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Abstract. In this paper we study the long standing problem of informa-
tion extraction from multiple linear approximations. We develop a formal
statistical framework for block cipher attacks based on this technique
and derive explicit and compact gain formulas for generalized versions of
Matsui’s Algorithm 1 and Algorithm 2. The theoretical framework allows
both approaches to be treated in a unified way, and predicts significantly
improved attack complexities compared to current linear attacks using
a single approximation. In order to substantiate the theoretical claims,
we benchmarked the attacks against reduced-round versions of DES and
observed a clear reduction of the data and time complexities, in almost
perfect correspondence with the predictions. The complexities are re-
duced by several orders of magnitude for Algorithm 1, and the significant
improvement in the case of Algorithm 2 suggests that this approach may
outperform the currently best attacks on the full DES algorithm.
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1 Introduction

Linear cryptanalysis [8] is one of the most powerful attacks against modern cryp-
tosystems. In 1994, Kaliski and Robshaw [5] proposed the idea of generalizing
this attack using multiple linear approximations (the previous approach consid-
ered only the best linear approximation). However, their technique was mostly
limited to cases where all approximations derive the same parity bit of the key.
Unfortunately, this approach imposes a very strong restriction on the approxima-
tions, and the additional information gained by the few surviving approximations
is often negligible.

In this paper we start by developing a theoretical framework for dealing with
multiple linear approximations. We first generalize Matsui’s Algorithm 1 based
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on this framework, and then reuse these results to generalize Matsui’s Algo-
rithm 2. Our approach allows to derive compact expressions for the performance
of the attacks in terms of the biases of the approximations and the amount of
data available to the attacker. The contribution of these theoretical expressions
is twofold. Not only do they clearly demonstrate that the use of multiple ap-
proximations can significantly improve classical linear attacks, they also shed a
new light on the relations between Algorithm 1 and Algorithm 2.

The main purpose of this paper is to provide a new generally applicable crypt-
analytic tool, which performs strictly better than standard linear cryptanalysis.
In order to illustrate the potential of this new approach, we implemented two
attacks against reduced-round versions of DES, using this cipher as a well estab-
lished benchmark for linear cryptanalysis. The experimental results, discussed
in the second part of this paper, are in almost perfect correspondence with our
theoretical predictions and show that the latter are well justified.

This paper is organized as follows: Sect. 2 describes a very general maximum
likelihood framework, which we will use in the rest of the paper; in Sect. 3 this
framework is applied to derive and analyze an optimal attack algorithm based
on multiple linear approximations. In the last part of this section, we provide
a more detailed theoretical analysis of the assumptions made in order to derive
the performance expressions. Sect. 4 presents experimental results on DES as
an example. Finally, Sect. 5 discusses possible further improvements and open
questions. A more detailed discussion of the practical aspects of the attacks and
an overview of previous work can be found in the appendices.

2 General Framework

In this section we discuss the main principles of statistical cryptanalysis and
set up a generalized framework for analyzing block ciphers based on maximum
likelihood. This framework can be seen as an adaptation or extension of earlier
frameworks for statistical attacks proposed by Murphy et al. [11], Junod and
Vaudenay [3, 4, 14] and Selçuk [12].

2.1 Attack Model

We consider a block cipher Ek which maps a plaintext P ∈ P to a ciphertext
C = Ek(P ) ∈ C. The mapping is invertible and depends on a secret key k ∈ K.
We now assume that an adversary is given N different plaintext–ciphertext pairs
(Pi, Ci) encrypted with a particular secret key k∗ (a known plaintext scenario),
and his task is to recover the key from this data. A general statistical approach —
also followed by Matsui’s original linear cryptanalysis — consists in performing
the following three steps:

Distillation phase. In a typical statistical attack, only a fraction of the infor-
mation contained in theN plaintext–ciphertext pairs is exploited. A first step
therefore consists in extracting the relevant parts of the data, and discarding
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all information which is not used by the attack. In our framework, the distil-
lation operation is denoted by a function ψ : P ×C → X which is applied to
each plaintext–ciphertext pair. The result is a vector x = (x1, . . . , xN ) with
xi = ψ(Pi, Ci), which contains all relevant information. If |X | � N , which is
usually the case, we can further reduce the data by counting the occurrence of
each element of X and only storing a vector of counters t = (t0, . . . , t|X |−1).
In this paper we will not restrict ourselves to a single function ψ, but consider
m separate functions ψj , each of which maps the text pairs into different sets
Xj and generates a separate vector of counters tj .

Analysis phase. This phase is the core of the attack and consists in generating
a list of key candidates from the information extracted in the previous step.
Usually, candidates can only be determined up to a set of equivalent keys,
i.e., typically, a majority of the key bits is transparent to the attack. In
general, the attack defines a function σ : K → Z which maps each key k
onto an equivalent key class z = σ(k). The purpose of the analysis phase is
to determine which of these classes are the most likely to contain the true
key k∗ given the particular values of the counters tj .

