
Sets, Bags, and Rock and Roll�

Analyzing Large Data Sets of Network Data

John McHugh

CyLab and CERT Network Situational Awareness Center,
Carnegie Mellon University, Pittsburgh, PA 15313, USA

jmchugh@cert.org

Abstract. As network traffic increases, the problems associated with
monitoring and analyzing the traffic on high speed networks become in-
creasingly difficult. In this paper, we introduce a new conceptual frame-
work based on sets of IP addresses, for coming to grips with this problem.
The analytical techniques are described and illustrated with examples
drawn from a dataset collected from a large operational network.

1 Introduction

It is not unusual for relatively modest networks today to exhibit trans border
flows on the order of megabits per second. Monitoring even a small network
with a few hundred hosts can generate many gigabytes of TCPDUMP data
per day. Capturing only headers can reduce the volume somewhat, and more
compact formats based on abstractions such as Cisco’s NetFlow can reduce the
volume further. Even so, the volume of data collected is sufficient to overwhelm
many analysis tools and techniques. In general, the problem is one of grouping
and classifying the data in such a way that uninteresting phenomena can be
pushed aside, allowing the investigator to extract and further scrutinize data
that is of interest. Recently, the CERT Network Situational Awareness Center
has been involved in the analysis of large sets of NetFlow data. To support this
effort, they have developed a set of tools, collectively known as the SiLKtools1.
In the remainder of the paper, we begin by sketching our thesis and analysis

� The mantra “Sex, Drugs, and Rock and Roll” enjoyed currency in the 1960s. To the
ears of an older generation, Rock and Roll was just a particularly unpleasant form
of noise. Since the general theme of this paper is separating signal from noise in net-
work data, the title is not too strained. This material is based upon work partially
supported by the National Science Foundation under Grant No. 0326472. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Sci-
ence Foundation. This work is also supported by the Army Research Office through
grant number DAAD19-02-1-0389 (“Perpetually Available and Secure Information
Systems”) to CyLab at Carnegie Mellon University

1 The SLK are the initials of the late Suresh Konda who was instrumental in the initial
development of the tool set

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 407–422, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

408 John McHugh

approach. We then digress to describe the NetFlow data collected, noting that
the analysis can be applied equally well to TCPDUMP or other data forms with
a bit of preprocessing. The basic functionality of the SiLKtools suite and some
of the extensions made in support of our analysis efforts are then described. The
remainder of the paper will present examples of the analyses that we can perform
using the tools supplemented by relatively simple programs to characterize and
organize the reduced data. The paper concludes with a discussion of our plans
for further extensions of the tools and additional analyses.

2 The Thesis and Approach

Sets and set theory are abstractions that facilitate reasoning about many classes
of problems. We have been exploring the use of sets to provide a compact way
of describing and reasoning about the Internet and about traffic observed at
various points on it. For example, it is useful to consider such things as the
set of hosts on a given network that are active during a given time interval.
It might also be useful to consider the set of external hosts that are observed
performing a questionable activity such as scanning during such an interval.
Similarly, one might want to identify the set of users of some service provided
by the local network to the outside world (e.g. web services) during the interval.
In the case of the first set, the set of active machines, we could attempt to
obtain the answer by asking the system administrators, by examining the state
of the DHCP server responsible for leasing IP addresses to the network, by
consulting the responsible DNS server, or we could approximate the result by
observing those hosts within the network that either originate traffic or respond
to connection requests. If we can observe the traffic passing in and out of the
network at some transition point such as a border router, the observations may
constitute a reasonable approximation of the active set2 of hosts. The set of active
hosts, can be used to partition incoming traffic into that addressed to active hosts
(hits) and that which is not (misses). Arguably, the later partition consists of a
mix of malicious traffic, indirect evidence of malicious traffic, and, possibly, some
amount of benign, but misdirected traffic. This partition can be further processed
to identify interesting classes of senders. For example, originators attempting
TCP connections will send packets containing a SYN flag. If we select flows
containing SYN flags and count the number of flows per source address using
a “bag3”, we can sort the bag and identify high volume scanners. It is not
uncommon see a single host performing scans of an entire /16 network in the
course of a relatively few minutes. Having identified such a scanner, it is trivial

2 We assume that all traffic in and out of the monitored network passes through an
observation point. Multiple border crossing points are possible. For the moment,
we assume that hosts within the monitored network do not spoof addresses and
that multiple responders such as honeypots are not deployed within the monitored
network

3 A bag is a counted set or multiset in which the number of occurrences of each member
of the basis set is recorded

Sets, Bags, and Rock and Roll 409

to find the flows from the scanner to the active or hit partition and create the set
of active machines included in the flow. At that point, it is useful to determine
if any of the targets responded to the scanner, and, if so to examine the traffic
between the scanner and the target (and the subsequent behavior of the target)
to determine if the target has changed its behavior in ways that might indicate
that it has been compromised.

