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Abstract. A fault attack is a powerful cryptanalytic tool which can
be applied to many types of cryptosystems which are not vulnerable to
direct attacks. The research literature contains many examples of fault
attacks on public key cryptosystems and block ciphers, but surprisingly
we could not find any systematic study of the applicability of fault
attacks to stream ciphers. Our goal in this paper is to develop general
techniques which can be used to attack the standard constructions of
stream ciphers based on LFSR’s, as well as more specialized techniques
which can be used against specific stream ciphers such as RC4, LILI-128
and SOBER-t32. While most of the schemes can be successfully
attacked, we point out several interesting open problems such as an
attack on FSM filtered constructions and the analysis of high Hamming
weight faults in LFSR’s.
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1 Introduction

1.1 Background

Attacks against cryptosystems can be divided into two classes, direct attacks
and indirect attacks. Direct attacks include attacks against the algorithmic na-
ture of the cryptosystem regardless of its implementation. Indirect attacks make
use of the physical implementation of the cryptosystem and include a large va-
riety of techniques which either give the attacker some ‘inside information’ on
the cryptosystem (such as power or timing analysis) or some kind of influence
on the cryptosystem’s internal state such as ionizing radiation flipping random
bits in the device’s internal memory. Fault analysis is based on a careful study
of the effect of such faults (which can affect either the code or the data) on
the ciphertext, in order to derive (partial) information about either the key or
the internal state of the cryptosystem. Recently Anderson in [1] discovered an
extremely low-tech, low-cost technique which allows an attacker with physical
access to the cryptoprocessor (especially when implemented on a smartcard) to
cause faults at very specific locations. This discovery transfers the ability to per-
form fault attacks to one’s backyard making this kind of attack a major threat
to smartcard issuers and users. Fault analysis was first used in 1996 by Boneh,
Demillo, and Lipton in [2] to attack number theoretic public key cryptosystems
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such as RSA (by using a faulty CRT computation to factor the modulus n), and
later by Biham and Shamir in [3] to attack product block ciphers such as DES (by
using a high-probability differential fault attack on the last few rounds). While
these techniques were generalized and applied to other public key and block ci-
phers in many subsequent papers, there are almost no published results on the
applicability of fault attacks to stream ciphers, which requires different types of
attacks and analytic tools. A notable exception is the re-synchronization attack
of [9] which deals with a similar situation although in their model the changes
(which correspond to our faults) are known. Our goal in this paper is to fill this
void by embarking on a systematic study of all the standard techniques used to
construct stream ciphers, and by analyzing their vulnerability to various types
of fault attacks.

1.2 Our Results

We have succeeded in attacking a wide variety of stream ciphers. We first concen-
trated on attacking constructions based on LFSRs. With the exception of FSM
filtered constructions we were able to attack almost any synthetic construction
which appeared in the literature. The linearity of the LFSR is at the heart of all
of these attacks. Although we have found a couple of attacks against very spe-
cific FSM filtered constructions, it would be interesting to find attacks against
more general constructions. These results are covered in Section 2, where we
present a comprehensive attack strategy against non-linearly filtered LFSRs as
well as attacks against other LFSR based constructions. In section 3 we present
fault attacks against LILI-128 and Sober (two LFSR based NESSIE candidates)
and against RC4. The attack against RC4 applies random faults to the S-table
after the initialization to recover the internal state by analyzing the first out-
put byte of RC4 after initialization. All the attacks were analyzed theoretically
and verified experimentally, in order to gain better understanding of their actual
complexity and success rate. Due to space limitations we omit from this paper
results which are harder to describe or require a longer introduction, such as a
new DFA-like fault attack on the stream cipher Scream[5]. These results will be
included in the full version of this paper.

