
A Host Intrusion Prevention System
for Windows Operating Systems

Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

Dipartimento di Informatica , Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma

r.battistoni@computer.org, {gabrielli,lv.mancini}@di.uniroma1.it

Abstract. We propose an intrusion prevention system called WHIPS
that controls, entirely in kernel mode, the invocation of the critical sys-
tem calls for the Windows OS security. WHIPS is implemented as a
kernel driver, also called kernel module, by using kernel structures of
the Windows OS. It is integrated without requiring changes to either
the kernel data structures or to the kernel algorithms. WHIPS is also
transparent to the application processes that continue to work correctly
without source code changes or recompilation. A working prototype has
been implemented as a kernel extension and it is applicable to all the
Windows NT family OS, e.g. Windows 2000/XP/2003. The WHIPS first
contribution is to apply the system call interposition technique to the
Windows OS, which is not open source. It is not straightforward to apply
this technique to Windows OS, also because Windows kernel structures
are hidden from the developer, and furthermore, its kernel documenta-
tion is poor.

1 Introduction

Attacks on the security of network clients and servers are often based on the
exploitation of flaws that are present in a specific application process. By means
of well known techniques [Al96,Co00], a malicious user may corrupt one or more
memory buffers so that while returning from a function call, a different piece
of code, which is injected by the attacker, is executed by the flawed application
process. Of course, the buggy application process maintains its special privileges
(if any). As a consequence, if the attack is successful against a privileged process
the attacker may gain full control of the entire system. For example, the malicious
code could execute a shell in the privileged application context and allow the
attacker to become a system administrator. An example of a recent exploit using
buffer overflow is the slammer worm [MPSW03] that attacks the MS-SQL server
for Windows 2000/XP to gain high privileges and then saturates the network
bandwidth causing a denial of service attacks.

This paper presents the design and implementation of a Host Intrusion Pre-
vention System (HIPS) for Windows OS that immediately detects security rules
violations by monitoring the system calls made by the application processes. The
proposed prototype, working entirely in kernel mode employs interposition at the

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 352–368, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



A Host Intrusion Prevention System for Windows Operating Systems 353

system call interface to implement the access control functionality, and requires
no change to the kernel code or to the syntax and semantics of existing system
calls. Basically, the system call execution is only allowed when the invoking pro-
cess and the value of the system call arguments comply with the rules kept in
an Access Control Database (ACD) within the kernel. The task of the proposed
HIPS is to protect the Windows OS against any technique that would allows
an attacker to hijack the control of a privileged process. The REMUS system
[BGM02] has shown that immediate detection of security rules violations can be
achieved by monitoring the system calls made by processes in Linux. Here, we
propose to apply a similar technique to the Windows 2000/XP/2003 family.

The HIPS being proposed here is called WHIPS, Windows-NT family Host
Intrusion Prevention System. Indeed, Intrusion Prevention Systems (IPSs) strive
to stop an intrusion attempt by using a preventive action on hosts to protect the
systems under attack. Our WHIPS prototype runs under Windows 2000/XP and
Windows 2003. Herein, by the term Windows we refer to Windows XP, but the
consideration and the prototype design are applicable to all the Windows NT
family OS. WHIPS’ first contribution is to apply the system call interposition
technique to the Windows OS. Though this technique is generally known, we
could not find any related works that follow similar ideas as for Windows OS
which is not open source. This is mainly because it is hard to design and to
implement solutions in the Windows OS kernel structures which are hidden
from the developer. On the contrary, there are many IPS that are implemented as
wrapper executed in user mode such as [Ep00]. Moreover, many implementations
of the system call interposition technique are well known on Linux OS. A related
study for the Linux OS is the REMUS Project [BGM02] which implements a
reference monitor for the system call invocations in a loadable Linux kernel
module. In REMUS, root processes and setuid processes are privileged processes,
and a dangerous system call is defined as a critical system call invoked by a
privileged processes.

This paper is organized as follows. Section 2 characterizes the privileged and
dangerous processes, and defines when a system call is critical and dangerous
for a Windows system, showing how the Windows system calls are invoked by
the user processes. Section 3 proposes the WHIPS prototype, showing the im-
plementation, a brief example of its effectiveness, and the performance analyzes
of the prototype.

2 Privileged Processes and Critical System Calls

In order to gain control of an OS, an attacker has to locate a target process
that runs with high privileges in the system. For example, if the OS belongs
to Linux family, the privileged processes include daemons and setuid processes
that execute their code with the effective user root (EUID=0). In the following,
first we introduce the Windows processes security context, then we characterize
when a process is privileged or dangerous and when a system call is critical or
dangerous in Windows.