As can be seen from the example of the previous paragraph, the use of sets
and bags, combined with simple filtering based on properties of the data records
themselves allows the clustering of data with some particular security (or other)
properties in common. Since we are dealing with many thousands of flows per
minute on large networks, the constructions of sets and bags allows us to abstract
from individual behaviors to clusters of activities. As the paper develops, we will
elaborate on this thesis and develop the tools and techniques that we need in
more detail, however, we have a number of utilities available including:

– An efficient set representation that allows us to represent IPv4 address sets
directly in memory. There is also a compact disk representation that can be
read and written efficiently

– An extension of the set representation, a bag, that allows a 32bit counter to
be associated with each IP address. It too has an efficient disk representation.

– Routines that allow set unions and intersections to be computed, producing
additional set files.

– Routines that allow sets and bags to be created from files containing network
flow data.

– Routines that allow sets and bags to be created from ASCII lists of IP
addresses in both “dotted” form (possibly containing wild cards), in CIDR
block form, and in unsigned integer form.

– Routines to list the contents of sets and bags at various levels of detail,
including the network structure (subnet relationships) of a set.

These are sufficient for our initial analysis, though we plan to add other programs
to the suite as the need for them becomes clear.

3 NetFlow and Other Data Sources

NetFlow was developed by Cisco as a mechanism for gathering traffic statistics
to support billing and network management. NetFlow operates on routers and
switches to report traffic statistics on a per interface basis. Although it is not
standardized, it is supported in more or less compatible ways by a number of
other router and switch manufacturers. According to Cisco4, the detailed traffic
statistics collected by NetFlow include:

– Source and destination IP addresses
– Next hop address

4 http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/products_user_

guide_chapter09186a00801ed569.html

410 John McHugh

– Input and output interface numbers
– Number of packets in the flow
– Total bytes (octets) in the flow
– First and last time stamps of packets that were switched as part of this flow
– Source and destination port numbers
– Protocol (and flags as appropriate)
– Type of service (ToS)
– Source and destination autonomous system (AS) numbers, either origin or

peer (present in V5 and select V8 datagrams)
– Source and destination prefix mask bits (present in V5, V7, and V8 data-

grams)

Note that NetFlow records include one or more packets, and represent unidirec-
tional flows. As such, NetFlow lies somewhere in between TCPDUMP records
which contain data about individual packets and connection records which would
abstract an entire TCP session to a single record. Because NetFlow is resource
intensive, there is a limit to the number of open flow records that the router can
maintain at one time. New records are created whenever a new flow is seen. A
flow is deemed to be new if it contains a (source/destination/protocol5) tuple
that is not currently being monitored. A flow is closed if it has been inactive
for a prescribed period of time(typically some seconds), if it has been explicitly
closed (TCP FIN or RST), or if it has been open and active for a prescribed
period of time (typically some minutes). Note that this has the effect of break-
ing up long, steady TCP sessions as well as intermittent TCP sessions with long
pauses. It also creates pseudo sessions from sequences of UDP packets as might
be associated with streaming media.

The individual flow records are aggregated and sent in batches encapsulated
in a UDP packet to a central collection point for processing. In our case, the
processing point stores the flow records in a compact format that can be sequen-
tially searched and extracted based on times and a number of match criteria
as discussed in the next section. Since our tools operate from this format, it
is worth considering whether other forms of data might be stored in the same
format and processed with the tools. The answer is a qualified yes. It would
be trivial to extract most of the required data from packet based sources such
as TCPDUMP or Argus records. Since packet data is typically captured on a
link, router specific information such as interfaces, AS numbers, and next hop
addresses are not available, but these seldom appear in our analysis. If we were
to aggregate data from a number of collection points, these fields could be used
to indicate the collection point and directionality of the packet.

