
Signature Bouquets: Immutability
for Aggregated/Condensed Signatures

Einar Mykletun, Maithili Narasimha, and Gene Tsudik

Computer Science Department
School of Information and Computer Science

University of California, Irvine
{mykletun,mnarasim,gts}@ics.uci.edu

Abstract. Database outsourcing is a popular industry trend which in-
volves organizations delegating their data management needs to an ex-
ternal service provider. Since a service provider is almost never fully
trusted, security and privacy of outsourced data are important concerns.

This paper focuses on integrity and authenticity issues in outsourced
databases. Whenever someone queries a hosted database, the returned
results must be demonstrably authentic: the querier needs to establish
– in an efficient manner – that both integrity and authenticity (with
respect to the actual data owner) are assured. To this end, some recent
work [19] examined two relevant signature schemes: a condensed variant
of batch RSA [3] and an aggregated signature scheme based on bilinear
maps [6]

In this paper, we introduce the notion of immutability for aggregated
signature schemes. Immutability refers to the difficulty of computing new
valid aggregated signatures from a set of other aggregated signatures.
This is an important feature, particularly for outsourced databases, since
lack thereof enables a frequent querier to eventually amass enough ag-
gregated signatures to answer other (un-posed) queries, thus becoming
a de facto service provider. Since prior work does not offer immutability,
we propose several practical techniques to achieve it.

1 Introduction

Database outsourcing is a prominent example of the more general commercial
trend of outsourcing non-core competencies. In the Outsourced Database (ODB)
Model, a third-party database service provider offers adequate software, hard-
ware and network resources to host its clients’ databases as well as mechanisms
to efficiently create, update and access outsourced data.

The ODB model poses numerous research challenges which influence overall
performance, usability and scalability. One of the biggest challenges is the se-
curity of hosted data. A client stores its data (which is usually a critical asset)
at an external, and only partially trusted, database service provider. It thus be-
comes important to secure outsourced data from potential attacks not only by
malicious outsiders but also from the service provider itself.

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 160–176, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 161

The two pillars of data security are privacy and integrity. (We use the term
integrity in a somewhat broad sense, encompassing both data integrity and au-
thentication of origin.) The need for data privacy in the ODB model has been
recognized and addressed, to some degree, in prior work by Hacigümüş, et al.
[14]. The central problem in the context of privacy is allowing a client to effi-
ciently query its own data hosted by a third-party service provider (referred to
as simply “server” from here on) while revealing to the latter neither the actual
query nor the data over which the query is executed.

Other relevant prior work [10][15] examined integrity issues in outsourced
databases and suggested some limited solutions1. Recently, more general tech-
niques were investigated in [19] where two signature schemes were proposed for
efficient integrity and authenticity support in querying outsourced databases.
One scheme is a simple variant of batch RSA and the other – the aggregated sig-
nature scheme based on bilinear maps [6]. Each scheme enables bandwidth- and
computation-efficient integrity verification for any possible query reply. However,
as shown below in more detail, the schemes in [19] (as well as those in [10]) are
mutable, i.e., any entity in possession of multiple authentic query replies can
derive other, equally authentic query replies.

We view mutability not as a flaw of the underlying signature schemes but
rather as an issue with their specific application in the ODB model. In this
paper, we focus on providing a feature that we term immutability for aggregated
signature schemes.

Contributions: This work makes two contributions. First, it informally defines
the notion of immutability for aggregated signatures which is, at some level,
equivalent to adaptive attack resistance for aggregated signature schemes. Sec-
ond, it demonstrates some simple add-on techniques for schemes considered in
[19]. These techniques provide, at a little additional cost (as illustrated in Section
6), immutability for the respective signature schemes.

Organization: In section 2, we describe the ODB model in more detail. Section 3
motivates the need for immutable aggregated signature schemes. Next, section 4
describes the variant of RSA that allows aggregation of signatures by a single
signer and the aggregated signature scheme by Boneh et al. [6] which allows
aggregation of signatures by multiple signers. Section 5 then presents some tech-
niques to achieve immutability for these two schemes. Section 6 discusses the
overhead associated with the proposed techniques, followed by section 7 which
overviews relevant prior work. The paper concludes with the summary of our
results in section 8.

2 System Model

The ODB model is an example of the well-known Client-Server paradigm. In
ODB, a Database Service Provider (which we refer to as a server) has the in-
1 See section 7 for the discussion of this and other related work.

162 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

frastructure to host outsourced databases and provides efficient mechanisms for
remote clients to create, store, update and query their databases.

Clients are assumed to trust the server to faithfully maintain outsourced data.
Specifically, the server is relied upon for replication, backup and availability of
outsourced databases. However, the server is not assumed to be trusted with the
integrity of the actual database contents. This lack of trust is crucial as it brings
up new security issues and serves as the chief motivation for our work. Specifi-
cally, we want to prevent the server from making unauthorized modifications to
the data stored in the database.

Depending on the types of clients involved, we distinguish among three flavors
of the ODB model:

1. Unified Client: a database is owned by a single client which is also the
only entity querying the same database. This is the simplest ODB scenario
with relatively few security challenges (in terms of integrity).

2. Multi-querier: a database is owned by a single client but multiple queriers
are allowed to query the hosted database. This scenario is very similar to
authentic third-party publication [10].

