
J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 39–50, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Applying Support Vector Machines
to Imbalanced Datasets

Rehan Akbani1, Stephen Kwek1, and Nathalie Japkowicz2

1 Department of Computer Science, University of Texas at San Antonio
6900 N. Loop 1604 W, San Antonio, Texas, 78249, USA

{rakbani,kwek}@cs.utsa.edu
2 School of Information Technology & Engineering, University of Ottawa

150 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada
nat@site.uottawa.ca

Abstract. Support Vector Machines (SVM) have been extensively studied and
have shown remarkable success in many applications. However the success of
SVM is very limited when it is applied to the problem of learning from imbal-
anced datasets in which negative instances heavily outnumber the positive in-
stances (e.g. in gene profiling and detecting credit card fraud). This paper dis-
cusses the factors behind this failure and explains why the common strategy of
undersampling the training data may not be the best choice for SVM. We then
propose an algorithm for overcoming these problems which is based on a vari-
ant of the SMOTE algorithm by Chawla et al, combined with Veropoulos et al’s
different error costs algorithm. We compare the performance of our algorithm
against these two algorithms, along with undersampling and regular SVM and
show that our algorithm outperforms all of them.

1 Introduction

Support Vector Machines (SVM) were introduced by Vapnik and colleagues [13] and
they have been very successful in application areas ranging from image retrieval [12],
handwriting recognition [3] to text classification [7]. However, when faced with im-
balanced datasets where the number of negative instances far outnumbers the positive
instances, the performance of SVM drops significantly [15] (in the remainder of this
paper negative is always taken to be the majority class and positive is the minority
class). Application areas such as gene profiling, medical diagnosis and credit card
fraud detection have highly skewed datasets with a very small number of positive
instances which are hard to classify correctly, but important to detect nevertheless
[15]. An imbalance of 100 to 1 exists in fraud detection domains, even approaching
100,000 to 1 in other applications [11].

Classifiers generally perform poorly on imbalanced datasets because they are de-
signed to generalize from sample data and output the simplest hypothesis that best fits
the data, based on the principle of Occam’s razor. This principle is embedded in the
inductive bias of many machine learning algorithms including decision trees, which
favor shorter trees over longer ones. With imbalanced data, the simplest hypothesis is
often the one that classifies almost all instances as negative.

40 Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz

Another factor is that making the classifier too specific may make it too sensitive
to noise and more prone to learn an erroneous hypothesis. Certain algorithms specifi-
cally modify the behavior of existing algorithms to make them more immune to noisy
instances, such as the IB3 algorithm [1] for kNN, or pruning of decision trees, or soft
margins in SVM [13]. While these approaches work well for balanced datasets, with
highly imbalanced datasets having ratios of 50 to 1 or more the simplest hypothesis is
often the one that classifies every instance as negative. Furthermore, the positive in-
stances can be treated as noise and ignored completely by the classifier.

A popular approach towards solving these problems is to bias the classifier so that
it pays more attention to the positive instances. This can be done, for instance, by
increasing the penalty associated with misclassifying the positive class relative to the
negative class. Another approach is to preprocess the data by oversampling the major-
ity class or undersampling the minority class in order to create a balanced dataset.

We combine both of these approaches in our algorithm and show that we can sig-
nificantly improve the performance of SVM compared to applying any one approach.
We also show in this paper that even though undersampling the majority class does
improve SVM performance, there is an inherent loss of valuable information in this
process. Our goal was to retain and use this valuable information, while simultane-
ously boosting the efficacy of oversampled data. Combined with this dual approach
we also used a bias to make SVM more sensitive to the positive class.

We specifically chose SVM to attack the problem of imbalanced data because
SVM is based on strong theoretical foundations [13] and our empirical results show
that it performs well with moderately imbalanced data even without any modifica-
tions. Its unique learning mechanism makes it an interesting candidate for dealing
with imbalanced datasets, since SVM only takes into account those instances that are
close to the boundary, i.e. the support vectors, for building its model. This means that
SVM is unaffected by non-noisy negative instances far away from the boundary even
if they are huge in number.

In Section 2 we outline related work dealing with the problem of imbalanced data.
Section 3 investigates the effects of imbalance on SVM, while Section 4 discusses the
problems associated with undersampling the majority class. Section 5 presents our
approach to the problem and describes our technique (SDC) of combining SMOTE
[2] with Different Costs [14]. Finally Section 6 gives the conclusions.