We are currently investigating two approaches for obtaining flow data from
packet data. There is a libpcap based flow accumulation program, fprobe6 that
will observe a link and create NetFlow records that can be sent to a collector.
In addition one of our customers is building a high performance collector based

5 In the case of TCP and UDP, ports are included
6 Available from http://sourceforge.net/projects/fprobe

Sets, Bags, and Rock and Roll 411

on a commercial TCPDump hardware capture board7. Both of these approaches
would allow us additional flexibility in consolidating flows and would allow minor
enhancements to the NetFlow format, e.g. recording whether the opening packet
of a tcp flow was a SYN, SYN/ACK, or something else.

As far as we can determine, the first attempt to develop tools for security
analysis from NetFlow data occurred at Ohio State University. These tools[1]
are fairly special purpose and primitive compared to our approach.

4 The SiLKtools Suite and Its Extensions

According to the SiLK website8:

SiLK, the System for Internet-Level Knowledge, is a collection of Net-
Flow tools developed by the CERT/AC to facilitate security analysis
in large networks. SiLK consists of a suite of tools which collect and
examine NetFlow data, allowing analysts to rapidly query large sets of
data. SiLK was explicitly designed with a trade off in mind: while traf-
fic summaries do not provide packet-by-packet (in particular, payload)
information, they are also considerably more compact and consequently
can be used to acquire a wider view of network traffic problems.
SiLK consists of two sets of tools: a packing system9 and analysis suite10.
The packing system receives NetFlow V5 PDU’s and converts them into
a more space efficient format, recording the packed records into service-
specific binary flat files. The analysis suite consists of tools which can
read these flat files and then perform various query operations, ranging
from per-record filtering to statistical analysis of groups of records. The
analysis tools inter operate using pipes, allowing a user to develop a
relatively sophisticated query from a simple beginning.
The vast majority of the current code-base is implemented in C, Perl,
or Python. This code has been tested on Linux, Solaris, Free/OpenBSD,
AIX and Mac OS X, but should be usable with little or no change on
other Unix platforms.
The SiLK software components are released under the GPL.
The project is the fruits of work done at the CERT Coordination Cen-
ter (CERT/CC) that is part of the Software Engineering Institute at
Carnegie Mellon University.

7 See http://www.endace.com/networkMCards.htm for additional information
8 http://silktools.sourceforge.net/
9 The SiLK Packing System is a server application that receives NetFlow V5 PDU’s

and converts them into a more space efficient format, recording the packed records
into service-specific binary flat files. Files are organized in a time-based directory
hierarchy with files cover an hour at the leaves

10 The SiLK Analysis Suite is a collection of command-line tools for querying packed
NetFlow data. The most important tool is rwfilter, an application for querying the
central NetFlow data repository for NetFlow records that satisfy a set of filtering
options

412 John McHugh

The analysis suite includes a number of applications and utility programs. We
discuss in some detail only those that are used in the examples below, however,
manual pages for the entire suite are available from the web site. For convenience,
we refer to the packed data files used by some of the programs as “rwdata” files.
In most cases, input can come from stdin or from a rwdata file and it is possible to
associate an output of most programs with stdout, allowing chains of programs.

5 Examples and Sample Analyses

In this section, we illustrate our analysis techniques with two examples. One
is a brief data sample from a large cross section of networks that have been
aggregated together. the other represents a detailed view of a weeks activity
on a /16. In all cases, no real IPs are contained in the analyses. We note that
the analyses presented are exploratory in nature. At the present time, we are
just beginning to come to grips with the issues of analyzing and understanding
network traffic on this scale. Every time we look at a new sample of the data,
we find previously unexpected behaviors. Our customer’s analysts use scripts
to invoke the tools to perform routine inspections for a variety of malicious
activities. Our goal is to attempt to understand what we see in the hopes that it
will lead to improved detection in the long run. For now, we are not attempting to
produce turnkey procedures for system administrators and analysts but rather to
aid networking experts in understanding their domain. The examples are offered
as an enquiry, much in the spirit of Tukey[2]. Programs from the suite used in
producing the examples are printed in bold. Details of these programs appear
in Appendix A.

5.1 A Brief Examination of a Large Sample

Using the rwfilter program to extract data from the incoming (Internet to
customer network) and outgoing (customer network to Internet) archives, we
obtained files of data from a cross section of monitored networks for a small
interval of time. Outgoing data was monitored for an interval began slightly be-
fore interval used for incoming data and extended slightly beyond it. This insures
that the internal hosts that responded to traffic from the outside are included in
the sample even in the incoming and outgoing clocks are not perfectly synchro-
nized11 or internal hosts respond only after a small delay. The set of active hosts
in the internal network is approximated by by passing the outgoing data file to
the rwsuperset program asking it to create a set file for the source addresses
contained in it’s input. The incoming data file is then passed to rwfilter along
with the active host set file to partition the incoming file into hit and miss files,
based on the destination address of the incoming flows.