3. Multi-owner: a database is jointly owned by multiple clients and multiple
queriers are allowed to query the hosted database. This scenario is typical
in many organizational settings where multiple users/entities are allowed to
own a subset of records within the same database. (Consider, for example, a
sales database where each salesperson owns all records for the transactions
that she performed.)

Since the integrity issues in the Unified Client scenario are few and easily handled
with standard textbook techniques, in the remainder of this paper, we focus on
the Multi-Querier and Multi-Owner scenarios.

We assume that a querier may be a device (or an entity) limited in all or some
of: computation, communication and storage facilities. A cellphone, a wireless
PDA or a computer communicating over a slow dial-up line are all examples of
such anemic queriers. Limited amount of battery power may be an additional,
yet orthogonal, issue.

All of these constraints incentivize new techniques that optimize (i.e., mini-
mize) both communication and computation overhead for the queriers in the
ODB model. To this end, the recent work in [19] considered two signature
schemes: Condensed-RSA and Aggregated-BGLS – both of which allow the
server to return to the querier a set of records2 matching the query predi-
cate along with a single aggregated signature. Condensed-RSA is very efficient
but only permits aggregation of signatures produced by a single signer. In con-
trast, Aggregated-BGLS is less efficient but supports aggregation of signatures
produced by multiple signers. Hence, Condensed-RSA is more suitable for the
Multi-Querier, and Aggregated-BGLS – for the Multi-Owner, scenario.
2 In our setting, the client’s database is a typical relational database (RDBMS) where

data is organized in tables (or relations). Each table has multiple rows and columns.
A column represents an attribute of the table and a row (or a record) is an instance
of the table.

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 163

3 Motivation

Although both techniques explored in [19] are fairly practical, each exhibits a
potentially undesirable mutability feature. Mutability means that anyone in pos-
session of multiple aggregated signatures can derive new and valid (authentic)
aggregated signatures which may correspond to un-posed queries. For exam-
ple, consider a database with two relations employee and department with the
following respective schemas: employee(empID, name, salary, deptID) and de-
partment(deptID, managerID). We now suppose that two SQL queries are posed,
as shown in Figure 1. The first (Q1) asks for names and salaries of all managers
with salary > 100K and the second (Q2) asks for the same information for all
managers with salary ≥ 140K.

Q1. SELECT e.name, e.salary
FROM employee e, department d
WHERE e.empID = d.managerID AND e.salary > 100000

Q2. SELECT e.name, e.salary
FROM employee e, department d
WHERE e.empID = d.managerID AND e.salary ≥ 140000

Q3. SELECT e.name, e.salary
FROM employee e, department d
WHERE e.empID = d.managerID AND

e.salary BETWEEN 100000 AND 140000

Fig. 1. SQL Queries

A querier who previously posed queries Q1 and Q2 and obtained correspond-
ing replies along with their aggregated signatures S1 and S2, can compute, on
her own, a valid new signature for the un-posed query Q3, as shown in Figure
1. In essence, the reply to Q3 is (Q1−Q2), i.e., information about all managers
who earn between 100K and 140K. The specifics of computing a new signature
from a set of existing signatures depend on the underlying aggregated signature
scheme, as described in the next section.

We note that the above example is not specific to the use of aggregated signa-
ture schemes for integrity purposes in the ODB context. If, instead of aggregated
signatures, plain record-level signatures were used (e.g., DSA or RSA), a single
SELECT-style query would cause the server to compose a query reply containing
a set of records matching the query predicate, each accompanied by its signa-
ture. The querier can then easily construct legitimate and authentic query replies
for un-posed queries, since she is free to manipulate individual record-level sig-
natures. Furthermore, other methods, such as the constructs based on Merkle
Hash Trees (MHTs) suggested by Devanbu, et al. [10], are equally susceptible to
mutability of authentic query replies. (In [10], a querier obtains a set of records
matching a posed query along with a set of of non-leaf nodes of an MHT. The

164 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

exact composition of this set depends on the type of a query.) We now consider
a few concrete scenarios where mutability is undesirable.

Paid Database Services: Mutability is undesirable when the data owner wants to
offer paid database services in association with the server. (This clearly applies
only to the Multi-Querier and Multi-Owner ODB scenarios.) In essence, a server
can be viewed as an authorized re-distribution agent for the information con-
tained in, or derived from, the outsourced database. Consequently, one reason
for avoiding mutability is to prevent unauthorized splitting and re-distribution
of authentic query replies. For example, consider the case of data owner and/or
server who wish to charge a fee for each query over the outsourced database.
Consequently, it might be important to prevent queriers from deriving new valid
aggregated signatures from prior query reply sets and re-selling information that
has not been paid for.

To make the example more specific, consider an on-line authorized music
distributor with a large database of songs, each digitally signed by the artist.
Suppose that the distributor only wishes to sell complete albums (compilations)
and not individual songs. The distributor (server) can then simply aggregate the
signatures of individual tracks to provide its clients a unified proof of authenticity
and integrity for the entire album. In this case, signature aggregation gives the
distributor the means to mix and match the songs to make various compilations.