2 Related Work

The problem of imbalanced datasets has been approached from two main directions.
The first approach is to preprocess the data by undersampling the majority instances
or oversampling the minority instances. Kubat and Matwin [9] proposed a one-sided
selection process which undersampled the majority class in order to remove noisy,
borderline, and redundant training instances. But for the specific case of SVM, re-
moving redundant (far away) instances has no effect and removing borderline in-
stances may adversely affect the accuracy of the learned hyperplane.

Japkowicz [6] evaluated the oversampling and undersampling techniques for
skewed datasets and concluded that both methods were effective. Ling and Li [10]
combined oversampling with undersampling, but this combination did not provide
significant improvement in the “lift index” metric that they used.

Applying Support Vector Machines to Imbalanced Datasets 41

Chawla et al [2] devised a method called Synthetic Minority Oversampling Tech-
nique (SMOTE). This technique involved creating new instances through “phantom-
transduction.” For each positive instance, its nearest positive neighbors were identi-
fied and new positive instances were created and placed randomly in between the
instance and its neighbors. Since this technique creates new positive instances, we
found this technique to be more useful for SVM than simple oversampling.

The other approach to dealing with imbalanced datasets using SVM biases the al-
gorithm so that the learned hyperplane is further away from the positive class. This is
done in order to compensate for the skew associated with imbalanced datasets which
pushes the hyperplane closer to the positive class. This biasing can be accomplished
in various ways. In [15] an algorithm is proposed that changes the kernel function to
develop this bias, while in [4] the kernel matrix is adjusted to fit the training data.
Veropoulos et al [14] suggested using different penalty constants for different classes
of data, making errors on positive instances costlier than errors on negative instances.
In this paper we will combine this method together with SMOTE [2] to develop a
classifier that performs better than either of these algorithms alone.

3 Effects of Imbalance on SVM

Given a set of labeled instances Xtrain = {xi, yi}
n

i=1 and a kernel function K, SVM

finds the optimal i for each xi to maximize the margin between the hyperplane and

the closest instances to it. The class prediction for a new test instance x is made
through:

 += ∑

=

n

i
iii bxxKyxfsign

1

),()(α
(1)

where b is the threshold. 1-norm soft-margin SVMs minimize the primal Lagrangian:

∑
=

+=
n

i
ip C

w
L

1

2

2
ξ ()[]∑ ∑

= =
−+−+−

n

i

n

i
iiiiii rbxwy

1 1

1. ξξα
(2)

where i � 0 and ri � 0 [5]. The penalty constant C represents the trade-off between

the empirical error and the margin. In order to meet the Karush-Kuhn-Tucker (KKT)
conditions, the value of i must satisfy:

Ci ≤≤ α0 and 0
1

=∑
=

n

i
ii yα

(3)

3.1 Causes of Performance Loss with Imbalanced Data

1. Positive Points Lie Further from the Ideal Boundary. Wu and Chang [15] point out
this factor as one source of boundary skew. They mention that the imbalance in the
training data ratio means that the positive instances may lie further away from the
“ideal” boundary than the negative instances. This is illustrated by way of example
that if we were to draw n randomly chosen numbers between 1 to 100 from a uniform

42 Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz

distribution, our chances of drawing a number close to 100 would improve with in-
creasing values of n, even though the expected mean of the draws is invariant of n. As
a result of this phenomenon, SVM learns a boundary that is too close to and skewed
towards the positive instances.

2. Weakness of Soft-Margins. Mathematically, we can see from eq. 2 that minimizing
the first term on the right hand side ||w||2 /2, is equivalent to maximizing the margin ,
while minimizing the second term C � minimizes the associated error. The constant
C specifies what tradeoff we are willing to tolerate between maximizing the margin
and minimizing the error. If C is not very large, SVM simply learns to classify every-
thing as negative because that makes the “margin” the largest, with zero cumulative
error on the abundant negative examples. The only tradeoff is the small amount of
cumulative error on the few positive examples, which does not count for much. This
explains why SVM fails completely in situations with a high degree of imbalance.
One way to combat this is to increase the tradeoff C + associated with the positive
examples. This is exactly what Veropoulos et al [14] propose in their paper and this is
the strategy we adopt in this paper as well (more about this in Section 5).

