. Experimental results to evaluate the performance of
proposed classifier is shown in Section 5. Discussion of proposed classifier and
future work is described in Section 6.

2 Incremental Eigenspace Update Method

In this section, we will give a brief introduction to the method of incremental
PCA algorithm which overcomes the computational complexity and memory re-
quirement of standard PCA. Before continuing, a note on notation is in order.
Vectors are columns, and the size of a vector, or matrix, where it is important, is
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denoted with subscripts. Particular column vectors within a matrix are denoted
with a superscript, while a superscript on a vector denotes a particular observa-
tion from a set of observations, so we treat observations as column vectors of a
matrix. As an example, A%, is the ith column vector in an m x n matrix. We
denote a column extension to a matrix using square brackets. Thus [A,,,b] is an
(m x (n+ 1)) matrix, with vector b appended to A,,, as a last column.

To explain the incremental PCA, we assume that we have already built a set
of eigenvectors U = [u;],7 = 1,---,k after having trained the input data
X;, 4 =1,--+, N. The corresponding eigenvalues are A and X is the mean of input
vector. Incremental building of eigenspace requires to update these eigenspace
to take into account of a new input data. Here we give a brief summarization of
the method which is described in [9]. First, we update the mean:

_ 1 _
,’E/:N—H(N,’E+.’L'N+1) (1)

We then update the set of Eigenvectors to reflect the new input vector and
to apply a rotational transformation to U. For doing this, it is necessary to
compute the orthogonal residual vector h = (Uan 41 4+ T) — xn4+1 and normalize
it to obtain hyy1 = ”:;;’ﬁ for || An41 |[2> 0 and hyi1 = 0 otherwise. We
obtain the new matrix of Eigenvectors U ' by appending hy+1 to the eigenvectors

U and rotating them :
U' =[U,hys1]R (2)

where R € Ri41)x(k+1) is a rotation matrix. R is the solution of the eigenprob-
lem of the following form:

DR = RA (3)
where A’ is a diagonal matrix of new Eigenvalues. We compose D € Rct1)x(kt1)
as:

N A0 N aa™ va
_ . 4
N+1{OTO}+(N+1)2 [vaTvz] )

where v = h{ (zn+1 — %) and @ = UT(zn41 — Z). Though there are other
ways to construct matrix D[10,11], the only method ,jhowever, described in [9]
allows for the updating of mean.

2.1 Eigenspace Updating Criterion

The incremental PCA represents the input data with principal components a;(y,)
and it can be approximated as follows:

To update the principal components a;(y) for a new input zy41 , computing
an auxiliary vector 7 is necessary. 7 is calculated as follows:

n=[Uhv] @-7) (6)
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then the computation of all principal components is

T | a; .
a1y = (R) { gﬂﬂy, i=1, N+1 (7)

The above transformation produces a representation with &£+ 1 dimensions. Due
to the increase of the dimensionality by one, however, more storage is required
to represent the data. If we try to keep a k-dimensional eigenspace, we lose a
certain amount of information. It is needed for us to set the criterion on retaining
the number of eigenvectors. There is no explicit guideline for retaining a number
of eigenvectors. Here we introduce some general criteria to deal with the model’s
dimensionality:

— Adding a new vector whenever the size of the residual vector exceeds an
absolute threshold;

— Adding a new vector when the percentage of energy carried by the last
Eigenvalue in the total energy of the system exceeds an absolute threshold,
or equivalently, defining a percentage of the total energy of the system that
will be kept in each update;

— Discarding Eigenvectors whose Eigenvalues are smaller than a percentage of
the first Eigenvalue;

— Keeping the dimensionality constant.

In this paper we take a rule described in b). We set our criterion on adding
an Eigenvector as A, ; > 0.7\ where A is a mean of the A\. Based on this rule,

we decide whether adding ulk 41 Or not.

3 Online and Nonlinear PCA

A prerequisite of the incremental eigenspace update method is that it has to
be applied on the data set. Furthermore incremental PCA builds the subspace
of eigenvectors incrementally, it is restricted to apply the linear data. But in
the case of KPCA this data set ®(z") is high dimensional and can most of
the time not even be calculated explicitly. For the case of nonlinear data set,
applying feature mapping function method to incremental PCA may be one
of the solutions. This is performed by so-called kernel-trick, which means an
implicit embedding to an infinite dimensional Hilbert space[8](i.e. feature space)
F.

K (z,y) = 2(x) - 2(y) (8)

Where K is a given kernel function in an input space. When K is semi pos-
itive definite, the existence of @ is proven[8]. Most of the case, however, the
mapping @ is high-dimensional and cannot be obtained explicitly except poly-
nomial kernel function. We can easily derive polynomial feature mapping func-
tion as following procedure. Let d =2, x = (z1,22),y = (y1,y2)) then (z -y)? =
(22, V22129, 22) (y3, V21192, ¥3)T = (¢(2) - 4 (y)). Now it is then easy to see that
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(#(z)) = (22, v/2w172,22). In case of polynomial feature mapping function there
is no difference in performance according to degree d[8]. By this result, we only
need to apply the polynomial feature mapping function to one data point at a
time and do not need to store the N x N kernel matrix.