One concern that would arise in this scenario (due to the mutability of the
underlying aggregated signature scheme) is that clients could potentially start
their own music distribution services with the goal of reselling individual songs
at higher cost per song than that of the original distributor (who only sells
complete albums).

Content Access Control: Consider the ODB scenario where the owner wants the
server to enforce a certain content access control mechanism: for each client (or a
group of clients) access is restricted to a specific subset of the database. A client
who poses a query only gets back the data that she is entitled to see based on her
specific privileges. If the database is a collection of individually signed records,
the server can aggregate individual record signatures to construct a single proof
of authenticity and integrity for the entire query reply.

Two colluding clients (each with different access control privileges) can share
their respective query replies. If the aggregated signature scheme is mutable, the
two clients, by further aggregating the two query replies into a single quantity,
can convince others that they have more privileges than they really have. In
other words, a client can combine two aggregated signatures to produce a new
and authentic aggregated signature that can act as proof that she has higher
access privileges. This can have undesirable implications.

4 Aggregated Signature Schemes

In this section, we take a closer look at the two signature schemes considered in
[19] and illustrate their respective mutability properties.

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 165

4.1 Condensed-RSA

The RSA [20] signature scheme is multiplicatively homomorphic which makes it
suitable for combining multiple signatures generated by a single signer into one
condensed signature3. A valid condensed signature assures its verifier that each
individual signature contained in the condensed signature is valid, i.e., generated
by the purported signer. Aggregation of single-signer RSA signatures can be
performed incrementally by anyone in possession of individual RSA signatures.
By incrementally, we mean that the signatures can be combined in any order
and the aggregation need not be carried out in a single operation.

RSA Signature Scheme: We first describe the setup of the standard RSA signa-
ture scheme. A party has a public key pk = (n, e) and a secret key sk = (n, d),
where n is a k-bit modulus formed as a product of two k/2-bit primes p and
q. Both public and private exponents e, d ∈ Z∗

n and satisfy ed ≡ 1 mod φ(n),
where φ(n) = (p − 1)(q − 1). The minimum currently recommended k is 1024.
The security of the RSA cryptosystem is based on the conjectured intractability
of the large integer factorization problem.

In practice, an RSA signature is computed on the hash of an input message.
Let h() denote a cryptographically strong hash function (such as, SHA-1) which
takes a variable length input m and produces a fixed-length output denoted as
h(m). A standard RSA signature on message m is computed as: σ = h(m)d

(mod n). Verifying a signature involves checking that σe ≡ h(m) mod n. Both
signature generation and verification involve computing one modular exponen-
tiation.

Condensed-RSA Signature Scheme: Given t different messages {m1, ...,mt}
and their corresponding signatures {σ1, ..., σt} generated by the same signer,
a Condensed-RSA signature is computed as the product of all t individual sig-
natures:

σ1,t =
t∏

i=1

σi (mod n)

The resulting aggregated (or condensed) signature σ1,t is of the same size as a
single standard RSA signature. Verifying an aggregated signature requires the
verifier to multiply the hashes of all t messages and checking that:

(σ1,t)
e ≡

t∏

i=1

h(mi) (mod n)

Security of Condensed-RSA: [19] describes the security of Condensed-RSA by
demonstrating that it is at least as secure as Batch verification of RSA [3].
Batch verification of RSA signatures was shown to be secure (in [3]) under the
assumption that RSA is a collection of one-way functions. The proof assumes
3 We use the term condensed in the context of a single signer and aggregated in the

context of multiple signers. Clearly, the former is a special case of the latter.

166 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

that the individual RSA signatures are generated using a full-domain hash func-
tion (FDH) in place of a standard hash function (such as SHA-1), as described in
[5]. An FDH is a hash function which takes arbitrary length input and produces
an output that is an element of Z∗

n, i.e., HFDH : {0, 1}∗ → Z∗
n

Mutability of Condensed RSA: Given two condensed signatures: σ1,i on messages
{m1, ...,mi} and σ1,j on messages {m1, ...,mj} where j < i, it is possible to
obtain a new condensed signature σj+1,i on messages {mj+1, ...,mi} by simply
dividing σ1,i by σ1,j (modulo n).

(σj+1,i) ≡ (σ1,i)/(σ1,j) (mod n)

Similarly, given two condensed signatures σ1,i on messages {m1, ...,mi} and
σi+1,j on messages {mi+1, ...,mj}, anyone can obtain a new condensed signature
σ1,j on messages {m1, ...,mi,mi+1, ...,mj} (assuming all messages are distinct)
by multiplying σ1,i and σi+1,j :

(σ1,j) ≡ (σ1,i)× (σi+1,j) (mod n)

4.2 BGLS

Boneh, et al. in [6] construct an interesting signature scheme that allows in-
cremental aggregation of signatures generated by multiple signers on different
messages into one short signature based on elliptic curves and bilinear maps.
This scheme (BGLS) operates in a Gap Diffie-Hellman group (GDH) – a group
where the Decisional Diffie-Hellman problem (DDH) is easy while the Computa-
tional Diffie-Hellman problem (CDH) is hard. The first instance of such a group
was illustrated in [17]. Before describing BGLS, we briefly overview the necessary
parameters:

– G1 is a cyclic additive group with generator g1
– G2 is a cyclic multiplicative group
– e is a computable bilinear map e : G1 ×G1 → G2 as described below

A bilinear map e : G1 ×G1 → G2, where |G1| = |G2|, satisfies the following two
properties.