About 2/3 (65.4%) of the flow records are directed at inactive (presumed
nonexistent) targets, the remaining 1/3 (34.6%) are directed at active hosts.
11 The data is aggregated from a number of routers. In some cases, separate routers

handle incoming and outgoing traffic

Sets, Bags, and Rock and Roll 413

Fig. 1. Reduction in incoming IP Source Set Sizes as a Function of Number of Flows

Further partitioning by protocol, again using rwfilter simplifies subsequent anal-
ysis. As expected, the vast majority of the data is TCP. We further analyze the
TCP data using rwsuperset to create bags for source and destination addresses
for the hit and miss files. The fall off in set size is illustrated in Figures 1 and
2. Note that hit and miss set sizes follow similar, but distinct patterns. The
big differences are between source and destination behaviors. About 36% of the
source IPs in the miss partition generate ten or more flows while only 4% of
those in the hit partition do so.

Using readbag, along with the system utilities sort and head we can identify
the most commonly occurring addresses in the miss partition. Figure 3 shows
some of the results of this analysis. A closer look at the top address is interesting.
Using rwfilter to extract flows with this source address in the miss file extracts
some 400K of records. The destination set for this contains 12994 hosts, all from
XXX.YYY.0.0/16 The hit set also contains entries from this network, 7 in all.
Using rwcut to extract the destination port, flag, and packet and byte count
fields from the extracted files and clustering, using cluster.sno to determine and
count the unique field combinations used, we find that all the flows sent to these
addresses are 48 byte SYN packets addressed to port 4899 (listed as a “radmin”
port by IANA, with other possible usages reported as ChiliASP and iMesh). An
inspection of the outgoing traffic from this network indicates no responses to the
connection attempts.

The second entry is somewhat different. The traffic from this address scans
a different /16. looking for responses on port 710012 (X Font service according

12 http://www.cert.org/advisories/CA-2002-34.html describes a vulnerability in
the X font service on Solaris. It is likely that the scanner was looking for machines
that could be attacked

414 John McHugh

Fig. 2. Reduction in incoming IP Destination Set Sizes as a Function of Number of
Flows

(39) lip $ readbag --count --print jcm-tcp-s-10+.bag| sort -r -n | head

12994 AAA.BBB.068.218

6598 CCC.DDD.209.215

5944 EEE.FFF.125.117

5465 GGG.HHH.114.052

5303 III.JJJ.164.126

Fig. 3. The top five sources in the small sample

to IANA). Some 112 responses are seen from hosts SSS.RRR.QQQ.1-78,120-
131,224-254. The contiguous ranges and the consistency of responses on a rela-
tively obscure port may indicate the presence of a honey pot or a similar decoy.
In all cases, the connection seems to have been broken after the probed host’s
SYN/ACK reply.

The third and fourth entries are scans of portions of other /16s, this time
looking for service on port 20168. This appears to be associated with the “Love-
gate” worm which binds a shell to this port on infected machines.

The fifth entry is a scan of a portion of yet another /16, this time looking
for service on port 3127, listed by IANA as the CTX bridge port, but also in
the range used by the ChiliASP module in Apache servers according to www.
portsdb.org. This port is currently being used by the “MyDoom.C” worm on
Linux13.

13 http://www.linuxworld.com/story/43628.htm

Sets, Bags, and Rock and Roll 415

At the other end of the spectrum, there are 3335 external hosts that sent
exactly one TCP flow into the monitored network during the analyzed time
interval. Of these, only two port and flag combinations appear more than 100
times. SYN probes for port 886614 are seen 449 times. SYN probes for port 25
(SMTP - email) are seen 271 times. The vast majority of the remainder are
SYNs to a variety of ports, mostly with high port numbers. There are a number
of ACK/RST packets which are probably associated with responses to spoofed
DDoS attacks.