1.3 The Attack Model

The basic attack model used in this paper assumes that the attacker can apply
some bit flipping faults to either the RAM or the internal registers of the cryp-
tographic device, but that he has only partial control over (and knowledge of)
their number, location and timing. In addition, he can reset the cryptographic
device to its original state and then apply another randomly chosen fault to the
same device. In general, there is a tradeoff between the amount of control he has
and the number of faults needed to recover the key. This model tries to reflect
a situation in which the attacker is in possession of the physical device, and the
faults are transient rather than permanent.
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2 LFSR Based Stream Ciphers

2.1 Introduction

A very common component in stream ciphers is the Linear Feedback Shift Reg-
ister (LFSR). LFSR’s have provably long cycles and good statistical properties,
but due to their inherent linearity LFSRs do not generate good output streams by
themselves. Hence, LFSRs are typically used in conjunction with some non-linear
component. There are three general constructions for implementing a stream ci-
pher based on LFSRs:

– Filter the output of the LFSR(s) through a non-linear function.
– Have the clocking of one LFSR controlled by the output sequence of another

LFSR.
– Filter the output of the LFSR(s) through a finite state machine.

In this section we develop several types of fault attacks against such generic
constructions. We denote the length of the LFSR by n, the XOR of the original
and faulted value of the LFSR at the time the fault was introduced by ∆, and
the number of flipped bits (i.e., the Hamming weight of ∆) by k.

2.2 Attacks on Non-linearly Filtered LFSR Based Stream Ciphers

Let (x1, x2, ..., xn) be the internal state of the LFSR where xi ∈ {0, 1}. A non-
linear filter applied to a LFSR is a boolean function f(xi1 , xi2 , .., xit

) whose
inputs are a subset of the LFSR’s internal state bits (typically, n ≤ 128 and
t ≤ 12). More generally the inputs to the function may come from several LFSRs.
Each output bit is produced either by evaluating f on the current state, or by
using a lookup table of pre-computed values of f . The LFSR is then clocked
and f is evaluated again on the resulting state to generate the next output bit.
Existing attacks against this construction include the algebraic attack [12] which
is generally infeasible when t is not extremely small and the re-synchronization
attack [9] which shares a similar setting with our attack.

Now assume that the attacker has the power to cause low Hamming weight
faults in the LFSR’s internal state bits. The attack will proceed as follows:

1. Cause a fault and produce the resulting output stream
2. Guess the fault
3. Check the guess, if incorrect guess again
4. Repeat 1-3 O(t) times
5. Solve a system of linear equations in the original state bits

We need to show how to check the correctness of a guess and then how to
construct the system of linear equations. Notice that due to the linearity of the
LFSR clocking operation L, if we know the initial difference ∆ due to the fault
then at any time i the difference will be Li(∆). To verify a guess for ∆ we predict
the future differences in the t input bits to f . Whenever this difference is 0 we
expect to see an output difference of 0. If our guess was incorrect, then for half
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of these occasions we will see a non-zero output difference. So on average after
2t+1 output bits we expect to reject incorrect guesses.

This identification procedure leaves room for optimization by a preprocessing
stage in which the for each possible non-zero difference location, all inconsistent
faults are pre-computed. This Enables us to simultaneously reject all faults in-
consistent with the observed differences. This can greatly reduce the time com-
plexity of the attack; the details of this approach are not presented here due to
space limitations.

Now let us concentrate on a single output bit. For each faulted stream the
attacker observes the difference in the output bit and can compute the input
difference to f . We collect pairs of input/output differences corresponding to the
same output bit location. Given about t pairs we can narrow down by exhaustive
search the possible input bits to one possibility. By determining these bits we
get linear equations in terms of the initial state bits. Using the same faulted
output streams we can also compute the input differences for other output bits
collecting more linear equations. Once we collect enough (θ(n)) equations we
can solve the set of equations and determine the initial LFSR state.

We can sometimes improve the amount of data needed for the attack by
analyzing the structure of f . Define A = {∆ | Pr[f(x)⊕f(x⊕∆) = 0] > 1

2 + ε}.
After guessing ∆, the initial difference, we compute as before the differences
∆n = Ln(∆) at any future time. When ∆n ∈ A we know that with probability
at least 1

2 + ε the difference in the output of f will be 0. I.e, the average of the
difference over the output bits for which ∆n ∈ A should be 1

2 + ε. If our guess of
∆ was incorrect then we expect to see an average of 1

2 . Thus after seeing about
O(ε2 |A|

2n ) we should be able to tell with high probability whether our guess of ∆
was correct. Analysis of f will show us the optimal ε and whether we achieve an
advantage over the previous strategy.