1. Bilinearity: ∀P,Q ∈ G1 and a, b ∈ Z, e(aP, bQ) = e(P,Q)ab

2. Non-degenerativity: e(g1, g1) �= 1

These two properties imply that, for any P1, P2, Q ∈ G1, e(P1 + P2, Q) =
e(P1, Q) · e(P2, Q); and, for any P,Q ∈ G1, e(ψ(P), Q) = e(ψ(Q), P).

BGLS Signature Scheme: BGLS requires the use of a full-domain hash function
h() : {0, 1}∗ → G1 that maps binary strings to non-zero points in G1. Key
generation involves picking a random x ∈ Zp, and computing v = xg1. The
public key is v ∈ G1 and the secret key is x ∈ Zp. Signing a message m involves
computing H = h(m), where H ∈ G1 and σ = xH . The signature is σ. To verify
a signature one needs to compute H = h(m) and check that e(σ, g1) = e(H, v).

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 167

BGLS Aggregated Signature Scheme: To aggregate t BGLS signatures, one com-
putes the point-addition operation (on the elliptic curve) of the individual sig-
natures as follows: σ1,t =

∑t
i=1 σi, where σi corresponds to the signature of

message mi. The aggregated signature σ1,t is of the same size as a single BGLS
signature, i.e., |p| bits. Similar to Condensed-RSA, the aggregation of signatures
can be performed incrementally and by anyone.

Verification of an aggregate BGLS signature σ1,t involves computing the
point-addition of all hashes and verifying that:

e(σ1,t, g1) =
t∏

i=1

e(Hi, vi)

Due to the properties of the bilinear maps, we can expand the left hand side of
the equation as follows:

e(σ1,t, g1) = e(
t∑

i=1

xiHi, g1) =
t∏

i=1

e(Hi, g1)xi =
t∏

i=1

e(Hi, xig1) =
t∏

i=1

e(Hi, vi)

Mutability of Aggregated BGLS: Similar to Condensed-RSA, aggregated BGLS
signatures can be manipulated to obtain new and valid signatures that corre-
spond to un-posed query replies. Specifically, it is possible to either (or both)
add and subtract available aggregated signatures to obtain new ones.

For example, given 2 aggregated BGLS signatures σ1,i on messages {m1,
...,mi} and σi+1,j on messages {mi+1, ...,mj}, if the messages {m1, ...,mi} and
{mi+1, ...,mj} are all distinct (i.e.,the two queries do not overlap), the verifier
can obtain a new BGLS signature σ1,j on messages {m1, ...,mi,mi+1, ...mj} by
adding σ1,i and σi+1,j .

(σ1,j) ≡ (σ1,i) + (σi+1,j) (mod p)

5 Immutable Signature Schemes

In this section, we propose extensions that strengthen previously described sig-
nature schemes and make them immutable.

5.1 Immutable Condensed RSA (IC-RSA)

To make condensed-RSA signatures immutable, we use the technique that can
be broadly classified as a zero-knowledge proof of knowledge of signatures. The
server, instead of revealing the actual aggregated signature for a posed query, re-
veals only the proof of knowledge of that signature. We present two variants: one
that requires interaction, based on the well-known Guillou-Quisquater scheme,
and the other that is non-interactive, based on so-called “signatures of knowl-
edge”.

168 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

Interactive Variant. This technique uses the well-known Guillou-Quisquater
(GQ) identification scheme [13] which is among the most efficient follow-ons to
the original Fiat-Shamir zero-knowledge identification Scheme [2]. The version
we present is an interactive protocol between the server (Prover) and the querier
(Verifier) that provides the latter with a zero-knowledge proof that the Prover
has a valid Condensed-RSA signature corresponding to the records in the query
result set.

Basically, the server returns to the querier the result set along with a witness.
The querier then sends a random challenge to which the server replies with a
valid response. The response together with the witness convince the querier
of server’s knowledge of the Condensed-RSA signature, without revealing any
knowledge about the Condensed-RSA signature itself. The actual protocol is
shown in Figure 2. We use the terms Prover (P) and Verifier (V) instead of Server
and Querier, respectively, since the protocol is not specific to the ODB setting4.
Let X = σ1,t =

∏t
i=1 σi (mod n) be the condensed-RSA signature computed as

shown above. Recall that (e, n) is the public key of the original data-owner which
all concerned parties are assumed to possess. Let M ≡∏t

i=1 h(mi) (mod n) and
Xe = (σ1,t)e ≡M (mod n).

In step 0, the querier poses a query (not shown in figure 2). In step 1, the
server (prover) replies with the result set for that query as well as a commitment
Y . Note that Y = re (mod n) where r is a randomly chosen element in Z

∗
n and

n is the RSA modulus of the data owner who generated the individual RSA
signatures corresponding to the records in the result set5 and e, the correspond-
ing public exponent. In step 2, the verifier (querier) sends back a challenge v
that is chosen randomly from {0, 1}l(k) where l(k) is the bit-length of the public
exponent e. In Step 3, server, upon receiving the challenge v, computes the re-
sponse z = rXv (mod n) where X is the Condensed-RSA signature of the result
set. In Step 4, the verifier accepts the proof if z �= 0 and ze ≡ YMv (mod n)
where M is the product of (hashes of) all messages in the result set. Checking
z �= 0 precludes a malicious server from succeeding by choosing r = 0. Note that
ze ≡ (rXv)e ≡ reXev ≡ Y (Xe)v ≡ YMv (mod n). Hence the protocol works.