5.2 A Week in the Life of a /16

We obtained hourly flow data from a /16 within the monitored network for the
one week period from 11 - 17 January 2004. plus two additional days, 26 and
27 January. The data set consists of nearly 400Mb of data divided into hourly
files for inside to outside traffic and for outside to inside traffic. The inside to
outside traffic was analyzed and a set of IP addresses computed that represent
all the hosts that were seen to be active during the initial week. The observed
network structure is shown in Table 1. Note that only about 6% of the available
/24 subnets are occupied at all and that the utilization of those that are ranges
from less than 1% to about 25%. The information shown in Table 1 has been
adapted from the output of readset using a specification that causes subnet
summarization at the /24 level and for the internet as a whole.

Table 1. Network Structure for the selected /16

MMM.NNN.24.x 66 hosts MMM.NNN.25.x 60 hosts
MMM.NNN.26.x 46 hosts MMM.NNN.27.x 49 hosts
MMM.NNN.28.x 57 hosts MMM.NNN.29.x 7 hosts
MMM.NNN.30.x 70 hosts MMM.NNN.31.x 67 hosts
MMM.NNN.32.x 54 hosts MMM.NNN.33.x 62 hosts
MMM.NNN.34.x 50 hosts MMM.NNN.35.x 4 hosts
MMM.NNN.120.x 2 hosts MMM.NNN.127.x 1 host
MMM.NNN.140.x 1 host MMM.NNN.251.x 4 hosts

Network Summary
600 hosts (1.4 ∗ 10−5%) of 232

1 occupied class /8 (0.4%) of 256
1 occupied class /16 (0.002%) of 65536
16 occupied class /24s (9.5 ∗ 10−5%) of 224

The set of active addresses seen during the week is an optimistic estimate
of the active host set for this network since activity on several subnets was not
14 “W32.Beagle.B@mm is a mass-mailing worm that opens a back door on TCP port

8866. The worm uses its own SMTP engine for email propagation. It can also send
to the attacker the port on which the back door listens, as well as a randomized ID
number.” according to http://securityresponse.symantec.com/avcenter/venc/

data/w32.beagle.b@mm.html

416 John McHugh

observed until late in the week. The set includes all hosts seen to be active during
the additional days, as well. This set was used to partition each outside to inside
hourly data set into hit and miss portions as described earlier. Since these files
consist of a small amount of header data and fixed length records, the file sizes
are a good surrogate for the number of flows observed.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

11-Jan 12-Jan 13-Jan 14-Jan 15-Jan 16-Jan 17-Jan 18-Jan

Date and Time

H
o

u
r
ly

 F
lo

w
 F

il
e
 S

iz
e

Inbound Hits

Inbound misses

Fig. 4. Hourly flow file sizes for incoming hit and miss flows

Figure 4 shows the hit and miss file sizes for the base week of the data. It is
interesting to note that many more flows miss than hit during most hours. We
have looked at a few of the peaks in detail.

12 January 21:00 Two fairly complete scans of the entire /16, one for port
2000 TCP (61018 flows) and one for port 20168 TCP (60978 flows) with
a total of 62616 unique IP addresses hit. Both scans came from a single
IP address. As noted above, port 20168 is associated with the Lovegate
worm. Port 2000 appears to be associated with a number of Windows remote
administration tools (e.g. RemotelyAnywhere).

14 January 15:00 Two scans from different networks, each targeting port 80
TCP. One targets 58394 hosts, the other 53032.

15 January 00:00 Two fairly complete scans from two distinct source ad-
dresses, one for port 4000 TCP, the other for 5308 TCP, each from a separate
source.
Port 4000 appears to be used by Remote-Anything from TWD Industries
(http://www.twd-industries.com/en/index.htm).

Sets, Bags, and Rock and Roll 417

Port 5308 is associated with CFengine, a configuration and administration
mechanism15.

Given the large numbers of peaks in the miss data, it was decided to run
an IP frequency analysis on the entire week. This produced some interesting
results both with respect to the the numbers of infrequent and frequent missers.
The set of source IPs that attempt to contact hosts in the miss set contains
182632 distinct addresses. Of these, 145755 or almost 80% appear exactly once.
19751 or about 11% appear twice. 4382 (about 2%) appear 10 or more times, but
these account for 3756029 of 4037208 or 93% of the total flows. The top scanners
accounted for over 100000 probes each with 66 IP addresses registering more than
10000 flows (over 80/no obvious threshold or breakpoint in the distribution. In
the 10000 flow range, adjacent entries in the table are separated by a few hundred
flows. The set of the top 66 flow sources contains IP addresses from 65 distance
/16 address ranges. In the one case where the addresses are in the same /16 they
are also in the same /24 being only 16 addresses apart.