If the Hamming weight of the faults is very low then we can apply another
strategy to reduce the amount of data required by guessing and verifying m faults
simultaneously. This will increase the time complexity by a factor of

(
n
k

)m−1, but
we can now check our guess by comparing the relative difference in the input of
f for each pair of the m+1 streams. This gives us a probability of approximately
2−t

(
m+1

2

)
of having a zero relative difference, thus reducing the amount of data

required by a factor of
(
m+1

2

)
.

So far we assumed that the function f is known, but we can apply a fault
attack even if f is unknown. First notice that in order to verify a guessed fault
in the simple variation we did not need to know f . So we can carry out steps
1-4 even when the non-linear function f is unknown or key-dependent.

Definition 1. Let D(i) be the set of input-output difference pairs resulting from
the faults at position i in the output stream.

Definition 2. A 0-order linear structure of f is n-bit vector γ s.t. for all X
f(X) = f(X ⊕ γ)

Proposition 1. The 0-order linear structures of f form a vector space.
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Now if for two positions i and j D(i) = D(j) and |D(i)| = 2t then either the
un-faulted inputs X, Y to f at positions i and j were the same or X ⊕ Y is a 0-
order linear structure of f . Analysis of D(i) can give us the linear structures of f
in time O(t2t) using the Walsh-Hadamard transform of f [9], [11]. In either case,
we get linear equations in the original state variables. After recovering the LFSR
state we can easily recover f . Even if D(i)

⋂
D(j) < 2t we can still conclude

with high probability that X = Y (or X ⊕ Y is a 0-order linear structure) if the
intersection is large enough. Experimental results show that for a random 10-bit
boolean function f , about 300 faults were sufficient to successfully carry out the
attack.

Another improvement can be made to the total amount of data required by
comparing the new faults against the already identified ones. For example, after
the first fault has been identified we compare the next fault against the original
data and the first faulted stream. When 2t faults are required this will reduce
the total amount of data to O(t2t) instead of O(22t).

The only property of the LFSR which we used for these attacks is that we can
compute future differences based on the initial fault. Thus the attacks generalize
directly to a construction composed of several LFSRs connected to the same
non-linear filter, providing that the total Hamming weight of the faults in all
the registers is low. However, we were unable to find any fault attacks utilizing
faults with high (and thus un-guessable) Hamming weight.

2.3 Attacks on Clock Controlled LFSR Based Stream Ciphers

The basic clock controlled LFSR construction is composed of two components:
the clock LFSR and the data LFSR. The output stream is a subsequence of the
output of the data LFSR which is determined by the clock LFSR. For example,
when the clock LFSR output bit is 0 clock the data LFSR once and output its
bit, and when the clock LFSR bit is 1 clock the data LFSR twice and output
its bit. Unless specified otherwise, all attacks in this section will refer to this
construction.

Other variations include considering more than one bit of the clock LFSR to
control the clocking of the data LFSR (E.g., in LILI-128 two bits of the clock
LFSR are used to decide whether to clock the data LFSR one to four times).
The last variation considered here is the shrinking generator [6] in which the
output bits of the clock LFSR decide whether or not the current data LFSR
output bit will be sent to the output stream, and thus there is no fixed upper
bound on the time difference between consecutive output bits. Existing attacks
against clock controlled constructions include correlation attacks [10], algebraic
attacks [12] and re-synchronization attacks [10].

Throughout this section we will use the term data stream to indicate the
sequence produced by the data LFSR {di}∞

i=1 as opposed to the output stream
denoted S = {Si}∞

i=1 which is the sequence of output bits produced by the device.
The control sequence produced by the clock LFSR will be denoted {ci}∞

i=1, and
we define posS(i) to be the position of the ith bit of the output stream S in the
data stream.
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A phase shift in the data register. A phase shift is a fault in which one
of the components is clocked while the other is not. Once the phase shift takes
place the device continues operating as usual. In a clock controlled construction
a phase shift in the data LFSR can give us information about the clock register.
Denote by S the non-faulted output stream and by Ŝ the faulted output stream.
Notice that for every bit i after the fault posŜ(i) = posS(i) + 1 since the data
register was clocked one extra time. So the attacker looks for i s.t. Ŝi �= Si+1,
this implies that at the ith location the data register was clocked twice. Thus we
can recover a bit of the clock LFSR state (which corresponds to a linear equation
in the original state) each time we have such an occurrence.