Security Considerations: GQ is RSA-based; the protocol is known to be honest-
verifier zero-knowledge and is secure against impersonation under passive at-
tacks, assuming RSA is one-way [13]. Subsequently, it is also proven secure
against impersonation under active attacks in [4].
Forgery: The public exponent e defines the security level, i.e., a cheating prover
can convince the verifier, and thus defeat the protocol with probability 1/e, by
correctly guessing the value of the challenge v a priori. Therefore, the bit-length
of v (and, therefore, e since v ∈R {0, 1}l(k) where l(k) is the bit-length of e)
4 The original GQ scheme proposed in [13] is identity-based since it is used by the

Prover to prove his “identity” to the verifier. However, in the current scenario, we
present a version that is not id-based and does not require a key generation phase
since the server uses the public key of the data owner to prove knowledge of the
condensed-RSA signature by that data owner.

5 Recall that Condensed-RSA allows only single signer aggregation.

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 169

Prover P Verifier V

r ∈R Z
∗
n

Y → re (mod n)

Y−−−−−−−−−−→
v ∈R {0, 1}l(k)

v←−−−−−−−−−−
z → rXv (mod n)

z−−−−−−−−−−→
If z �= 0 and ze ≡ Y Mv (mod n)

then accept, else reject

Fig. 2. IC-RSA GQ-based Interactive Technique

should be large enough. Note that the above protocol can be run multiple times
for commensurably lower probability of successful forgery. In general, if it is run
t times, the probability of forgery is e−t.
Security Assumptions: The security of the protocol is based on the hardness of
the RSA problem (i.e., computing e-th roots mod a composite integer n which
is formed as a product of two large primes.)

Non-interactive Immutable Condensed-RSA. The second, non-interactive,
variant uses the technique of Signatures of Knowledge first popularized by Ca-
menisch and Stadler in [8]. Specifically, we use the so-called SKROOTLOG
primitive which can be used to prove knowledge of an e-th root of the discrete
logarithm of a value to a given base. Before presenting the details, we briefly de-
scribe how this technique is used in our scenario. Conceptually, the server reveals
all records matching the query as well as a signature of knowledge for the actual
condensed-RSA signature corresponding to these records. A querier verifies by
checking the SKROOTLOG proof. However, since the querier never actually gets
the condensed signature, she can not exploit the mutability of Condensed-RSA
to derive new signatures. In general, the querier can not derive proofs for any
other queries by using proofs for any number of previously posed queries.

SKROOTLOG Details: Let G =< g > be a cyclic group of order n. An e-th
root of the discrete logarithm of y ∈ G to the base g is an integer α satisfying
g(αe) = y if such a α exists. If the factorization of n is unknown, for instance if
n is an RSA modulus, computing e-th roots in Z

∗
n, is assumed to be infeasible.

A signature of knowledge of an e-th root of the discrete logarithm of y to the
base g is denoted SKROOTLOG[α : y = gαe

](m).
Below, we briefly outline an efficient version of SKROOTLOG proposed in

[8] which is applicable when the public exponent e is a small value (for instance,
this efficient SKROOTLOG version is applicable when the value of e is set to 3).

Definition 1. If e is small, it is possible to show the proof of knowledge of the
e-th root of the discrete log of y = gαe

to the base g by computing the following
e− 1 values:

170 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

y1 = gα, y2 = gα2
, . . . , ye−1 = gαe−1

and showing the signature of knowledge:

U = SKREP [α : y1 = gα ∧ y2 = yα
1 ∧ . . . ∧ y = yα

e−1]

that the discrete logarithms between two subsequent values in the list g, y1, . . .,
ye−1 are all equal (to α) and known (to the prover).

Below, we give the formal definition of SKREP as in [8]:

Definition 2. A signature of the knowledge of representations of y1, . . . , yw with
respect to bases g1, . . . , gv on the message m is defined as follows:

SKREP

(α1, . . . , αu) :

y1 =
l1∏

j=1

g
αe1j

b1j

 ∧ . . . ∧

yw =
lw∏

j=1

g
αewj

bwj

 (m)

where the indices eij ∈ {1, . . . , u} refer to the elements α1, . . . , αu and the indices
bij ∈ {1, . . . , v} refer to the base elements g1, . . . , gv.
The signature consists of an (u+1) tuple (c, s1, . . . , su) ∈ {0, 1}k×Z

∗
n satisfying

the equation

c = H
(

m||y1|| . . . ||yw ||g1|| . . . ||gv ||{{eij , bij}li
j=1}w

i=1||yc
1

l1∏

j=1

g
se1j

b1j
|| . . . ||yc

w

lw∏

j=1

g
sewj

bwj

)