We extracted the miss data for the top 66 flow sources and clustered it based
on TCP flags. All the flows are TCP (protocol 6) and the vast majority consist
of flows having only a SYN flag. The presence of a substantial number of records
containing other flags (especially ACK flags) is somewhat surprising.

Table 2. Flag clusters for the top 66 missed flow sources

Flags Flows Src IPs Dst IPs S RA SA R SRA A

S 2955827 54 64936 22510 1734 8126 49 8

R A 197972 12 22510 1 843 2868 49 6

S A 66908 10 1734 0 9 193 49 6

R 33169 5 8212 1 5 4 9 2

SR A 725 8 49 0 7 8 4 6

A 8 3 8 1 2 2 1 2

An analysis of the clustering is shown in Table 2. The numbers in the lower
triangular section at the right hand side of the table represent counts of source
addresses in common among the groups; the upper triangle represents the same
analysis for destination addresses. We note that the sources of the SYN only
flows are largely disjoint from the sources of the other flows. Since the source of
the common RST/ACK and the RST flow are the same, only two IP addresses

15 “CFengine, or the configuration engine is an autonomous agent and a middle to high
level policy language for building expert systems which administrate and configure
large computer networks. CFengine uses the idea of classes and a primitive intelli-
gence to define and automate the configuration and maintenance of system state,
for small to huge configurations. CFengine is designed to be a part of a computer
immune system, and can be thought of as a gaming agent. It is ideal for cluster
management and has been adopted for use all over the world in small and huge
organizations alike.” according to http://www.iu.hio.no/cfengine/

418 John McHugh

Table 3. Ports scanned by the top 54 SYNers

Rank Count Port Service

1 1038778 80 HTTP

2 370404 4899 radmin

3 258538 4000 Remote-Anything

4 225665 21 ftp

5 191562 3389 Remote Desktop Protocol / ms-wbt-server

6 185400 20168 Lovegate worm

7 126142 5308 CFengine

8 64679 2277

9 64679 554 Real time streaming protocol

10 64679 3410 NetworkLens SSL event

11 64675 1257 Shockwave 2

12 64312 1443 Integrated Engineering Software license manager

13 63166 5000 Cisco HIDS agent/console

14 63165 14232 ftp server as side effect of SMB exploit

15 61018 2000 RemotelyAnywhere / SCCP (Cisco phones)

16 31153 23 telnet

are in common with the SYN addresses. Based on this, we consider the SYN
only case separately.

The remaining miss records contained some 25000 distinct ports, mostly high
numbers. Analyzing the RST/ACK group separately, we find that the 12 IPs
responsible for this behavior form a total of 69 groups when clustered by IP
and source port. There is substantial overlap among the IPs in this group and
the remaining groups leading us to conclude that it is highly likely that some
or all of these hosts were undergoing denial of service attacks during the week
of analyzed data. An examination of these flows indicates that it is likely that
a number of distinct attacks were involved. One host emits single ACK/RST
packets on a number of ports as well as from 1 to 20 or so RST packets on
several thousand ports. For the other hosts, most of the activity is concentrated
on a relatively few ports, but the patterns vary from host to host with port 80
being the most common. At this point, we do not know whether the activity is
concentrated only in the monitored /16 or covers other monitored networks, as
well.

Table 4. Clusters based on IP for significant flag combinations

Flags Clusters IPs

S 55 54

RA 6 12

SA 12 10

R 3816 5

Table 4 shows the number of unique port and IP combinations for the major
flow types. The port used for the SYN flows was the destination port while

Sets, Bags, and Rock and Roll 419

source ports were used for the others. This is consistent with our view that flows
other than the SYN flows are likely to be responses to abuses of the IP sources
by spoofed traffic.

We also briefly examined the very low rate traffic. As noted earlier, the vast
majority of the IPs responsible for the miss traffic generate a single flow during
the week of observation. Four protocols are represented. There are 14 flows for
protocol 0 (IPv6 Hop by Hop?). It is not clear whether these are legitimate, but
they originate from 14 distinct /16s and target a single host within the monitored
network.