354 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

2.1 Windows Processes Security Context and Privileges

This section examines the Security Identity Descriptor (SID), the Access Token
(AT) and the impersonation technique, which are the components of a process
structure that represents its security context. Then we examine the Windows
privileges.

Security Identity Descriptor: SIDs identify the entities that execute oper-
ations in a Windows system and may represent users, groups, machines or do-
mains. A SID contains a so-called RID (relative number) field that distinguishes
two SIDs otherwise equal in a Windows system. Every Windows system has
a lot of SIDs; some of them identify particular users or groups and are called
Well-Known SIDs [Mi02a].

Access Token: The SRM (Security Reference Monitor) is a Windows kernel
component that uses a structure called Access Token to identify a thread or a
process security context [RuS01]. A security context is a set of privileges, users
and groups associated to a process or a thread. During the log-on procedure,
Winlogon builds an initial token that represents the user rights, and links this
token to the users shell process. All the processes created by the user inherit
a copy of the initial AT. We have two types of AT: primary token and imper-
sonation token. Every process has an AT called primary token. Every process in
Windows has associated a primary thread and a variable number of secondary
threads that executes the process operations. The primary thread inherits a
copy of the primary token, whereas a secondary thread may inherit a copy of
the primary token, or may obtain a restricted copy of the primary token by the
impersonation mechanism.

Impersonation: It is a mechanism that allows a security context of a process or
a thread to migrate in another security context. For example, an impersonation
occurs when a server accesses its resources on behalf of a client. In this case, the
impersonation mechanism allows the server process to use the security context of
the client that requested that particular operation [RuS01]. To avoid an improper
use, Windows does not permit to a server to impersonate a client process without
the client consensus. Some impersonation levels follow: SecurityAnonymous, Se-
curityIdentification, SecurityImpersonation, SecurityDelegation. If a client does
not choose an impersonation level, SecurityImpersonation is the default.

Windows Privileges: A privilege in Windows is the right to operate on a
particular aspect of the entire system, so a privilege acts on the entire system,
whereas a right acts on an object of the system [Scm01]. A privilege may be
assigned to a user or a group in Windows. When a user logs on a Windows
system, a process will be created and assigned to the user, then the privileges
assigned to the user or the group will be added in the AT privileges list of the user
process. There are many privileges in Windows, each allowing a particular action
on the system, but not every privilege is dangerous for the system security. Only
a subset of the entire set of Windows privileges contains dangerous privileges
that can be exploited by a malicious user.



A Host Intrusion Prevention System for Windows Operating Systems 355

Definition 1. A dangerous privilege is a Windows privilege that can be used
by a malicious user to compromise the availability, the confidentiality and the
integrity of the system.

Examples of some dangerous privileges reported in [HLB01] are: SeBack-
upPrivilege; SeTcbPrivilege; SeDebugPrivilege; SeAssignPrimaryTokenPrivilege;
SeIncreaseQuotaPrivilege.

2.2 Privileged and Dangerous Processes

As discussed above, some privileges are dangerous in Windows OS and if we want
to know if a process is dangerous, we can look to the process AT of the user that
activates this process. A malicious user can attack a dangerous process executing
malicious code in its security context and gaining all the process privileges. We
can say that if a process privilege is dangerous, then the process is dangerous
too. To identify a dangerous process we can look for dangerous privileges into
the process AT. Now we introduce some definitions to summarize the concepts:

Definition 2. A privileged process is a process with some Windows privilege.

Definition 3. A dangerous process is a privileged process that has some dan-
gerous privilege.

If in the AT privileges list there are one or more dangerous privileges, the pro-
cess, owner of the AT, belongs to the set of dangerous process. In the following,
we discuss a particular set of privileged processes: the Windows Services.

Services Identification. Almost every OS has a mechanism to start processes
at system start up time that provide services not tied to an interactive user. In
Windows, such processes are called services. Services are similar to UNIX dae-
mon processes and often implement the server side of client/server applications.
On Windows, many services log-on to the system with a predefined account:
System account (called LocalSystem). This account belongs to group Adminis-
trators and it is very powerful because it has many dangerous privileges. This is
a critical account for the Windows security.