SKREP can be computed easily if the u-tuple (α1, . . . , αu) is known. Prover first
chooses ri ∈R Zn for i = 1, . . . , u, computes c as

c = H

m||y1|| . . . ||yw||g1|| . . . ||gv||{{eij , bij}lij=1}wi=1||
l1∏

j=1

g
re1j

b1j
|| . . . ||

lw∏

j=1

g
rewj

bwj

and then sets si = ri − cαi (mod n) for i = 1, . . . , u

Non-interactive IC-RSA: The server executing a client query is required to per-
form the following:

1. select records that match the query predicate;
2. fetch the signatures corresponding to these records;
3. aggregate the signatures (by multiplying them modulo n, as mentioned

above) to obtain the condensed RSA signature σ;
4. send the individual recordsM = {m1, . . . ,mt} back to the querier along with

a proof of knowledge of σ which is essentially a SKROOTLOG proof showing
that the server knows the e-th root of gσe

. In other words, SKROOTLOG
proof shows that the server knows the e-th root of g

∏
mi . In order to show

this, the server sends gσ, gσ2
and6 the SKREP proof computed as above.

6 Note that the server need not send gσ3
= g

∏
mi explicitly since the querier can

compute this value knowing g and the individual mi-s

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 171

Security Considerations: In practice, the efficient version of the SKROOTLOG
proof which was described in the previous section cannot be used as is. This
is because the values y1 . . . ye−1 that are required for the SKREP proofs leak
additional information about the secret. Hence a randomized version that is
proposed in [8] needs to be used. The interactive protocol corresponding to the
above definition of SKROOTLOG is proven honest-verifier zero-knowledge in
[7]. For brevity, we skip the details of this discussion and refer interested readers
to [8]. However, we would like to note that the security of the SKROOTLOG
protocol is based on the difficulty of the discrete logarithm problem and the
RSA problem. In addition, SKREP is based on the security of Schnorr signature
scheme. The Non-Interactive IC-RSA, which in essence is the SKROOTLOG
primitive, is therefore honest-verifier zero-knowledge [7]. This implies that the
querier who is given only the proof of the condensed RSA signature, can not
derive new signatures. In addition, the querier can not derive new proofs for any
other queries by using proofs for any number of previously posed queries.

Discussion. In this section, we compare the two techniques presented above.

– Initialization and Parameter Generation: Non-Interactive technique
(SKROOTLOG based) requires an elaborate parameter generation phase at
the server. For each data owner whose RSA public key is (n, e), the server
needs to generate a large prime p′ = j ∗ n+ 1 (where n is the RSA modulus
and j is some integer) and an element g ∈ Z

′∗
p such that order of g is n.

On the other hand, Interactive (GQ based) technique requires no additional
parameter generation at the server since the server only requires to have
knowledge of each data owner’s RSA public key (n, e).

– Verifiability: In the Non-Interactive technique, the SKROOTLOG proof
provided by the server is universally verifiable (or in other words, the proof
is self authenticating and hence transferable). On the other hand, the In-
teractive (GQ-based) technique provides guarantees only to the interactive
verifier who poses the challenge and the proof of knowledge in this case is
non-transferrable. This is perhaps the biggest difference between the two
techniques.

– Communication Rounds: Since SKROOTLOG based technique requires
no interaction with the verifier for the proof, it requires no additional rounds
of communication. In other words, the server executes the query and returns
the result set as well as the proof of knowledge of the corresponding unified
Condensed-RSA signature. On the other hand, the Interactive technique
requires two additional rounds of communication with the verifier.

5.2 Immutable BGLS (iBGLS)

The extension to aggregated BGLS to achieve immutability is very simple: The
server computes its own signature on the whole query reply and aggregates it
with the aggregated BGLS signature of the owners. In other words, for a given
query whose result includes messages {m1,m2, . . . ,mk}, the server computes

172 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

H = h(m1||m2...||mk|| other information7) where || denotes concatenation, and
signs this hash H using its own private key xs to obtain xsH and computes:

σ = σ1,t + xsH

where σ1,t is the aggregated BGLS signature of t messages obtained as described
above.

Now, a valid and authentic query reply comprises of the records in the result
set along with an authentic iBGLS signature on the entire result set. Due to this
simple extension, it is no longer feasible for anybody to manipulate the exist-
ing iBGLS signatures to obtain new and authentic ones or get any information
about individual component BGLS signatures. Verification of an iBGLS signa-
ture σ involves computing the individual hashes Hi-s of each message as well
as computing the hash of the concatenation of all the messages H and verifying
the following equality: e(σ, g1) =

∏t
i=1 e(Hi, vi).e(H, vs) where vs is the server’s

public key. Due to the properties of the bilinear mapping, we can expand the
left hand side of the equation as follows:

e(σ, g1) = e(
∑t

i=1 xiHi + xsH, g1)
= e(

∑t
i=1 xiHi, g1).e(xsH, g1)

=
∏t

i=1 e(Hi, g1)xi .e(H, g1)xs

=
∏t

i=1 e(Hi, xig1).e(H, xsg1)

=
∏t

i=1 e(Hi, vi).e(H, vs)

Security Considerations: iBGLS is a direct application of the original aggregate
BGLS signature scheme (see section 4.2). The security of BGLS relies upon a
Gap-Diffie Hellman group setting and specifically requires that each message
included in the aggregated signature be unique. Below we argue, informally, the
security of our construction of iBGLS signatures.