3. Imbalanced Support Vector Ratio. Another source of boundary skew according to
Wu and Chang [15] is the imbalanced support vector ratio. They found that as the
training data gets more imbalanced, the ratio between the positive and negative sup-
port vectors also becomes more imbalanced. They hypothesize that as a result of this
imbalance, the neighborhood of a test instance close to the boundary is more likely to
be dominated by negative support vectors and hence the decision function is more
likely to classify a boundary point negative. We would like to point out however, that
because of the KKT conditions in eq. 3, the sum of the ’s associated with the posi-
tive support vectors must be equal to the sum of the ’s associated with the negative
support vectors. Because there are fewer positive support vectors with correspond-
ingly fewer ’s, each positive support vector’s must be larger than the negative
support vector’s on average. These ’s act as weights in the final decision function
(eq. 1) and as a result of larger ’s the positive support vectors receive a higher
weight than the negative support vectors which offsets the effect of support vector
imbalance to some extent. This shows why SVM does not perform too badly com-
pared to other machine learning algorithms for moderately skewed datasets.

4 Problems with Undersampling

Undersampling of the majority class is a popular method for dealing with imbalanced
datasets. The rationale behind it is to try to balance out the dataset in an attempt to
overcome the idiosyncrasies of the machine learning algorithm. The problem with this
approach, however, is that the purpose of machine learning is for the classifier to
estimate the probability distribution of the target population. Since that distribution is
unknown we try to estimate the population distribution using a sample distribution.
Statistics tells us that as long as the sample is drawn randomly, the sample distribution
can be used to estimate the population distribution from where it was drawn. Hence,
by learning the sample distribution we can learn to approximate the target distribu-
tion. Once we perform undersampling of the majority class, however, the sample can
no longer be considered random.

Applying Support Vector Machines to Imbalanced Datasets 43

A possible defense against this argument is when we assume that in an imbalanced
dataset the sample was not drawn randomly to begin with. The assumption is that the
sampling mechanism was unfairly biased towards sampling the majority instances.
For instance, in detecting credit card fraud, the default assumption is that a transaction
is valid unless proven otherwise. As a result, many fraudulent transactions may go
undetected by the source labeling the dataset. Similarly, in medical diagnosis, a per-
son with a rare disease may not be properly diagnosed. To counter these inevitable
deficiencies, undersampling or oversampling is done to overcome the biases of the
sampling mechanism. Even though it is impossible for undersampling or oversam-
pling to make a non-random sample random, in practice these measures have empiri-
cally been shown to approximate the target population better than the original, biased
sample.

The second problem with undersampling is that we are throwing away valid in-
stances, which contain valuable information. The nature of the information these
instances contain can be understood in the following way. The problem with imbal-
anced datasets is that they skew the boundary towards the positive instances (Fig-
ure 1). The classification function for the hard-margin linear SVM [5] is:

()bxwsign +. (4)

Where w is a vector that is normal to the separating hyperplane. The norm of w and
the variable b decide the distance of the hyperplane from the origin. With non-linear
SVMs, the kernel function maps the data into a high-dimensional feature space where
a hyperplane is used to separate the data. Any hyperplane can be defined by its orien-
tation, given by the direction of w, and its distance from the origin. The task of SVM
is to learn the optimal hyperplane in the feature space. In order to do this, it takes cues
from the dataset about the orientation and distance of the optimal hyperplane.

We hypothesized that, given a relatively noise-free but imbalanced dataset that is
linearly separable in the feature space, SVM will learn to approximate the orientation
of the hyperplane better than using the same dataset after it is undersampled. Consider
Figure 1. We conducted some experiments with artificial data in which we first de-
fined a boundary and called it the “ideal boundary.” We then generated several in-
stances at random above the boundary and labeled them as negative. We also ran-
domly generated a few instances below the boundary and labeled them as positive.
The number of negative instances generated far outnumbered the positive instances to
simulate imbalanced data. Note that in Figure 1, the negative instances lie much
closer to the ideal boundary than the positive instances due to reasons given in Sec-
tion 2. If, given the dataset, SVM learned the ideal boundary then it would be able to
classify all the instances and any test instances perfectly. But as expected, SVM
learned a boundary that was midway between the positive and negative support vec-
tors and therefore, much further from the ideal boundary. Such a boundary would not
be able to classify test instances very well. Figure 1 and Figure 2 represent some typi-
cal results we obtained with our experiments on artificial datasets.