Often a careful analysis of services by the administrator could restrict the
services privileges. This could be done with a new account created for the specific
service, where this account has less privileges then the System account. Follow-
ing this idea, in Windows XP/2003 there are two new accounts for services: local
service and network service. These new accounts have the minimum privileges
necessary to the execution of some services, typically Internet and network ser-
vices. So, an attack to these services is less powerful than an attack to a service
that log-on with the System account [HLB01]. LocalSystem has almost all the
Windows privileges whereas each of LocalService and NetworkService has a sub-
set of the LocalSystem privileges. In general, the SIDs in the process AT identify
the services, precisely the so-called Well Known SIDs. We have two possibilities:



356 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

if the service logs onto the system with LocalSystem account, the user account
SID in the AT is equal to string S-1-5-18, Local System SID. Otherwise, we must
look in the AT group SIDs; the process is a service if there is the Well-Known
SID Service represented by the string S-1-5-6. Summarizing, the following rules
help us to know exactly when a process is a service:

Proposition 1. Process is a Service ⇒ Access Token User SID is equal to Local
System SID, or in the Access Token Group SIDs is present Service SID.

Proposition 2. Access Token Group SIDs contains Service SID ⇒ process is a
Service.

Proposition 3. Access Token User SID is equal to LocalSystem SID ⇒ process
is NOT necessarily a service.

Note that if user SID is LocalSystem the process owner of the AT is not
necessarily a service, it could be a system process too. If we consider only the
first rule, we will find a set of processes that contains the set of services, but is
not necessarily equals to this set.

2.3 Critical and Dangerous System Calls

In this section, we introduce the definition of system calls in Windows and then
we characterize when a system call is critical.

Native APIs: Windows System Calls. APIs (Application Programming
Interfaces) are programming functions held in dynamic library, and run in user-
mode space and kernel-mode space. We call native APIs [Ne00] the APIs in
kernel-mode that represent the system call of Windows. We simply call APIs,
the APIs in user-mode space.

Four dynamic libraries export APIs of the Win32 subsystem: user32.dll,
gdi32.dll, kernel32.dll, advapi32.dll. The APIs in user32.dll and gdi32.dll in-
voke the APIs implemented in kernel mode by win32k.sys module, which is the
kernel module of the Win32 subsystem. The APIs exported by kernel32.dll (sys-
tem APIs) use a particular library named Ntdll.dll that invokes native APIs in
the kernel. Native APIs invoked by ntdll.dll are the Windows system calls.

Figure 1 shows that, when an API of kernel32.dll is called by an application,
this API recalls one or more functions present in ntdll.dll. This library represents
a bridge between user-mode and kernel-mode space [Ne00,Osr03]. The user-mode
library Ntdll.dll is the front-end of the native APIs, which are implemented in
the Windows kernel ntoskrnl.exe. Ntdll.dll exports all the native APIs with two
type of function name prefix: Nt and Zw. True native APIs (in the kernel) have
the same name of APIs exported by Ntdll.dll.

Figure 2 shows an example of the native API NtCreateFile, obtained dis-
assembling ntdll.dll. Function NtCreateFile loads registry EAX with the index
0x1A of the native API in a particular table called System Service Table (KiSer-
viceTable), then EDX registry points to the user-mode stack, ESP+04, where



A Host Intrusion Prevention System for Windows Operating Systems 357

Fig. 1. System Service Table (SST)

NtCreateFile:

mov eax,0x0000001A

lea edx,[esp+04]

int 0x2E

ret 0x2C

Fig. 2. NTCreateFile assembly code

there are the parameters of native API, and finally raises interrupt 0x2E that
executes the System Service Dispatcher of Windows. System Service Dispatcher
is the kernel routine that invokes the true native API in the kernel. Not all the
native API exported by Ntdll.dll are exported by ntoskrnl.exe. This seems to
prevent the unauthorized use of particular and dangerous native APIs within
any module implemented as a kernel driver. Disassembling the library ntdll.dll,
we can observe that every Nt native API and its corresponding Zw native API
have the same assembly code, fig. 2. If we disassemble ntoskrnl.exe, the true na-
tive APIs with the Nt prefix contain the true code of native API, and the native
APIs with the Zw prefix have the representation in the example of figure 2, see
also [Ne00,Osr03,Scr01] for details.