4 Proposed Classification System

In earlier Section 3 we proposed an incremental nonlinear PCA method for
nonlinear feature extraction. Feature extraction by incremental nonlinear PCA
effectively acts a nonlinear mapping from the input space to an implicit high
dimensional feature space. It is hoped that the distribution of the mapped data
in the feature space has a simple distribution so that a classifier can classify
them properly. But it is point out that extracted features by nonlinear PCA are
global features for all input data and thus may not be optimal for discriminat-
ing one class from others. For classification purpose, after global features are
extracted using they must be used as input data for classification. There are
many famous classifier in machine learning field. Among them neural network
is popular method for classification and prediction purpose. Traditional neural
network approaches, however have suffered difficulties with generalization, pro-
ducing models that can overfit the data. To overcome the problem of classical
neural network technique, support vector machines(SVM) have been introduced.
The foundations of SVM have been developed by Vapnik and it is a powerful
methodology for solving problems in nonlinear classification. Originally, it has
been introduced within the context of statistical learning theory and structural
risk minimization. In the methods one solves convex optimization problems, typ-
ically by quadratic programming(QP). Solving QP problem requires complicated
computational effort and need more memory requirement. LS-SVM overcomes
this problem by solving a set of linear equations in the problem formulation.
LS-SVM method is computationally attractive and easier to extend than SVM.

5 Experiment

To evaluate the performance of proposed classification system, experiment is
performed by following step. First we evaluate the feature extraction ability of
online and nonlinear PCA(OL-NPCA). The disadvantage of incremental method
is their accuracy compared to batch method even though it has the advantage
of memory efficiency. So we shall apply proposed method to a simple toy data
and image data set which will show the accuracy and memory efficiency of in-
cremental nonlinear PCA compared to APEX model proposed by Kung[15] and
batch KPCA. Next we will evaluate the training and generalization ability of
proposed classifier on UCI benchmarking data and NIST handwritten data set.
To do this, extracted features by OL-NPCA will be used as input for LS-SVM.
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5.1 Toy Data

To evaluate the feature extraction accuracy and memory efficiency of OL-NPCA
compared to APEX and KPCA we take nonlinear data used by Scholkoff[5].
Totally 41 training data set is generated by:

y=a>+02: ¢ from N(0,1),z = [-1,1] (9)

First we compare feature extraction ability of OL-NPCA to APEX model.
APEX model is famous principal component extractor based on Hebbian learn-
ing rule. Applying toy data to OL-NPCA we finally obtain 2 eigenvectors. To
evaluate the performance of two methods on same condition, we set 2 output
nodes to standard APEX model.

Table 1. Performance evaluation of OL-NPCA and APEX

Method |(Iteration|Learning Rate||| wy ||||| w2 |||cos 61 cos 02 MSE
APEX 50 0.01 0.6827(1.4346|0.9993 0.7084 14.8589
APEX 50 0.05 do not converge
APEX 500 0.01 1.0068|1.0014/0.9995 0.9970 4.4403
APEX 500 0.05 1.0152|1.0470|0.9861 0.9432 4.6340
APEX 1000 0.01 1.0068|1.0014{0.9995 0.9970 4.4403
APEX 1000 0.05 1.0152|1.0470|0.9861 0.9432 4.6340
OL-NPCA| 100 1 1 1 1 0.0223

In table 1 we experimented APEX method on various conditions. Generally
neural network based learning model has difficulty in determining the param-
eters; for example learning rate, initial weight value and optimal hidden layer
node. This makes us to conduct experiments on various conditions. || w | is
norm of weight vector in APEX and || w ||= 1 means that it converges stable
minimum. cosf is angle between Eigenvector of KPCA and APEX, OL-NPCA
respectively. cosf of Eigenvector can be a factor of evaluating accuracy how
much OL-NPCA and APEX is close to accuracy of KPCA. Table 1 nicely shows
the two advantages of OL-NPCA compared to APEX: first, performance of OL-
NPCA is better than APEX; second, the performance of OL-NPCA is easily
improved by re-learning. Another factor of evaluating accuracy is reconstruction
error. Reconstruction error is defined as the squared distance between the image
of z and reconstruction when projected onto the first ¢ principal components.