There were a total of 864 ICMP messages. 2 were echo replys, 612 desti-
nation unreachable, 3 source quenches,1 host redirect, 242 TTL exceeded in
transit, and 1 timestamp reply. Of the destination unreachable messages, 24
were network unreachable, 139 host unreachable, 1 protocol unreachable, 160
port unreachable, 46 communication with host administratively prohibited, and
242 communication administratively prohibited.

There are 13161 TCP flows of which 12541 have only the SYN flag set.
12242 of these target port 80 (http), with port 4662 (EDonkey, a peer to peer
service) next with 28 flows. 11 flows target port 0 (possibly an error), and 10
target port 55592, and 8 target port 23 (telnet). The remainder of the flows have
fewer that 5 flows per port with most being 1 flow per port. Of the non SYN
only flows, there are 80 SYN/ACKs and 80 RST/ACKs to port 80. There are
14 RST/ACKs target port 1025 (network blackjack?) and 11 targeting port 21
(ftp) Ignoring ports in the analysis, there are 226 RST/ACK combinations, 177
RST, 82 SYN/RST, 46 ACK, and a handfull of other combinations.

The largest component of the low rate data is UDP. There are 131716 flows
of which 131519 target destination port 53 (dns). The next highest counts are
less than 30 flows to a single port and singleton flows appear at rank 25 (of 74).
Clustering on source ports produces a different picture. 25228 ports appear in
the list, again, most associated with a single flow. Port 53 is again the most
common source port (89450 flows) followed by 1025 (1042 flows). Ports 10000,
1024, 1044, 1064, 10001, 1084, 60000, and 1026 round out the top 10 (tie for
10th place at 60 flows). Clustering on input and output port pairs shows that the
combination (53,53) is most common with 89531 flows. Port 53 is the destination
port in the 27 top flows and is either the source or destination port in the top 39
flows. (500,500) is the 40th most common combination with 14 flows and port
53 appears as the destination port for ranks from 41 through 197. Clustering by
destination host and port is unproductive. The most frequent clusters all target
a single host with 15 flows to port 6144, and 14 each to ports 53 and 16896 on
the same host.

6 Enhancements and Extensions

The SiLKtools set has shown itself to be useful for a variety of analyses of large
data sets of network flow data. For future work, there are a number of extensions
that we would like to make. Extensions to the set and bag mechanism to allow

420 John McHugh

adding of bags, conversion of a bag to its basis set, and to allow a set to be
used to select portions of a bag would be particularly useful. While stand alone
programs such as the ones we have used here are useful for exploratory work,
we envision routine analyses that would benefit from being performed in an
integrated program. To this end, we are proposing to the SiLKtools developers
that they consider implementing the set and bag code as a subroutine library,
along with a library of data structures and I/O routines that can be used to
access and manipulate the raw data.

The underlying data representation also has some deficiencies that will be
fixed in the near future. Time is currently represented only in whole seconds
which makes it difficult to compare, for example flow start times. We are work-
ing on matching inbound and outbound flows for TCP sessions. Better timing
information would help here, as would a flag that indicated that the first packet
of the flow contained a SYN and not a SYN/ACK combination. As mentioned
earlier, we are looking at creating flows from other data sources.

Extending the set and bag concept to other data types would be useful. We
have need for efficient representations of active ports associated with individual
IPs, for example. The bags currently provide 32 bit counters for the IPv4 space,
but depend on the sparse non-zero counts to fit in memory. We have recently
analyzed the several alternative representations and feel that we can build a set
and bag framework that will allow much more compact representations than
we have at present by taking advantage of observed address distributions. The
current structures use one (sets) or 2 (bags) levels of indirection and then al-
locate blocks of storage at the /16 (sets) or /24 (bags) level. Because of the
low occupancy of most of our customer’s subnets combined with a tendency to
allocate addresses at the low end of the subnets, it appears that /27 allocations
of storage could reduce bag sizes by a factor of 4 to 8. Allocating 8 bit counters
to the block initially and expanding to 16 bits or 32 bits as needed would reduce
bag sizes by another factor of 2 or more.

We also have a need for set and bag like structures for things like connections
(2 IP addresses and 2 port addresses, reversed for response) and connection
attempts (Source IP, Destination IP and port). We have experimented with
the use of Bloom filters[3] for determining connection sets and believe that these
could play a major role in analyzing more complex behaviors such as determining
the number of distinct connection attempts a given source IP makes over time.
We are currently developing a plugin for rwfilter that will allow collection for
continuation flows, i.e. groups of flows with the same IP, protocol, and port
information, using a two stage Bloom filter. All flows will be entered into the
first stage of the filter, but only flows that match the first stage are entered into
the second filter which can then be used to separate singleton flows (the vast
majority) from those that might be consolidated. Similarly, transposing source
and destination inputs to a Bloom filter can simplify matching the two sides of
a conversation.