System Service Dispatcher. Dispatcher of interrupt 0x2E is the System Ser-
vice Dispatcher routine. It is implemented in the executive layer of the Win-
dows kernel, through the kernel function KiSystemService. APIs in gdi32.dll and
user32.dll call directly the dispatcher KiSystemService, and after the dispatcher
invokes functions in win32k.sys module. The APIs in kernel32.dll invoke the



358 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

functions exported by ntdll.dll and then these exported functions call the native
APIs in Windows kernel. When KiSystemService is invoked, the dispatcher runs
a series of checks. First, it controls the validity of index passed in EAX register,
then it controls if the argument space expected for the native API parame-
ters is correct and finally executes the native API in the kernel. When KiSys-
temService invokes the native APIs, it uses a structure called System Service
Descriptor Table (SDT), represented by the KeServiceDescriptorTable structure
[Scr01,HLB01]. KeServiceDescriptorTable has two table pointers: KiServiceTable
(System Service Table, SST) and KiArgumentTable. The first table contains an
index for every native API, used by native API code in ntdll.dll, to invoke the
corresponding native API in the kernel. The second table contains, for every
native API, the allocation space for this API parameters. This space is used for
the kernel-stack memory allocation.

Critical and Dangerous Native APIs. A native API can be considered as
a Windows system call. But when is a system call in Windows a critical system
call? A native API is a generic kernel function; it has a function name, a series
of parameters and a return value. If we consider a native API by itself, it is not
critical, but it becomes critical when it has dangerous parameters. Consider a
simple example: the native API NtOpenFile. Typically this native API opens a
handle to a file on the File System. Its only parameter is a pointer to a string
that represents the file name (with path) that will be opened. If the file name is
readme.txt, this native API is not critical for the system. But, if the file to open is
equal to c:\winnt\cmd.exe, the Windows shell, NtOpenFile with this particular
parameter is critical because it could be used to open a system administrative
session. So we introduce some definition:

Definition 4. A parameter of a Native API is dangerous if it can be used by a
malicious user to compromise the availability, the confidentiality and the integrity
of the system.

Definition 5. A critical system call is a native API that could be invoked with
dangerous parameters.

Definition 6. A dangerous system call is a critical system call invoked by a
dangerous process.

Note that a critical system call is dangerous for the system only if the invoking
process is a dangerous process. A dangerous process that calls a native API with
dangerous parameters may represents an attack of a malicious user.

Native API Classification. Native APIs in Windows 2000 and XP are about
250, and only 25 of them are documented by Microsoft within the Driver De-
velopment Kit (DDK). All others native APIs are not documented. A good
support for native API documentation is Windows NT/2000: Native API ref-
erence [Ne00] which is not an official Microsoft documentation of Windows OS.



A Host Intrusion Prevention System for Windows Operating Systems 359

Fig. 3. WHIPS Reference Monitor

Table 1 represents a first classification of native APIs by category (21 categories)
which is derived from [RuS01,Ru98], and shows that in Windows we have many
system calls. Linux give us more information with its source code on its system
calls, whereas Windows does not give us any information on its system call.

3 The WHIPS Prototype

WHIPS is a Reference Monitor (RM) for the detection and the prevention of
Windows dangerous system calls invocation. This prototype is based on an ini-
tial idea related to the REMUS Project [BGM02]. REMUS is a RM for Linux
OS and it is implemented with a dynamic loadable module of Linux kernel.
WHIPS is implemented as a kernel driver, also called kernel module, using un-
documented structure of Windows kernel and the routines typically employed for
drivers development [BDP99]. The WHIPS prototype can be seen as a system
call RM for Windows and the implementation technique utilized is the system
calls interposition. As you can see in Figure 3, WHIPS is a module that filters
every critical system call invoked by a Windows service and establishes if the
critical system call is dangerous by checking its actual parameters. If the system
call is not dangerous it will be passed to the kernel for the execution, otherwise
it will be stopped and not executed. RM control policies are established by a
small database called Access Control Database (ACD).

The ACD defines the allowed actions on the system by means of a set of rules.
Every time a dangerous process invokes a critical system call through ntdll.dll or
a wrapper (a code that rise int 0x2E), the call of the process is checked by WHIPS
that matches the process name, the critical system call with its parameters, with



360 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

Table 1. Native API categories

Index Category Description

1 Special Files These APIs are used to create files
that have custom characteristics.

2 Drivers These functions are used by NT to load and unload
device driver images from system memory.

3 Processor
and Bus

Processor registers and components can be controlled
via these functions.

4 Debugging
and Profiling

The profiling APIs provide a mechanism for
sample-based profiling of kernel-mode execution.