110101001001010 - clock register
001010110101010100101010 - data register
110100100101001 - output stream

01010110101010100101010 - data register after phase shift
000101101100011 - output stream

110100100101001 - original output stream
001011011000110 - faulted output stream
Each bit in the original sequence is compared with the bit to its left in the faulted
sequence. When a difference is observed the clock register must have been 1.

*1***1**1**1*1* - Partial data recovered by comparing the two sequences.
110101001001010 - The actual clock register.

Fig. 1. An example of a Phase Shift Attack

We need about twice the length of the clock register to recover the whole
state since the probability of such an occurrence is 1

2 . After recovering the clock
LFSR’s state we can easily recover the data LFSR’s since we now know the
position of each output bit in the data stream.

It is left as an easy exercise to show that this attack can be adapted to deal
with phase shift faults in the shrinking generator and the stop & go generator.

Faults in the clock register. For simplicity of description we assume that the
attacker can apply random single bit faults to the clocking LFSR at a chosen
point in the execution. The full attack, which is too technical to describe here,
can be carried out even if the timing of the fault is not exactly known and it
affects a small number of bits. The first stage of the attack will be to produce the
n possible separate faulted output streams by applying a single bit fault at the
same timing (at different locations) to the clocking register. We will designate
the stream resulting from a fault in the ith location by Si, Si

j being the jth bit
of Si (counting from the timing of the fault). Let us observe Si

j for a fixed j
s.t. j < n. This condition assures that the feedback of the clock register has not
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affected the output stream yet as a result of the fault. I.e., the only changes are
a result of the single bit change at the ith location. If i ≥ j then the fault will
not have enough time to affect Si

j and Si
j = Sj . However, if i < j then similar

to the phase shift example, |posSi(j) − posS(j)| = 1. If ci = 1 then we will get
posSi(j) − posS(j) = −1 (we have clocked the data LFSR one time less) and
posSi(j) − posS(j) = 1 if ci = 0. Now assume that for all i Si

j is the same. This
implies that both neighbors of the original bit in the data stream are identical
to the bit itself.
...00̂0... - the original data stream where the ∗̂ was chosen for the output
...0̂00... - the original data with faulted clocking
...000̂... - the original data with faulted clocking
The only other case in which this could happen is if the first j bits of the clock
register were identical, since then we only see one of the neighbors. By choosing
j large enough we can neglect this possibility. If we see j − 1 streams which
are identical in the jth bit but different from the original jth bit then the data
stream must have looked as follows:
...10̂1... - the original data stream where the ∗̂ was chosen for the output
In this case we know that both neighbors of the bit in the data stream were equal.
If the next output bit in the actual stream was different from the neighbors, then
the data register must have been clocked twice.
...00̂01̂... - the ∗̂ bits were chosen for the output
...10̂10̂... - the ∗̂ bits were chosen for the output
In this case we have recovered a bit of the clock LFSR or more generally a
linear equation in the original LFSR state. By analyzing similar structures we
show that there is a probability of at least 6

32 of this situation occurring. Hence
we can get about 3n

16 linear equations. We now repeat the attack and collect
another batch of faulted streams with the timing of the faults changed. After
repeating this procedure ∼ 10 times we will have collected an over-determined
set of equations which we can solve for the clocking LFSR’s original state. After
recovering the clock LFSR we can easily solve for the data LFSR. The attack
requires about 10n faults and for each fault a little more than n bits (for unique
identification of the streams). This attack is also applicable to the decimating
and stop & go generators since the effect of a single bit fault in the control LFSR
is also locally identical to a phase shift in the data LFSR.

Faults in the data register. The next attack will focus on the data LFSR,
but before we give a description of the attack we will show a general algorithm
for recovering the clock register given the data register.