In Figure 1, SVM can obtain reasonable cues about the orientation of the hyper-
plane from the negative instances that lie close to the boundary. As a result, the
learned hyperplane has almost the same orientation as the ideal hyperplane. The only
problem is that the distance of the learned hyperplane is too far off to the positive
side. In Figure 2, however, the majority instances have been randomly undersampled
until their numbers are about equal to the minority instances. In this case, we can see

44 Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz

that the negative and positive instances are approximately the same distance away
from the ideal hyperplane, making the distance of the learned hyperplane very close
to the distance of the ideal hyperplane. But now the problem is that the negative in-
stances can no longer give good cues about the orientation of the hyperplane and there
is a greater degree of freedom for the orientation of the hyperplane to vary.

Fig. 1. Positive instances lie further away
from the ideal boundary (horizontal line) than
the negative instances. As a result SVM
learns a boundary (slanted line) that is too
close to the positive support vectors

Fig. 2. After undersampling the minority
instances, the learned plane estimates the
distance of the ideal plane better than in
Figure 1, but the orientation of the learned
plane is no longer as accurate

We decided to test this hypothesis on UCI datasets. In order to know what the ideal
boundary for these datasets was, it was necessary to start with large, balanced datasets
that were relatively noise-free and linearly separable in the feature space. We chose
five balanced UCI datasets for this experiment balance3 (RBF), chess1(RBF), mush-
room1 (linear), ionosphere1 (RBF) and sonar1 (polynomial). The number in the suf-
fix represents the class we chose to be the positive class while the kernel function is
indicated in parenthesis. We trained SVM using three different kernels on these data-
sets (linear, polynomial with degree 2 and Radial Basis Function with gamma =1),
and in each case we obtained nearly 100% accuracy (which is why we chose these
datasets). The hyperplane learned was assumed to be the ideal hyperplane i.e. if SVM
were to learn this hyperplane then it would be able to classify all instances almost
perfectly. We then randomly removed most of the positive instances from each data-
set to make them highly imbalanced. We re-trained SVM using these imbalanced
datasets to obtain the learned boundary. Next we obtained the dot product of the two
vectors w (obtained from the balanced dataset model) and v (the vector obtained from
the imbalanced dataset model) and used this dot product to compute , the angle be-
tween the ideal and the learned hyperplanes. We obtained w from the learned model
by applying the following equation for linear SVMs [5]:

∑
=

=
n

i
iii xyw

1

α (5)

Each of the three parameters , y and x (the support vectors) can be obtained di-
rectly from the learned model. When using non-linear kernels, calculating w in this
way may not represent the absolute angle of the hyperplane in the feature space.
However, we are only interested in knowing how different the shape of the boundary
is in the balanced vs. the imbalanced case. Computing w in this way and then comput-
ing the angle between w and v allows us to estimate this difference in shape.

Applying Support Vector Machines to Imbalanced Datasets 45

We repeated this experiment by keeping the positive instances the same as in the
imbalanced datasets and reducing the negative instances by gradually randomly un-
dersampling them until eventually the negative instances were equal in number to the
positive instances. In each case we measured the angle between the ideal hyperplane
and the learned hyperplane. The results are shown below.

Table 1. Angle (in degrees) between the ideal hyperplane and the learned hyperplane as the
imbalance ratio (ratio of negative to positive examples) is varied

Imbalance Balance Chess Mushroom Ionosphere Sonar
15 10.4 24.88 58.1 35.06 65.65
8 10.88 24.87 58.6 36.08 66.32
4 10.57 25.25 58.9 46.77 70.48
2 17.44 28.2 64.58 55.97 79.13
1 26.2 31.92 66.1 65.6 82.76

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Imbalance Ratio

A
 n

 g
 l

e

Balance

Chess

Mushroom

Ionosphere

Sonar

Fig. 3. Graph showing the effect of varying the imbalance ratio (x-axis) on angle between the
ideal and the learned hyperplane (y-axis). The angle is smaller in more imbalanced datasets

The results agree with our hypothesis that undersampling the majority class causes
larger angles between the ideal and learned hyperplane due to the reasons given ear-
lier in this section. Undersampling also reduces the total number of training instances
which also contributes to increasing angles. Therefore, any benefit from undersam-
pling occurs mainly because of a more accurate estimate of the distance, rather than
the orientation, of the hyperplane from the ideal boundary. Oversampling of the mi-
nority instances, on the other hand, does not lead to loss of information. Even though
it may not make the non-random sample truly random (nothing really can), it has been
shown, nevertheless, to make the classifier perform better than with the regular im-
balanced sample [6]. As a result we will employ oversampling in our approach.