5 Channels Provide access to a communications mechanism.

6 Power Native API for power management.

7 Plug-and-Play Like the Power API.

8 Objects Object manager namespace objects are created
and manipulated with these routines.

9 Registry Win32 Registry functions basically map directly
to these APIs.

10 LPC LPC is NT core interprocess communications mechanism.

11 Security The Native security APIs are mapped almost directly
by Win32 security APIs.

12 Processes
and Threads

These functions control processes and threads.
Many have direct Win32 equivalents.

13 Atoms Atoms allow for the efficient storage and
referencing of character strings.

14 Error Handling Device drivers and debuggers rely on these error
handling routines.

15 Execution
Environment

These functions are related to general
execution environment.

16 Timers and
System Time

Virtually all these routines have functionality
accessible via Win32 APIs.

17 Synchronization Most synchronization objects have Win32 APIs,
with the notable exception of event pairs.
Event pairs are used for high-performance
interprocess synchronization by the LPC facility.

18 Memory Most of NT virtual memory APIs are accessible
via Win32.

19 File and
General I/O

File I/O is the best documented of the native APIs
since many device drivers must make use of it.

20 Miscellaneous These functions do not fall neatly into other categories.

21 Jobs These functions are essentially a group of
associated processes that can be controlled as a single
unit and that share job-execution time restrictions.

the ACD rules. If a rule exists that satisfies this invocation, the native API is
executed otherwise is not executed because the system call invoked is classified
as dangerous.



A Host Intrusion Prevention System for Windows Operating Systems 361

Fig. 4. WHIPS implementation architecture

The implementation technique used by WHIPS, suggested by [CRu97,BDP99],
replaces the native APIs pointers in the System Service Table (fig. 4), with
pointers to the new native APIs supplied by the prototype. The new native
APIs are wrappers to original native APIs and implement the RM checks.

For every original critical native API we have introduced a new native API,
which has the same function name with a prefix New (ex. NewNtCreateFile). This
new API analyzes its invoking process and its parameters. If the invoking process
is dangerous and the native API is critical, a check is performed on the actual
parameters considering the rule in the ACD. If there is not a corresponding rule
in the ACD the original native API is not invoked, since the native API may be
dangerous. Otherwise it is invoked and executed.

3.1 Access Control Database

The ACD is implemented by a simple text file (protected by the system ACL and
accessible only to the Administrator or Administrative groups). ACD is loaded
at the driver start-up and it is allocated entirely in main memory; no other
accesses are needed to the file and this avoid performance problem. A generic
rule in the ACD is represented in table 2.

These ACD rules state that Process can execute the specific Native API with
the specific Param[1..N]. The specification of the rules to insert into the ACD is
possible in a manual or automatic manner. In the first case, the administrator of
the system must specify all the Native APIs critical and allowed for the system.
This can be done with approximation, step by step, but a period of control of the
system is necessary. In fact some omissions could prevent the correct operation
of some application.



362 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

Table 2. ACD Rule schema

Rule Type Process name Native API Name ParamAPI [1..n]

– Rule Type: can be debug or rule; when the type is rule, this means that the rule
filters the execution of system call. When the type is debug, the execution of a
critical system call will be traced but not blocked.

– Process Name: is the name of the executable image that has activated the dan-
gerous process; this name is a string that identifies only the name and not the
complete path; WHIPS prototype works entirely in kernel-mode and it has not
access to process block to retrieve the complete path of executable image because
this information is accessible only in user-mode.

– Native API: is the name, with prefix Nt, of the critical native API invoked by
Process.

– Param [1..N]: are the legal actual parameters of the critical system call.

The second case is to implement a robot that analyzes all the system calls
invoked by the system in a trusted environment and create the correct rules for
the ACD.

The performance of the system depends on the number of rules in the ACD
and how the matching algorithm is implemented. In this first prototype the ACD
is scanned sequentially with a computational cost of O (n), where n is the number
of rules in the ACD. In a preliminary study we have estimated that the number of
these rules is not more than 1000, so the sequential search seems computational
acceptable. Alternatively one could implement other more efficient algorithms
to lower the computational cost of the rule search.

3.2 System Service Table Modified

WHIPS is a kernel module, also called a driver in Windows. Now we examine a
C-like representation of the source code that implements the patch to the System
Service Table (SST) of Windows. The main function of the WHIPS prototype is
the common main function of all the drivers in Windows OS, called DriverEntry.
In WHIPS,this function does not drive any peripheral of the system and the only
work that it does is calling the HookServices function at driver start-up.