Search phase. In the last stage of the attack, the attacker exhaustively tries
all keys in the classes suggested by the previous step, until the correct key
is found. Note that the analysis and the searching phase may be intermixed:
the attacker might first generate a short list of candidates, try them out, and
then dynamically extend the list as long as none of the candidates turns out
to be correct.

2.2 Attack Complexities

When evaluating the performance of the general attack described above, we
need to consider both the data complexity and the computational complexity.
The data complexity is directly determined by N , the number of plaintext–
ciphertext pairs required by the attack. The computational complexity depends
on the total number of operations performed in the three phases of the attack.
In order to compare different types of attacks, we define a measure called the
gain of the attack:

Definition 1 (Gain). If an attack is used to recover an n-bit key and is expected
to return the correct key after having checked on the average M candidates, then
the gain of the attack, expressed in bits, is defined as:

γ = − log2

2 ·M − 1
2n

(1)

Let us illustrate this with an example where an attacker wants to recover an
n-bit key. If he does an exhaustive search, the number of trials before hitting
the correct key can be anywhere from 1 to 2n. The average number M is (2n +
1)/2, and the gain according to the definition is 0. On the other hand, if the
attack immediately derives the correct candidate, M equals 1 and the gain is
γ = n. There is an important caveat, however. Let us consider two attacks
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which both require a single plaintext–ciphertext pair. The first deterministically
recovers one bit of the key, while the second recovers the complete key, but
with a probability of 1/2. In this second attack, if the key is wrong and only
one plaintext–ciphertext pair is available, the attacker is forced to perform an
exhaustive search. According to the definition, both attacks have a gain of 1 bit
in this case. Of course, by repeating the second attack for different pairs, the
gain can be made arbitrary close to n bits, while this is not the case for the first
attack.

2.3 Maximum Likelihood Approach

The design of a statistical attack consists of two important parts. First, we need
to decide on how to process the N plaintext–ciphertext pairs in the distillation
phase. We want the counters tj to be constructed in such a way that they con-
centrate as much information as possible about a specific part of the secret key
in a minimal amount of data. Once this decision has been made, we can proceed
to the next stage and try to design an algorithm which efficiently transforms this
information into a list of key candidates. In this section, we discuss a general
technique to optimize this second step. Notice that throughout this paper, we
will denote random variables by capital letters.

In order to minimize the amount of trials in the search phase, we want the
candidate classes which have the largest probability of being correct to be tried
first. If we consider the correct key class as a random variable Z and denote the
complete set of counters extracted from the observed data by t, then the ideal
output of the analysis phase would consist of a list of classes {z}, sorted according
to the conditional probability Pr [Z = z | t]. Taking the Bayesian approach, we
express this probability as follows:

Pr [Z = z | t] =
Pr [T = t | z] · Pr [Z = z]

Pr [T = t]
. (2)

The factor Pr [Z = z] denotes the a priori probability that the class z contains
the correct key k∗, and is equal to the constant 1/|Z|, with |Z| the total number
of classes, provided that the key was chosen at random. The denominator is
determined by the probability that the specific set of counters t is observed,
taken over all possible keys and plaintexts. The only expression in (2) that
depends on z, and thus affects the sorting, is the factor Pr [T = t | z], compactly
written as Pz(t). This quantity denotes the probability, taken over all possible
plaintexts, that a key from a given class z produces a set of counters t. When
viewed as a function of z for a fixed set t, the expression Pr [T = t | z] is also
called the likelihood of z given t, and denoted by Lt(z), i.e.,

Lt(z) = Pz(t) = Pr [T = t | z] .

This likelihood and the actual probability Pr [Z = z | t] have distinct values, but
they are proportional for a fixed t, as follows from (2). Typically, the likelihood
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expression is simplified by applying a logarithmic transformation. The result is
denoted by

Lt(z) = logLt(z)

and called the log-likelihood. Note that this transformation does not affect the
sorting, since the logarithm is a monotonously increasing function.

Assuming that we can construct an efficient algorithm that accurately esti-
mates the likelihood of the key classes and returns a list sorted accordingly, we
are now ready to derive a general expression for the gain of the attack.

Let us assume that the plaintexts are encrypted with an n-bit secret key k∗,
contained in the equivalence class z∗, and let Z∗ = Z \{z∗} be the set of classes
different from z∗. The average number of classes checked during the searching
phase before the correct key is found, is given by the expression

1 +
∑

z∈Z∗
Pr [LT(z) ≥ LT(z∗) | z∗] ,

where the random variable T represents the set of counters generated by a key
from the class z∗, given N random plaintexts. Note that this number includes
the correct key class, but since this class will be treated differently later on,
we do not include it in the sum. In order to compute the probabilities in this
expression, we define the sets Tz = {t | Lt(z) ≥ Lt(z∗)}. Using this notation,
we can write

Pr [LT(z) ≥ LT(z∗) | z∗] =
∑

t∈Tz

Pz∗(t) .