And then there is the question of extending the concept to IPv6

Sets, Bags, and Rock and Roll 421

7 Conclusions

We have introduced the concept of using sets and bags to facilitate the analysis
of large sets of network flow data, provided some motivating examples and sug-
gested further lines of inquiry. The tools we use are in a state of flux, but have
already produced interesting and useful results in analyzing both aggregated
data and data from single subnets.

Acknowledgments

Special thanks go to Mike Collins who has been the chief instigator of the SiLK-
tools effort since the death of Suresh Konda. Carrie Gates and Damon Becknel
have provided many useful contributions to the effort. Other members of the
CERT analysis team have been most gracious in tolerating my code modifica-
tions.

References

1. Fullmer, M., Romig, S.: The OSU flow-tools package and Cisco NetFlow logs. In:
LISA XIV, New Orleans (2000) 291–303

2. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading, MA. (1977)
3. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-

cations of ACM 13 (1970) 422–426

A Brief Descriptions of Selected SiLKtools Programs

rwfilter is the front end for the system. It extracts a subset of the centrally
stored rwdata based on a number of aggregation and filtering criteria or ap-
plies filtering data to a previously extracted rwdata file. Although it is much
more general than the usages we show, our typical use starts by selecting
data based on some time interval and possibly some range of network ad-
dresses. This data will be stored in a single file and subsequently refiltered
based on other criteria. The program can be used to partition data based on
the filtering criteria. Thus, TCP data could be extracted to a file in one pass
with other protocols going to different file (or piped to another invocation
of rwfilter to extract UDP, etc. for as many levels as desired.) Since sets
of IP addresses can be used as filter criteria, traffic whose source (and / or
destination) addresses appear in given sets can be extracted or partitioned.

rwcut lists selected fields from an rwdata file, one line per flow, for subsequent
analysis. A dynamic library facility allows derived quantities, e.g. bytes per
packet, to be listed.

rwsuperset is my enhanced version of rwset. It can create multiple sets and
bags from rwdata files based on source and / or destination addresses. An
additional feature allows a diminished set of the input data (flows with IP

422 John McHugh

addresses already in a set under construction) to be passed for source, des-
tination or both. This allows us to cascade invocations using sets for the
majority of flows with small counts and bags for the residue as seen in the
following hack (to be obviated by a more efficient bag representation).
#!/bin/bash

raw data file $1.rwf creates 9 levels of set files and a bag file.

$2 is either s or d, for bagging on source or destination IPs

rwsuperset --p --$2-s=$1-$2-1+.set --$2-d=stdout $1.rwf |\

rwsuperset --p --$2-s=$1-$2-2+.set --$2-d=stdout |\

...

rwsuperset --p --$2-s=$1-$2-10+.set --$2-d=$1-$2-10+.rwf \

--$2-i=10 --$2-b=$1-$2-10+.bag

readset reads in a set file and lists its contents in various ways including set
size, a list of members, or an analysis of the network structure of the set.

readbag is similar to readset, but will only enumerate the bag,
buildset builds a set file from a list of IP addresses. Wildcards are permitted

as are CIDR notations, useful in building sets for masking operations.
buildbag is like buildset except that it counts occurrences of each IP address.
setintersect performs intersection operations on set files or their complements.
rwsetunion performs the union of two or more set files.
rwcat concatenates multiple rwdata files into a single file or stdout stream.
rwsort provides the ability to sort rwdata files based on address, size or start

time fields.
rwstats can provide a variety of statistics about the contents of an rwdata file.
cluster.sno is written in SNOBOL416 and counts the number of unique lines

in its input. This is a simplistic view of clustering, but is adequate for now.

16 Available at http://www.snobol4.org/

	1 Introduction
	2 The Thesis and Approach
	3 NetFlow and Other Data Sources
	4 The SiLKtools Suite and Its Extensions
	5 Examples and Sample Analyses
	5.1 A Brief Examination of a Large Sample
	5.2 A Week in the Life of a /16

	6 Enhancements and Extensions
	7 Conclusions
	Acknowledgments
	References
	A Brief Descriptions of Selected SiLKtools Programs