Figure 5 shows the C-like representation of the System Service Table (SST)
patch. The first operation that it does is to load the ACD database in the kernel
memory with LoadDB, and then it patches the SST. With macro SYSTEMSER-
VICE, the HookServices function saves the old references to the native APIs in
OldNtApiName, and then substitutes the old references in the SST with the new
references to the new native APIs supplied by the prototype.

3.3 New Native API Implementation

To explain the implementation of the new native APIs, figure 6 shows the repre-
sentation in C-like of the NewNtOpenProcess. When a process wants to call the



A Host Intrusion Prevention System for Windows Operating Systems 363

HookServices() {
LoadDB("RmDB.rbt", &ruleArrayRM, &numruleRM);

OldNtCreateFile=SYSTEMSERVICE(ZwCreateFile);

.

.

OldNtClose=SYSTEMSERVICE(ZwClose);

Disable Interrupt;

SYSTEMSERVICE(ZwCreateFile)=NewNtCreateFile;

.

.

SYSTEMSERVICE(ZwClose)=NewNtClose;

Enable Interrupt;

return;

}

Fig. 5. WHIPS Patch function

NtOpenProcess, it really calls the corresponding new native API NewNtOpen-
Process. The new native API detects its invoking process name and its only
parameter: the process name that will be opened by the native API. Then the
NewNtOpenProcess stores this data in a temporary rule called rule. The format
of this temporary rule is similar to the format of the rules in the ACD, this is
to simplify the check of the rule.

Next the procedure evaluates if the invoking process is a dangerous process.
The function isProcessDangerous analyzes the AT of the invoking process and
return true if the process is dangerous, false otherwise. Remember that in this
version of the prototype dangerous processes are Windows services or Windows
system processes (refer to section 2.2). The function VerifyDebugNativeAPI an-
alyzes if the native API must be traced in the debug environment, whereas
VerifyNativeApi looks into the ACD database to find a rule that allows the exe-
cution of the invoked API. Only if this function return true, original native API
is called with the invocation of OldNtOpenProcess saved in HookServices.

3.4 Prototype Effectiveness

The WHIPS prototype can be tested with the Web Server File Request Parsing
vulnerability of IIS in Windows NT/2000 up to Service Pack 2. This vulnerability
permits to execute shell command in a web browser with an URL not well-
formed. If for example, we call the URL:

http://host/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir+c:
We obtain a shell that shows the list of files of the C: partition hard drive.

But, this vulnerability may become very dangerous if a shell command is passed
as an argument to delete or to modify some configuration files not protected by
the ACLs. Now we explain how this vulnerability works.

The Web Server IIS, inetinfo.exe, executes in its thread the shell command
for an incorrect interpretation of the URL format. This thread has IUSR HOST



364 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

NewNtOpenProcess(phProcess,...,pClientId) {
startTimeO=KeQueryPerformanceCounter(&frequency);

GetProcess(currProc);

GetProcessByProcessID(pClient,pClientId);

rule.processName=currProc;

rule.api="ntopenprocess";

rule.numparam=1;

rule.api param[0]=pClient;

CurrentProcessIsDangerous=isProcessDangerous();

if (VerifyDebugNativeAPI(rule,CurrentProcessIsDangerous))

Print Debug Information;

if (VerifyNativeAPI(rule,CurrentProcessIsDangerous)) {
endTimeO=KeQueryPerformanceCounter(&frequency);

Show Overhead Information;

OldNtOpenProcess(phProcess,...,pClientId);

} else {
endTimeO=KeQueryPerformanceCounter(&frequency);

Show Overhead Information;

}
return;

}

Fig. 6. WHIPS New Native API implementation

privileges (guest privileges). So the Web server erroneously executes code out of
the web server directory. In other situations, the attacker could obtain adminis-
trator privileges if the threads owned by a process have the same privileges of
the administrator.

If WHIPS prototype is running, the thread created by privileged process
inetinfo.exe is analyzed. In the ACD database is not present a rule for the native
API NtOpenFile with shell (cmd.exe) parameters, for IIS privileged process (and
its threads), so the execution of the native API is stopped and also the attack to
the Web server. This experiment shows that WHIPS permits only the allowed
Native APIs to operate on the systems, and consequently stops every malicious
actions of the dangerous processes.