Let ri denote database record i. An iBGLS signature σ is then constructed
as follows: σ =

∑t+1
i=1 xih(mi), where messages m1,m2, ...,mt correspond to the

selected records r1, r2, ..., rt and mt+1 = (r1||r2||...||rt), i.e., the concatenation of
the these records. x1, x2, ..., xt are the data owner’s private keys and xt+1 is the
server’s key. We then claim that these t+1 messages are distinct. Each database
record ri contains a unique record identifier, resulting in messages m1,m2, ...,mt

being distinct. mt+1 will be unique for each record set returned as it consists

7 BGLS aggregation is secure only when the messages signed are all distinct. Therefore,
if the server signed only the result set, it can potentially create a problem if the result
set to a particular query contained a single record (message). Note that if the result
set contained only one message then the owner’s message as well as the server’s
message would be the same since server computes its signature on the entire result
set. In order to avoid such situations, we require that the server add some additional
information to the message that he signs. For example, the server may include query
and/or querier specific information, timestamp etc.

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 173

exactly of the selected records, and moreover, it will be different than any mj

where j < t+ 1. Therefore, all t+ 1 messages are distinct.
The immutability property of the above scheme relies upon the inability of

an adversary to forge the server’s signature. This, in turn, implies that such an
adversary cannot use an aggregate BGLS signature to generate a new iBGLS
signature that verifies. In other words, the iBGLS signature construction is re-
sistant to mutations assuming that BGLS signatures are unforgeable.

6 Performance Analysis

In this section, we present and discuss the experimental results for immutable
signature schemes. We mainly consider the overheads introduced by the exten-
sions we made to the Condensed-RSA and BGLS signature schemes to achieve
immutability. Since these signature schemes were not implemented in their en-
tirety, we provide rough estimates on the running costs by showing the number
of additional basic cryptographic operations (such as modular exponentiations
and multiplications) required by the extensions and also point out any additional
communication overheads. We then present the actual cost (time) required to
carry out these additional operations.

Table 1 enlists the computational as well as communication overheads associ-
ated with the various techniques we propose in this paper. We use the following
notation to describe the various basic cryptographic operations: Multt(k) ← t
modular multiplications with modulus of size |k| ; Expt

l(k) ← t modular expo-
nentiations with modulus of size |k| and exponent of size |l| ; BM(t)← t bilinear
mappings; MTP (t)← t Map-To-Point operations which are h() : {0, 1}∗ → G1

that map binary strings to non-zero points in G1; SPM(t) ← t Scalar-Point-
Multiplications.

Table 1. Cost comparison of techniques for Immutability

Computation Communication

at Client at Server

GQ Mult1(n) + Exp2
e(n) Mult1(n) + Exp2

e(n) 2

SKROOTLOG Exp4
n(p′) + Mult3(p′) Exp4

n(p′) + Exp1
2(n) 0

+Mult1(n)

iBGLS BM(1) MTP (1) + SPM(1) 0

Table 2 gives the actual time required to generate a single signature and also
the time required to verify a single signature, multiple signatures by a single
signer, and multiple signatures by multiple signers in both condensed RSA and
BGLS schemes. We set the RSA public exponent e to 3 for SKROOTLOG and
set e = (230 + 1) for GQ. Note that it is essential to have a large e for GQ
since e in this case is also the security parameter. Further, we have used a 1024
bit modulus n and the Chinese Remainder Theorem to speed up the signing
procedure. All computations were carried out on an Intel Pentium-3 800 MHz
processor with 1GB memory. The results for BGLS are obtained by using the

174 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

Table 2. Cost comparison (time in msec): Verification and signing

Condensed-RSA BGLS

e = 3 e = 230 + 1

Sign 1 signature 6.82 6.82 12.0

1 signature 0.14 0.56 77.4
Verify t = 1000 sigs, k = 1 signer 44.12 45.531 12085.4

t = 100 sigs, k = 10 signers 45.16 50.31 12320.2

MIRACL library [1] and the elliptic curve defined by the equation y2 = x3 + 1
over Fp where p is a 512 bit prime and q is a 160 prime factor of p−1. In the table
k denotes the total number of signers and t denotes the number of signatures
generated by each signer.

The next table (3) gives the time required to generate and verify an im-
mutable signature under the two different RSA-based techniques as well as the
BGLS extension. In this table, we only measure the overhead associated with
the immutability extensions. Therefore, the costs do not include the original
condensed-RSA or BGLS costs. In addition, we also do not count the communi-
cation delays introduced by the protocols, particularly in the case of GQ which
is multi-round protocol.

Table 3. Cost comparison (time in msec): Immutable Signature Schemes

Technique Used Computation at Client Computation at Server Total Overhead

GQ 0.309 0.309 0.618
SKROOTLOG 48.88 46.489 89.369

iBGLS 37.2 12.0 49.2

We also would like to mention at this point that SKROOTLOG, in addition
to the above mentioned costs, also incurs additional setup costs. These costs are
necessary to set the parameters prime p′ and element g of order n. Further, it is
also worth noting that since condensed-RSA only enables single-signer aggrega-
tion, it is necessary for the server to set up multiple sets of parameters: one for
each signer. (In other words, since n-s of distinct owners are different, it becomes
necessary to find distinct pairs (p′, g) for each n).