46 Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz

5 Our Approach – SMOTE with Different Costs (SDC)

As mentioned above, undersampling data has its drawbacks and results in information
loss. We would like to devise an approach that keeps the majority instances and yet
performs well with imbalanced data. The problem is that with imbalanced datasets,
the learned boundary is too close to the positive instances. We need to bias SVM in a
way that will push the boundary away from the positive instances. Veropoulos et al
[14] suggest using different error costs for the positive (C +) and negative (C -)
classes. Specifically, they suggest changing the primal Lagrangian (eq. 2) to:

{ } { }
∑∑

−+

−=

−

+=

+ ++=
n

yjj
j

n

yii
ip CC

w
L

1|1|

2

2
ξξ

()[]∑ ∑
= =

−+−+−
n

i

n

i
iiiiii rbxwy

1 1

1. ξξα

(6)

The constraints on i then become:
+≤≤ Ciα0 if yi = +1 and −≤≤ Ciα0 if yi = -1 (7)

Furthermore, we note that i > 0 only when i = C [5]. Therefore non-zero errors
on positive support vectors will have larger i while non-zero errors on negative sup-
port vectors will have smaller i. The net effect is that the boundary is pushed more
towards the negative instances. However, a consequence of this is that SVM becomes
more sensitive to the positive instances and obtains stronger cues from the positive
instances about the orientation of the plane than from the negative instances. If the
positive instances are sparse, as in imbalanced datasets, then the boundary may not
have the proper shape in the input space as illustrated in Figure 4.

Fig. 4. The learned boundary (curved line) in
the input space closely follows the distribu-
tion of the positive instances. The ideal
boundary is denoted by the horizontal line

Fig. 5. After using SMOTE, the positive
instances are now more densely distributed
and the learned boundary (curved line) is
more well defined

The solution we adopted to remedy the problem of sparse positive instances is to

use Chawla et al’s [2] SMOTE algorithm mentioned in Section 2 of this paper. Using

Applying Support Vector Machines to Imbalanced Datasets 47

the SMOTE technique of oversampling the minority instances, we can make the dis-
tribution of positive instances denser. Simply resampling the minority instances
merely overlaps the positive instances on top of each other and does not help in
“smoothing out” the shape of the boundary. SMOTE synthetically generates new
instances between two existing positive instances which helps in making their distri-
bution more well-defined. After using SMOTE, the input space may look like Fig-
ure 5.

Therefore, in summary, our strategy consists of:

1. Not undersampling the majority instances since they lead to loss of information.
2. Using different error costs for different classes to push the boundary away from

the positive instances.
3. Using SMOTE to make the positive instances more densely distributed in order

to make the boundary more well defined.

5.1 Experiments and Results

In order to evaluate classifiers on highly imbalanced datasets, using accuracy as a
metric is virtually useless. This is because with an imbalance of 99 to 1, a classifier
that classifies everything negative will be 99% accurate, but it will be completely
useless as a classifier. The medical community, and increasingly the machine learning
community [14, 15], use two metrics, the sensitivity and the specificity, when evaluat-
ing the performance of various tests. Sensitivity can be defined as the accuracy on the
positive instances (true positives / (true positives + false negatives)), while specificity
can be defined as the accuracy on the negative instances (true negatives / (true nega-
tives + false positives)). Kubat et al [9] suggested the g-means metric defined as:

−+= accaccg . (8)

Where acc+ = sensitivity and acc- = specificity. This metric has been used by several
researchers for evaluating classifiers on imbalanced datasets [8, 9, 15]. We will also
use this metric to evaluate our classifier. We also list the sensitivity and specificity
separately to give the reader an even better idea of the performance of our classifier.