3.5 Performance Evaluation

The actual impact of WHIPS on the global system performance is negligible for
all practical purposes, mainly because the number of critical system call invoca-
tions is small with respect to the total number of instructions executed by a pro-
cess. However, in order to evaluate even the minimal overhead introduced by the
WHIPS prototype, we have devised further experiments based on micro bench-
mark. In particular, the kernel function KeQueryPerformanceCounter exported
by the kernel is used. KeQueryPerformanceCounter(PerformanceFrequency) re-
turns the clock ticks counter (#tick) from system boot, whereas the clock tick
counter per second (#tick/sec) is expressed by PerformanceFrequency. A generic



A Host Intrusion Prevention System for Windows Operating Systems 365

invocation time Ti of the kernel function KeQueryPerformanceCounter is given
in microseconds by:

Ti =
#ticki

PerformanceFrequency
. (1)

Now assume that ∆T is the execution time of a generic code block between
two invocations of KeQueryPerformanceCounter. These two invocations deter-
mine respectively T1 and T2, where T1 is the first invocation time and T2 is the
second invocations time, and ∆T=T2-T1.

We must consider that the execution of the function KeQueryPerformance-
Counter introduces an overhead too, we call this ∆TOverheadKeQuery . To es-
timate ∆TOverheadKeQuery , we have measured two consecutive invocations of
KeQueryPerformanceCounter.

We define the elaboration block as the WHIPS code block that implements
the control of the native API parameters and the control on the invoking process.
The overhead introduced by a generic new native API is:

∆TOverheadNewNAPI

= (T2,OverNewNAPI − T1,OverNewNAPI) − ∆TOverheadKeQuery , (2)

whereas the execution time of the original native APIs in Windows is called
∆TNativeAPI which is computed measuring a native API execution in a way
similar to equation 2.

3.6 Measurements

The system utilized for the measurement is a PC with AMD Athlon CPU,
with clock frequency of 1200 Mhz, 512 Mbytes of RAM and Windows 2000
OS. We have measured only four native API and specifically three critical na-
tive API: NewNtOpenFile, NewNtCreateFile and NewNtOpenProcess, and one
not critical, NewNtClose. For every native API, intercepted by the WHIPS pro-
totype, we have done a significant number of measurements (∼10.000), and we
have elaborated these to obtain the average times without spiced values. We
have determined ∆TOverheadNewNativeAPI , the average overhead introduced by
each new native API, and ∆TNativeAPI , the average time of the original na-
tive API. The average overhead of function KeQueryPerformanceCounter, called
∆TOverheadKeQuery , is ∼0,82 µsec on our test PC.

Table 3 compares the execution time of the original native API (A) with
the overhead introduced by the corresponding new native API (O). This is to
measure the impact of the WHIPS prototype implementation respect to the
original system. As you can see, all the overheads (O) are almost the same in
value, except for the NtClose case, because NewNtClose performs few operations
in the elaboration block; in fact these new APIs determine the name of the process
or the handle passed to them. The last column (I) shows the percentage incidence
of the new native API overhead on the execution time of the original native API.



366 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

Table 3. Comparative table ApiTime and OverheadTime

API Average Execution Time API Incidence

API Time (A)
∆T NativeAPI

Overhead Time (O)
∆TOverheadNewNativeAPI

% Overhead (I)
I: O/A*100

NtClose 7,68 µsec 6,37 µsec 83%

NtCreateFile 246,74 µsec 21,52 µsec 9%

NtOpenFile 53,56 µsec 20,67 µsec 39%

NtOpenProcess 8,49 µsec 23,23 µsec 274%

Fig. 7. Overhead and Api Time ratio

The figure 7 shows a line chart with percentage incidence (I) of every na-
tive API intercepted by the WHIPS prototype. As you can see the highest is the
NewNtOpenProcess case that introduces an overhead of 274% respect to NtOpen-
Process execution time. Lowest incidence is of NewNtCreateFile that introduces
an overhead of 9% respect to NtCreateFile execution time. In figure 8 you can
see a comparative line chart between the overhead introduced by new native
APIs (O) and the execution time of the original native API (A). Higher is the
difference from the overhead and the execution time and higher is the percentage
incidence (I). If we consider the NtClose, we have a minimum difference, and
this means that the overhead introduced by WHIPS is close to the execution
time of the original native API. In the case of NtCreateFile the overhead is less
than the execution time and the incidence is low. In NtOpenProcess the overhead
is bigger than the original native API execution time and the incidence is high.