§ = [W(zn) — P¥(zn)[? (10)

In here P is the first 4 principal component. The MSE(Mean Square Error)
value of reconstruction error in APEX is 4.4403 whereas OL-NPCA is 0.0223.
This means that the accuracy of OL-NPCA is superior to standard APEX and
similar to that of batch KPCA. Above results of simple toy problem indicate
that OL-NPCA is comparable to the batch way KPCA and superior in terms of
accuracy.
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Next we will compare the memory efficiency of OL-NPCA compared to
KPCA. To extract nonlinear features, OL-NPCA only needs D matrix and R
matrix whereas KPCA needs kernel matrix. Table 2 shows the memory require-
ment of each method. Memory requirement of standard KPCA is 93 times more
than OL-NPCA. We can see that OL-NPCA is more efficient in memory re-
quirement than KPCA and has similar ability in extracting nonlinear features.
By this simple toy problem we can show that OL-NPCA has similar ability in
extracting nonlinear features compare to KPCA and more efficient in memory
requirement than KPCA.

Table 2. Memory efficiency of OL-NPCA compared to KPCA on toy data

KPCA OL-NPCA
Kernel matrix 41 X 41 none
R matrix none 3X3
D matrix none 3X3
Efficiency ratio 93.3889 1

5.2 Reconstruction Ability

To compare the reconstruction ability of incremental eigenspace update method
proposed by Hall to APEX model we conducted experiment on US National
Institute of Standards and Technology(NIST) handwritten data set. Data has
been size-normalized and 16 X 16 images with their values scaled to the interval
[0,1]. Applying this data to incremental eigenspace update method we finally
obtain 6 Eigenvectors. As earlier experiment we set 6 output nodes to standard
APEX method. Figure 1 shows the original data and their reconstructed images
by incremental eigenspace update method and APEX respectively. We can see
that reconstructed features by incremental eigenspace update method is more
clear and similar to original image compared to APEX method.

5.3 UCI Machine Learning Repository

To test the performance of proposed classifier for real world data, we enlarge our
experiment to the Cleveland heart disease data and wine data obtained from the
UCI Machine Learning Repository. Detailed description of data is available from
web site( http://www.ics.uci.edu/ mlearn/MLSummary.html). In this problem
we randomly split training data as 80% and remaining as test data. A RBF
kernel has been taken with and obtained by 10-fold cross-validation procedure to
select the optimal hyperparameter. Table 3 shows the learning and generalization
ability by proposed classifier.

By this result we can see that proposed classification system classifies well
on specific data.
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Fig. 1. Reconstructed image by OL-NPCA and APEX

Table 3. Training and generalization result by proposed classifier on UCI Machine
Learning Repository

Training | Generalization | Eigenvalue update criterion
Cleveland heart-disease| 100% 97.35% A > 0.7)
Wine data 100% 98.04% A > 070

5.4 NIST Handwritten Data Set

To validate the above results on a widely used pattern recognition benchmark
database, we conducted classification experiment on the NIST data set. This
database originally contains 15,025 digit images. For computational reasons, we
decided to use a subset of 2000 data set, 1000 for training and 1000 for testing.
In this problem we use multiclass LS-SVM classifier proposed by Suykens[16].
An important issue for SVM is model selection. In [17] it is shown that the use
of 10-fold cross-validation for hyperparameter selection of LS-SVMs consistently
leads to very good results. In this problem RBF kernel has been taken and
hyperparameter v; = 1.5198, v = 179.731, ~v3 = 10.51, v4 = 12.81 and 07 =
67.416, oo = 656.351, o3 = 54.349, o4 = 57.909 are obtained by 10-fold cross-
validation technique. The results on the NIST data are given in Table 4 and
5. For this widely used pattern recognition problem, we can see that proposed
classification system classifies well on given data.

6 Conclusion and Remarks

This paper is devoted to the exposition of a new technique on extracting nonlin-
ear features and classification system from the incremental data. To develop this
technique, we apply an incremental eigenspace update method to KPCA with an
polynomial feature mapping function approach. Proposed OL-NPCA has follow-
ing advantages. Firstly, OL-NPCA has similar feature extracting performance
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Table 4. Training and generalization result on NIST handwritten data

Training | Generalization | Eigenvalue update criterion
Proposed Classifier 100% 98.7% A > 0.7A

Table 5. Misclassification frequency by proposed classification system on test data

Pattern 0 1 2 3 4 5 6 7 8 9 Total
Frequency | 0 0 0 3 4 0 0 6 0 0 13

for incremental and nonlinear data comparable to batch KPCA. Secondly, OL-
NPCA is more efficient in memory requirement than batch KPCA. In batch
KPCA the N x N kernel matrix has to be stored, while for OL-NPCA require-
ments are O((k + 1)?). Here k(1 < k < N) is the number of eigenvectors stored
in each eigenspace updating step, which usually takes a number much smaller
than N. Thirdly, OL-NPCA allows for complete incremental learning using the
eigenspace approach, whereas batch KPCA recomputes whole decomposition for
updating the subspace of eigenvectors with another data. Finally, experimental
results show that extracted features from OL-NPCA lead to good performance
when used as a pre-preprocess data for a LS-SVM.
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