For a clock controlled construction pos(i) = Σi
j=1 cj is the position of the ith

bit of the output stream in the data stream. The input to the algorithm will be
the sequence {di} and we will identify pos(i) for various i. Notice that each value
of pos(i) gives us a linear equation in the original state of the LFSR, since each of
the ci’s can be represented as a linear combination of the original state bits and
pos(i) is a linear combination of the ci’s. Once we have collected enough values
we can solve the set of equations for the initial state of the clock LFSR. The
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algorithm works by keeping a list of all possible values of pos(i) for each output
bit of the device. This is done by simple elimination: check for each existing
position in the list whether it is possible to receive the actual output with one
of the possible values of ci. Now if we find an i such that the list of candidates
for pos(i) is a single value we know the corresponding pos(i). Experimental
results show that given a random initial state for LFSRs of size 128 bits, the
algorithm finds the original state after seeing a few hundred bits, finding a linear
equation every 5 or 6 bits. If the output sequence was not produced from {di}
then the algorithm finds an inconsistency in the output stream (the size of the
list shrinks to zero) after at most a few tens of bits. This behavior can also be
studied analytically. Let xi and yi be the minimal and maximal candidate values
for pos(i) respectively. Assuming yi is not the real value for pos(i) let us calculate
the expectation of yi+1 −yi. This expectation is bounded from above by 5

4 , since
there is a probability of 1

2 that the maximum grows by 2 and a probability of 1
4

that the maximum grows by 1. On the other hand the expectation of xi+1 − xi

is bounded from below by 1
2 + 2

4 + 3
8 = 11

8 so the expectation of the change to
the size of the list of possibilities for pos(i) is negative. I.e., the size of the list is
expected to shrink unless one of the endpoints is the true position. This implies
that the average size of the list is constant and thus the running time is linear.
Now our attack will proceed as follows:

1. Generate a non-faulted output stream of length 10n
2. Re-initialize the device, and cause a low Hamming weight fault in the data

register
3. Generate a new (faulted) stream of length 10n
4. Guess the fault and verify by running the above algorithm with the calculated

difference in the data stream and the output stream difference
5. Repeat until the guess is consistent with the output stream
6. Recover the data register state from the actual output and the known clock-

ing register

Since the clocking register was not affected, the difference in the output stream
is equivalent to a device with the same clocking and with the data register
initialized to the fault difference. Since given a guess of the initial state of the
data register, the attacker can calculate the difference at any future point, we
can apply the algorithm for recovery of the clock register. For incorrect guesses
of the fault, the algorithm will find the inconsistency and for the correct guess
the algorithm will find the initial state of the clock register.

2.4 Attacks on Finite State Machine Filtered LFSR Based Stream
Ciphers

In this section we will show some attacks on a basic FSM filtered LFSR construc-
tion. The FSM contains some memory whose initial content is determined by the
key. Each time the LFSR is clocked, the LFSR output bit is inserted into a spe-
cific address determined by a subset of the LFSR’s state, and the bit previously
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occupying that memory location is sent to the output. The number of memory
bits will be denoted by M and thus there are log M address bits. The leading
attacks against general FSM filtered LFSR constructions are algebraic attacks
[12], but these attacks are only feasible against very specific constructions.

Randomizing the LFSR. Assume that the attacker has perfect control over
the timing of the fault, and that he can cause a fault which uniformly randomizes
the LFSR bits used to address the FSM. The first output bit after the fault has
been applied will be uniformly distributed over the bits currently stored in the
FSM. By repeating the fault at the same point in time we can recover the number
of ones currently stored in the FSM. If we do the same at a different point in
time we can, by examining the actual output stream, recover the total number
of ones entering the FSM. This gives us a linear equation in the initial LFSR
state. By collecting enough equations we can solve for the initial state.