In our experiments, we compared the performance of our classifier with regular
SVM, random undersampling [6], SMOTE [2], and different error costs [14]. We
used 10 different UCI datasets with varying degrees of class imbalance (Table 2).
Each dataset was randomly split into train and test sets in the ratio 7 to 3, while sam-
pling them in a stratified manner to ensure each of them had the same negative to
positive ratio [9, 15]. For the undersampling algorithm, we undersampled the training
data until both the classes were equal in number as Japkowicz [6] did in her experi-
ments. For SMOTE [2] we oversampled the data instead of undersampling it. The
amount of oversampling is given in Table 2 below. Finally, for the different error
costs algorithm, Veropoulos et al [14] have not suggested any guidelines for deciding
what the relative ratios of the positive to negative cost factors should be. As a rule of
thumb, we empirically found that setting the cost ratio to the inverse of the imbalance
ratio gave good results and that is what we have used. The results of our experiments
are given below.

48 Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz

Table 2. The table below lists the UCI datasets we used, the kernel function used (based on the
best empirical results), the number of positive instances and the number of negative instances in
the dataset. It also lists the amount of oversampling of the minority class we did for SMOTE
and in our algorithm, SMOTE with Different Costs (SDC), based on the amount of imbalance
present in the original dataset. The suffix after each dataset indicates the class we used as the
positive class. RBF is the radial basis function with gamma = 1, while the polynomial kernel
has degree = 2

Dataset Kernel Positive Insts. Negative Insts. % Oversampled
Abalone19 Linear 32 4145 1000
Anneal5 Linear 67 831 400
Car3 RBF 69 1659 400
Glass7 RBF 29 185 200
Hepatitis1 Linear 32 123 100
Hypothyroid3 Linear 95 3677 400
Letter26 RBF 734 19266 200
Segment1 RBF 330 1980 100
Sick2 Polynomial 231 3541 100
Soybean12 Linear 44 639 100

Table 3. The table below shows the sensitivity (Se) and Specificity (Sp) of each algorithm. US
stands for UnderSampling, DEC stands for Different Error Costs [14], while our algorithm is
SDC (SMOTE with Different Costs)

SVM US SMOTE DEC SDC
Se Sp Se Sp Se Sp Se Sp Se Sp

abalone 0 1 0.778 0.533 0 1 0.889 0.732 0.808 0.687
anneal 1 1 1 1 1 1 1 1 1 1
car 0 1 0.95 0.97 0.97 1 0.1 1 0.97 1
glass 0.75 1 0.875 0.885 0.769 1 0.875 0.967 0.808 1
hepatitis 0.364 0.977 0.727 0.767 0.625 0.881 0.545 0.884 0.708 0.833
hypothy 0.031 1 0.906 0.882 0.646 0.997 0.906 0.972 0.957 0.96
letter 0.67 1 0.996 0.917 0.903 0.995 1 0.975 0.997 0.966
segment 0.99 1 0.99 0.993 0.954 1 0.99 1 0.959 0.998
sick 0 1 0.773 0.756 0.167 0.995 0.864 0.862 0.865 0.874
soybean 0.857 1 1 0.936 1 1 1 1 1 1

Note that SVM has almost perfect specificity, but poor sensitivity because it tends to
classify everything as negative. Any algorithm that tries to improve on it inevitably
sacrifices some specificity in order to improve the sensitivity. That is why, Kubat and
Matwin’s [9] g-means metric (Table 4) is the best of the three measures because it
combines both the sensitivity and the specificity and takes their geometric mean.

Applying Support Vector Machines to Imbalanced Datasets 49

Table 4. The table below shows the performance of the five algorithms using Kubat and Mat-
win’s[9] g-means metric. The last line of the table is the arithmetic mean of each algorithm
over all the g-means metrics. This arithmetic mean can be used to quantify the overall perform-
ance of each algorithm over all ten datasets

SVM US SMOTE DEC SDC
abalone 0 0.6436394 0 0.8064562 0.7449049
anneal 1 1 1 1 1
car 0 0.960104 0.9846381 0.3162278 0.9846381
glass 0.8660254 0.880108 0.877058 0.9199519 0.9405399
hepatitis 0.5959695 0.7470874 0.742021 0.6942835 0.7682954
hypothyroid0.1767767 0.8938961 0.8025625 0.9384492 0.9581446
letter 0.8182931 0.9555176 0.947737 0.9871834 0.9816909
segment 0.9950372 0.9917748 0.9765287 0.9950372 0.9783467
sick 0 0.7641141 0.4071283 0.8627879 0.8695146
soybean 0.9258201 0.9672867 1 1 1
Mean 0.537792 0.880353 0.773767 0.852038 0.922608