4 Concluding Remarks

Our work defines privileged processes in Windows OS and proposes a methodol-
ogy to discover the processes that can be dangerous for the system. Identifying



A Host Intrusion Prevention System for Windows Operating Systems 367

Fig. 8. Overhead and Api Time

dangerous processes is the first and most important step in the design of this
type of HIPS. The Access Token (AT) privileges list of a process can be used to
identify if a process is dangerous. In particular, if in the AT privileges list there
are one or more dangerous privileges, the process, owner of the AT, belongs to
the set of dangerous process. For simplicity in this paper we have focused on
a subset of dangerous process: the Windows Services. The relation between the
dangerous processes and the critical system calls leads to the concept of danger-
ous system calls (see section 2.3). The implementation of the WHIPS prototype
is based on the above concepts. WHIPS stops common exploits that use the
buffer overflow technique to carry out the privilege escalation on a system. If
a malicious user wants to execute a shell in a context of the exploited service,
WHIPS will prevent the attack by stopping the execution of the dangerous sys-
tem call that invokes the shell.

Future research will include the inspection of the entire native API in Win-
dows OS, for a full classification of the system calls. Another step could be
to implement a Web-service like Windows Update, named WHIPS Update that
allows the user to download new sets of rules in order to configure the ACD
automatically. This simplifies the definition of the rule in the ACD database.

WHIPS could be even more efficient if it were implemented directly into the
Windows kernel, instead of as a kernel driver, but in order to do so the source
code of the Windows kernel must be accessed.

Acknowledgments

The authors gratefully acknowledge dr. R.Bianco for the helpful discussions and
the anonymous reference for their helpful comments. This work is funded by the



368 Roberto Battistoni, Emanuele Gabrielli, and Luigi V. Mancini

Italian MIUR under the projects: FIRB WEB-MINDS and PRIN 2003 WEB-
based management and representation of spatial and geographic data.

References

[Al96] Aleph One, Smashing the stack for fun and profit, Phrack Magazine, vol 49,
1996.

[BGM02] Bernaschi, Gabrielli, Mancini, REMUS: a security-enhanced operating sys-
tem, ACM Transactions on Information and System Security, Vol. 5, No. 1, pp. 36-61,
Feb. 2002. http://remus.sourceforge.net/.

[BDP99] Borate, Dabak, Phadke, Undocumented Windows NT, M&T Books, 1999.
[CRu97] Cogswell, Russinovich, Windows NT System-Call Hooking, Dr. Dobb’s Jour-

nal, p. 261, 1997.
[Co00] Cowan et al, Buffer Overflows: attacks and defences for the vulnerability of the

decade, Proc. IEEE DARPA Information Survivability Conference and Expo, Hilton
Head, South Carolina, 2000.

[Ep00] Epstein et al., Using Operating System Wrappers to Increase the Resiliency of
Commercial Firewalls , Proc. ACM Annual Computer Security Applications Confer-
ence, Louisiana, USA, Dec. 2000.

[HLB01] Howard, LeBlanc, Writing Secure Code, Microsoft Press, 2001.
[MPSW03] Moore, Paxson, Savage, Shannon, Staniford, Weaver, Inside the slammer

worm, IEEE Security&Privacy, pp.33-39, July-August 2003.
[Mi02a] Microsoft, Well-Known Security Identifiers in Windows 2000, Knowl-

edge Base 243330, 2002, http://support.microsoft.com/default.aspx?scid=KB;EN-
US;Q243330&.

[Ne00] Nebbet, Windows NT/2000: Native API reference, Macmillan Technical Pub-
lishing (MTP), 2000.

[Osr03] OSR Open System Resources Inc, Nt vs. Zw - Clearing Confusion On The
Native API, The NT Insider, Vol 10, Issue 4, August 2003.

[RuS01] Russinovich, Solomon, Inside Windows 2000: Third Edition, Microsoft Press,
2001.

[Ru98] Russinovich, Inside the Native API, Systems Internals, 1998,
http://www.sysinternals.com/ntdll.htm.

[Scm01] Schmidt, Microsoft Windows 2000 Security Handbook, Que Publishing, 2001.
[Scr01] Schreiber, Undocumented Windows 2000 Secrets, Addison Wesley, 2001.


	1 Introduction
	2 Privileged Processes and Critical System Calls
	2.1 Windows Processes Security Context and Privileges
	2.2 Privileged and Dangerous Processes
	2.3 Critical and Dangerous System Calls

	3 The WHIPS Prototype
	3.1 Access Control Database
	3.2 System Service Table Modi.ed
	3.3 New Native API Implementation
	3.4 Prototype Effectiveness
	3.5 Performance Evaluation
	3.6 Measurements

	4 Concluding Remarks
	Acknowledgments
	References