Faults in the FSM. If a random fault is applied to the current contents of
the FSM the output stream will have differences at the timings when the LFSR
points to the faulted bits’ addresses. We start by giving some intuition about the
attack. Assume that the LFSR points to the same address at two consecutive
clockings. If the fault in the FSM happened at this location before these points
in time, only the first occurrence of this location in the output stream will be
faulted. When examining the second occurrence no matter what fault occurred
in the FSM the bit will not be faulted as long as the timing of the fault was
before the first occurrence. When we notice a case like this we know that the
address is the same in the two consecutive timings, this gives us linear relations
on the bits of the LFSR. By collecting enough relations we can derive the LFSR
state. More generally, let p be the probability of a single bit in the FSM being
affected by the fault and let us assume that the timing of the fault is uniformly
distributed over an interval [t1, t2] of length T . The probability of a difference in
bit t between the faulted and non-faulted streams is t−t1

t2−t1
p provided that this

is the first occurrence of the address. If the most recent occurrence of the same
address before time t is at time t0 then the probability is t−t0

t2−t1
. So by estimating

this probability within 1
2(t2−t1)

we can tell when the address bits were the same
at two different timings t0 and t. This gives us log M linear equations in the
original LFSR bits. We repeat this n

log M times and recover the initial state of
the LFSR from the resulting set of linear equations

3 Fault Attacks on Actual Stream Ciphers

3.1 A Fault Attack on LILI-128

In this section we will bring some of the techniques presented into action in a
fault attack against LILI-128 [4], one of the NESSIE candidates. For existing
attacks on this stream cipher see [12] and [13].
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LILI-128 is composed of two LFSRs: LFSRc, which is 39 bits long, and
LFSRd, which is 89 bits long (with a total of 128 bits of internal state). Both
have primitive feedback polynomials. For each keystream bit:

– The keystream bit is produced by applying a nonlinear function fd to 10 of
the bits in LFSRd.

– LFSRc is clocked once. Two bits from LFSRc determine an integer c in the
range {1, 2, 3, 4}.

– LFSRd is clocked c times.

The keystream generator is initialized simply by loading the 128 bits of key into
the registers. Keys that cause either register to be initialized with all zeroes are
considered invalid. The exact function fd used, which bits are taken as inputs
and the feedback polynomials of the LFSRs are irrelevant to the attack.

The first stage of the attack is to apply a random one bit fault to the data
register. Repeat this until 89 (the length of LFSRd) distinct streams are ob-
served. Now repeat the same with the construction clocked once before applying
the faults. Notice that some of the streams produced will be the same as in the
first batch. This is due to the fact that applying the fault and then shifting the
LFSR is equivalent to shifting the LFSR and then performing the fault, pro-
vided the fault did not affect the feedback. By counting how many streams are
repeated one can deduce how many times LFSRd was clocked, which provides
two bits of LFSRc. Thus after repeating the experiment about 20 times we can
recover the full LFSRc state. Once this state is known we can use the algorithm
presented in section 1.2 to recover the state of LFSRd. Notice that no further
faults are necessary and the data collected in the previous stage can be reused.
A tradeoff between the number of faults used and the length of the attack can
be achieved by stopping after part of the state has been recovered and guessing
the rest.

3.2 A Fault Attack on SOBER-t32

SOBER-t32 [7] is another NESSIE candidate with a LFSR based design. SOBER
is composed of a LFSR, a non linear filter (NLF) and a form of irregular deci-
mation called stuttering. The LFSR works over the field GF (232), and produces
a stream of 32-bit words L1, L2, ... called the L-stream. The internal state of
the LFSR will be denoted σi = (si, si+1, ..., si+16), and σ0 will denote the initial
state. The L-stream is fed through the NLF to produce 32-bit words N1, N2, ...
called the N-stream, Ni = NLF (σi). The stuttering decimates the N-stream as
follows: the first N-word N1 is the first stutter control word SCW. The SCW is
partitioned into 16 pairs of bits, each pair of bits is read in order and accordingly
one of four actions is performed:

1. Clock the LFSR once but do not output anything.
2. Clock the LFSR once, output the current N-word xored with 0x6996C53A

and clock the LFSR again (without producing more output).
3. Clock the LFSR twice and then output the current N-word.
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4. Clock the LFSR once and then output the current N-word xored with
0x96693AC5.