0

0.2

0.4

0.6

0.8

1

1.2

abalone anneal car glass hepatitis hypothyroid letter segment sick soybean

Datasets

g
m

ea
n

SVM

US

SMOTE

DEC

SDC

Fig. 6. g-means graphs for the datasets shown in Table 4. The five algorithms, in order, are
SVM, Undersampling, SMOTE, Different Error Costs and the last bar is our algorithm SDC

6 Conclusion

The results show that our SDC algorithm outperforms all the other four algorithms. In
seven out of the ten datasets our algorithm has the highest g-means metric, and in the
remaining three datasets it is not lower by much. It should be noted that our approach
never performs worse than SMOTE. In the three cases where our approach performs
worse than DEC or other algorithms, it is probably due to the fact that SMOTE itself
makes some assumptions about the training set. For instance, it assumes that the space
between two positive instances is assumed to be positive and the neighborhood of a
positive instance is also assumed to be positive [15], which may not always be true.

50 Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz

Since our algorithm uses SMOTE, it also makes a similar assumption. In datasets
where this assumption may not hold, our algorithm will perform slightly worse than
the other algorithms.

Undersampling does show significant performance gain, but as noted before the
gain is mainly due to accurate estimation of the hyperplane’s distance, not its orienta-
tion. As a result, it has the highest score in only one dataset where every other algo-
rithm also has a perfect score (anneal). Our algorithm, on the other hand, tries to esti-
mate not only the correct distance but also the correct orientation of the hyperplane
and thus performs better than the rest, even in cases where SVM fails completely.

References

1. Aha, D. (1992). Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms. International Journal Man-Machine Studies, 36, 267-287.

2. Chawla, N., Bowyer, K., Hall, L. & Kegelmeyer, W. (2002). SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.

3. Cortes, C. (1995). Prediction of Generalisation Ability in Learning Machines. PhD thesis,
Department of Computer Science, University of Rochester.

4. Cristianini, N., Kandola, J., Elisseeff, A. & Shawe-Taylor, J. (2002). On kernel target
alignment. Journal Machine Learning Research, 1.

5. Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, Cambridge, UK.

6. Japkowicz, N. (2000). The Class Imbalance Problem: Significance and Strategies. In
Proceedings of the 2000 International Conference on Artificial Intelligence: Special Track
on Inductive Learning, Las Vegas, Nevada.

7. Joachims, T. (1998). Text Categorization with SVM: Learning with Many Relevant Fea-
tures. Proceedings of ECML-98, 10th European Conference on Machine Learning.

8. Kubat, M., Holte, R. & Matwin, S. (1997). Learning when Negative Examples Abound. In
Proceedings of ECML-97, 9th European Conference on Machine Learning.

9. Kubat, M. & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets: One-
Sided Selection. Proceedings of the 14th International Conference on Machine Learning.

10. Ling, C., & Li, C. (1998). Data Mining for Direct Marketing Problems and Solutions. In
Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining, New York, New York.

11. Provost, F. & Fawcett, T. (2001). Robust Classification for Imprecise Environments. Ma-
chine Learning, 42/3, 203-231.

12. Tong, S. & Chang, E. (2001). Support Vector Machine Active Learning for Image Re-
trieval. Proceedings of ACM International Conference on Multimedia, 107-118.

13. Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, NY.
14. Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of sup-

port vector machines. Proceedings of the International Joint Conference on AI, 55–60.
15. Wu, G. & Chang, E. (2003). Class-Boundary Alignment for Imbalanced Dataset Learning.

In ICML 2003 Workshop on Learning from Imbalanced Data Sets II, Washington, DC.

	1 Introduction
	2 Related Work
	3 Effects of Imbalance on SVM
	3.1 Causes of Performance Loss with Imbalanced Data

	4 Problems with Undersampling
	5 Our Approach – SMOTE with Different Costs (SDC)
	5.1 Experiments and Results

	6 Conclusion
	References