7 Related Work

Database security has been studied extensively within the database as well as
cryptographic research communities. Specifically, the problem of data privacy for
outsourced databases has been investigated by many. Hacigümüş, et al. examined
various challenges associated with providing database as a service in [16]. In our
work, we used a very similar system model.

Private Information Retrieval (PIR) [9, 11] deals with the exact matching
problem and has been explored extensively in the cryptographic literature. How-
ever, most of current PIR techniques aim for very strong security bounds and,

Signature Bouquets: Immutability for Aggregated/Condensed Signatures 175

consequently, remain unsuitable for practical purposes. Song et al. [21] develop
a more pragmatic scheme to search on data encrypted using a secret symmet-
ric key. In summary, searching on encrypted data is becoming an increasingly
popular research topic with such recent interesting results as [21, 12]. However,
the aforementioned schemes only support exact-match queries, i.e., the server
returns data matching either a given address or a given keyword. Hacigümüş,
et al. in [14] explore how different types of SQL queries can be executed over
encrypted data Specifically, they support range searches and joins in addition
to exact-match queries.

On a more related topic, [15] investigated integrity issues in the ODB model:
data encryption is used in combination with manipulation detection codes to
provide integrity. As mentioned earlier [19] mainly focuses on the use of digital
signatures in order to facilitate efficient integrity assessment. The work of [10]
explores the applicability of Merkle Hash Tree-s (MHT-s) as a technique for
providing authenticity and integrity in third-party data publication settings.
The use of authenticated data structures for providing data integrity in general
has been studied extensively in [18].

8 Conclusions

In this paper, we introduced the notion of immutability for aggregated sig-
nature schemes. Some aggregated signature schemes suitable for providing data
integrity and origin authentication for outsourced databases were considered re-
cently in [19]. We constructed add-on techniques to provide immutability for
these schemes. We also performed a detailed comparison and performance anal-
ysis of the proposed techniques.

Acknowledgments

The authors would like to thank Claude Castelluccia, Stanislaw Jarecki and
Moti Yung for helpful comments and discussions. We thank Nitesh Saxena and
Jeong Hyun Yi for providing timing measurements of BGLS-related crypto op-
erations. Finally, the authors would like to thank the anonymous reviewers for
their insightful comments.

References

1. MIRACL Library. http://indigo.ie/ m̃scott
2. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. Advances in Cryptology - Crypto (1987) 186–194
3. Bellare, M., Garay, J., Rabin, T.: Fast Batch Verification for Modular Exponenti-

ation and Digital Signatures. Eurocrypt, volume 1403 (1998) pages 191–2048
4. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Se-

curity against Impersonation under Active and Concurrent Attacks. Advances in
Cryptology - Crypto (1992) 162–177

176 Einar Mykletun, Maithili Narasimha, and Gene Tsudik

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. ACM Press (1993) 62–73

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. Eurocrypt (1993)

7. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Dis-
crete Logarithm Problem. Vol. 2 of ETH-Series in Information Security an Cryp-
tography, ISBN 3-89649-286-1, Hartung-Gorre Verlag, Konstanz (1998)

8. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups.
Advances in Cryptology - Crypto (1997) 410–424

9. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
Journal of ACM (1998) 965–981

10. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic third-party data
publication. 14th IFIP Working Conference in Database Security (2000) 101–112

11. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting Data Privacy in Pri-
vate Information Retrieval Schemes 30th Annual Symposium on Theory of Com-
puting (STOC) ACM Press (1998)

12. Goh, E.: Secure Indexes for Efficient Searching on Encrypted Compressed Data.
Cryptology ePrint Archive, Report 2003/216 (2003)

13. Guillou L., Quisquater, J.: A “Paradoxical” Identity-Based Signature Scheme Re-
sulting from Zero-Knowledge. Advances in Cryptology - Crypto (1998) 216–231

14. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over Encrypted Data
in the Database-Service-Provider Model. ACM SIGMOD Conference on Manage-
ment of Data (2002) 216–227

15. Hacigümüş, H., Iyer, B., Mehrotra, S.: Encrypted Database Integrity in Database
Service Provider Model. International Workshop on Certification and Security in
E-Services (2002)

16. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Providing Database as a Service.
International Conference on Data Engineering (2002)

17. Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. Cryptology ePrint Archive, Report 2001/003 (2001)

18. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.: A
General Model for authenticated data structures. Algorithmica, Volume 39 (2004)

19. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and Integrity in Out-
sourced Databases. ISOC Symposium on Network and Distributed Systems Secu-
rity (2004) 205–214

20. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM (1978) 120–126

21. Song, D., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. IEEE Symposium on Security and Privacy (2000) 44–55

	1 Introduction
	2 SystemModel
	3 Motivation
	4 Aggregated Signature Schemes
	4.1 Condensed-RSA
	4.2 BGLS

	5 Immutable Signature Schemes
	5.1 Immutable Condensed RSA (IC-RSA)
	5.2 Immutable BGLS (iBGLS)

	6 Performance Analysis
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