When all the bits of the SCW have been read, the LFSR is clocked and the
output of the NLF becomes the next SCW. The NLF is defined as NLF (σi) =
((f(si +si+16)+si+1 +si+6 ⊕Konst)+si+13 where f is some non linear function
whose exact definition is not relevant to the attack. The key determines σ0 and
Konst. Existing attacks against SOBER-t32 can be found in [14]and [15].

The attack will proceed in two stages. The aim of the first stage is to strip
away the stuttering and recover the full N-stream, i.e., the output after the NLF.
The aim if the second stage is to recover the original state of the LFSR based
on the faults seen in the N-stream.

Stripping the Stuttering. To achieve this goal we assume that we can apply
random single bit faults to the output of the N-stream. If we damage a word
which is not a stutter control word, then depending on whether the word ap-
peared in the original stuttered output we will see either a single bit difference
in the faulted output stream or no change at all. If we fault a stutter control
word, then we will see a significant difference in the output stream. However,
we know that both streams originated from the same N-stream hence we can
use them to reconstruct the original N-stream. To check whether two output
words originated from the same N-word we simply check if their xor is in the set
{0, 0x6996C53A, 0x96693AC5}, and the probability of a wrong identification is
negligible since we are matching 32-bit words. We know that in each stream the
order of the words is the same so with enough faults we can fully reconstruct the
N-stream. Since the probability of a N-word being sent to the output is slightly
below 2

3 (remember that 1
17 of the N-words are used as SCWs) it is enough to

cause ∼ 10 faults in the SCW to ensure that we reconstruct a significant part
of the N-stream. Since the probability of causing a fault in a SCW is 1

17 , we can
carry out this stage of the attack with less than 200 faults.

Recovering the LFSR State. Now we will use faults to the LFSR to retrieve
its original state. Assume for now that the fault occurred in σ13 where σ is the
current state of the LFSR. Let us denote the timing of the fault by i, i.e., we
faulted σi+13. Notice that we have not assumed control over the timing of the
fault, only over the location of the fault within the LFSR. We observe the first
nonzero difference in the output stream which results from our fault. If Nt was
sent to the output then the observed difference with respect to subtraction mod
232 will be σi+13 − σ̂i+13 = ±2j where σ̂i+13 represents the faulted version and
j is the bit faulted. If Ni was not sent to the output then the first observed
difference is very unlikely to be of the above form. The sign of the difference will
give us the original bit in the jth position (we are exploiting here the nonlinearity
of + with respect to ⊕). Notice that until now we have not used the fact that
we know the N-stream. Since we know the position of the current output word
in the N-stream we know the exact place of the bit recovered in the L-stream
and hence have a linear equation in the original bits of the equivalent GF (2)
LFSR. By repeatedly applying faults we can recover enough linear equations
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and reconstruct the initial state. Notice that what actually remains to be shown
is how to identify faults whose first effect on the N-stream is when the fault
is in σ13. But as we have shown before, such faults have a unique signature
(an output difference of ±2j) which allows us to identify them. Some care must
be taken as to not confuse them with faults in σ1 or σ6, this can be done by
rejecting candidates for which the output difference (in the N-stream) is a single
bit. After reconstructing the LFSR state we can find Konst from the equation
for the NLF, the observed N-stream and the calculated L-stream.

In the full description of SOBER-t32, there is also a key-loading procedure
which mixes the secret key and session key to initialize Konst and σ0. A similar
fault attack can be applied to recover the secret key from the session key and
the initial state.

3.3 An Attack on RC4

RC4 is a stream cipher designed by Ron Rivest in 1987. Its source code was kept
as a trade secret until an alleged version was posted to the Cyberpunks mailing
list [8]. RC4 consists of a key scheduling which initializes the permutation S,
initialization and a generation loop. The key schedule will not be of interest for
our attack. The most successful attacks against RC4 are guess and determine [8]
but even these are prohibitively time consuming (more than 2700 time).

Initialization:
i = 0
j = 0

Generation Loop:
i = i + 1
j = j + S[i]
Swap S[i] and S[j]
Output S[S[i]+S[j]]

Fig. 2. Pseudo-code for RC4

Our attack will proceed in three stages:

1. Apply a fault to the S table and generate a long stream (repeat many times)
2. Analyze the resulting streams and generate equations in the original entries

of S
3. Solve these equations to reconstruct S.

We assume that the attacker can fault a single entry of the S table imme-
diately after the key-scheduling. Our first observation is that the attacker can
recognize which value was faulted. I.e., if S[x] = a and the fault changed its
value to b then we will identify both a and b (but not x). This can be done by
observing the frequency of each symbol in the output stream. If a was changed
to b then a will never appear in the output stream, while b will appear with dou-
ble frequency. Thus we need a stream of length about 10,000 bytes to reliably



252 J.J. Hoch and A. Shamir

identify a and b. Our next mission is to identify faults in S[1]. This is done by
looking at the first output byte. If this byte changed as a result of the fault then
one of three cases must hold:

1. S[1] was faulted
2. S[S[1]] was faulted
3. S[S[1] + S[S[1]]] was faulted

We know what the original value of S[S[1] + S[S[1]]] was so we can check if the
fault affected this cell (by identifying a and b). If we fault S[1] and can identify
the fault, i.e. S[1] changed from a to b, then we know two things. First the original
value of S[1] was a and second, S[b + S[b]] = c where c is the actual observed
output in the faulted stream. So our first issue is how to recognize faults. If case
2 holds then with high probability the second output byte S[S[2]+S[S[1]+S[2]]]
will not be faulted. If the first case holds then the second output byte will always
be faulted.

Now that we have identified a fault that affected S[1] and changed its value
from a to b we know two things: S[1] = a and S[b + S[b]] = c where c is the first
output byte of the faulted stream. For each fault in S[1] we get an equation,
and after collecting many such equations we start utilizing our knowledge of
S[1] to deduce other values is S. For example, if S[1] = 17 then the equation
S[1 + S[1]] = 7 will give us the value of S[18] = 7. We deduce as many values
as possible from the given equations. If at the end we have not recovered S[S[1]]
then we guess its value. From our knowledge (guess) of S[S[1]] we can carry out
an analysis of the second output byte and recover more equations, this time of
the form S[b + S[b + S[1]]] = d (where d is the second output byte). Empirical
results show that at this stage we recover on average 240 entries of S, and this is
more than enough to deduce the rest from the observed non-faulted stream. We
can easily reject incorrect guesses of S[S[1]] by either noticing an inconsistency
in the equations we collect or by recovering S and comparing the output stream
to the observed one.

4 Summary of Results

The complexity of the attacks described in the previous sections are summarized
in the table below. For the synthetic constructions an asymptotic analysis was
done while for LILI-128, RC4 and SOBER-t32, the analysis was done for the
recommended parameters of the ciphers. The parameters n,t,T ,k and M are
as defined in the relevant subsection. For the sake of simplicity the results for
the clocking constructions assume that the length of the clocking LFSR is the
same as the length of the data LFSR. Note that there are many possible tradeoffs
between the various parameters, and the table describes only one of the potential
combinations in each case.

5 Summary

We have shown that fault attacks are an extremely powerful technique for at-
tacking stream ciphers. We demonstrated their applicability to a wide variety of
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Attack #Faults Data Time Space
Filtered LFSRs (known filter) t t2t

(
n
k

)
2t + n3 t2t + n2

Filtered LFSRs (unknown filter) 2t t2t
(

n
k

)
t2t + n3 t2t + n2

Clock controlled (faults in clock register) n n2 n3 n2

Clock controlled (faults in data register) 1 n
(

n
k

)
n + n3 n2

FSM filtered LFSR (totally randomized) nM2 nM2 nM2 + n3 n2

FSM filtered LFSR (faults in FSM) T 2 n
log M

T 3 n
log M

n3 T 3 n
log M

+ n2

LILI-128 10K 1M 225 1M
SOBER-t32 1K 100K 230 100K

RC4 216 226 226 216

Fig. 3. Summary of out results

synthetic and actual schemes, and identified several interesting open problems.
Further work on this subject could include practical attacks on smart card im-
plementations of stream ciphers, and finding attacks on more general classes of
stream ciphers which are not based on LFSR’s or arrays of updated values.
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