Knowing that each class z contains 2n/|Z| different keys, we can now derive the
expected number of trialsM∗, given a secret key k∗. Note that the number of keys
that need to be checked in the correct equivalence class z∗ is only (2n/|Z|+1)/2
on the average, yielding

M∗ =
2n

|Z| ·
[

1
2

+
∑

z∈Z∗

∑

t∈Tz

Pz∗(t)

]
+

1
2
. (3)

This expression needs to be averaged over all possible secret keys k∗ in order to
find the expected value M , but in many cases1 we will find that M∗ does not
depend on the actual value of k∗, such that M = M∗. Finally, the gain of the
attack is computed by substituting this value of M into (1).

3 Application to Multiple Approximations

In this section, we apply the ideas discussed above to construct a general frame-
work for analyzing block ciphers using multiple linear approximations.
1 In some cases the variance of the gain over different keys would be very significant.

In these cases it might be worth to exploit this phenomenon in a weak-key attack
scenario, like in the case of the IDEA cipher.
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The starting point in linear cryptanalysis is the existence of unbalanced lin-
ear expressions involving plaintext bits, ciphertext bits, and key bits. In this
paper we assume that we can use m such expressions (a method to find them is
presented in an extended version of this paper [1]):

Pr
[
P [χj

P ] ⊕ C[χj
C ] ⊕K[χj

K ] = 0
]

=
1
2

+ εj , j = 1, . . . ,m , (4)

with (P,C) a random plaintext–ciphertext pair encrypted with a random key K.
The notation X [χ] stands for Xl1 ⊕Xl2 ⊕ . . .⊕Xla , where Xl1 , . . . , Xla represent
particular bits of X . The deviation εj is called the bias of the linear expression.

We now use the framework of Sect. 2.1 to design an attack which exploits
the information contained in (4). The first phase of the cryptanalysis consists in
extracting the relevant parts from the N plaintext–ciphertext pairs. The linear
expressions in (4) immediately suggest the following functions ψj :

xi,j = ψj(Pi, Ci) = Pi[χ
j
P ] ⊕ Ci[χ

j
C ] , i = 1, . . . , N ,

with xi,j ∈ Xj = {0, 1}. These values are then used to construct m counter
vectors tj = (tj , N − tj), where tj and N − tj reflect the number of plaintext–
ciphertext pairs for which xi,j equals 0 and 1, respectively2.

In the second step of the framework, a list of candidate key classes needs to
be generated. We represent the equivalent key classes induced by the m linear
expressions in (4) by an m-bit word z = (z1, . . . , zm) with zj = k[χj

K ]. Note
that m might possibly be much larger than n, the length of the key k. In this
case, only a subspace of all possible m-bit words corresponds to a valid key class.
The exact number of classes |Z| depends on the number of independent linear
approximations (i.e., the rank of the corresponding linear system).

3.1 Computing the Likelihoods of the Key Classes

We will for now assume that the linear expressions in (4) are statistically in-
dependent for different plaintext–ciphertext pairs and for different values of j
(in the next section we will discuss this important point in more details). This
allows us to apply the maximum likelihood approach described earlier in a very
straightforward way. In order to simplify notations, we define the probabilities
pj and qj , and the imbalances3 cj of the linear expressions as

pj = 1 − qj =
1 + cj

2
=

1
2

+ εj .

We start by deriving a convenient expression for the probability Pz(t). To
simplify the calculation, we first give a derivation for the special key class
2 The vectors tj are only constructed to be consistent with the framework described

earlier. In practice of course, the attacker will only calculate tj (this is a minimal
sufficient statistic).

3 Also known in the literature as “correlations”.
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Fig. 1. Geometrical interpretation for m = 2. The correct key class z∗ has the second
largest likelihood in this example. The numbers in the picture represent the number of
trials M∗ when ĉ falls in the associated area.

z′ = (0, . . . , 0). Assuming independence of different approximations and of dif-
ferent (Pi, Ci) pairs, the probability that this key generates the counters tj is
given by the product

Pz′(t) =
m∏

j=1

(
N

tj

)
· ptj

j · qN−tj

j . (5)

In practice, pj and qj will be very close to 1/2, and N very large. Taking this
into account, we approximate the m-dimensional binomial distribution above by
an m-dimensional Gaussian distribution:

Pz′(t) ≈
m∏

j=1

e−
(tj−pj ·N)2

N/2

√
π ·N/2

=
m∏

j=1

e−
N
2 (ĉj−cj)

2

√
π ·N/2

=
e−

N
2

∑
(ĉj−cj)

2

(√
π ·N/2

)m .

The variable ĉj is called the estimated imbalance and is derived from the counters
tj according to the relation N ·(1+ ĉj)/2 = tj . For any key class z, we can repeat
the reasoning above, yielding the following general expression:

Pz(t) ≈
e−

N
2

∑
(ĉj−(−1)zj ·cj)

2

(√
π ·N/2

)m (6)

This formula has a useful geometrical interpretation: if we take a key from a
fixed key class z∗ and construct an m-dimensional vector ĉ = (ĉ1, . . . , ĉm) by
encrypting N random plaintexts, then ĉ will be distributed around the vector
cz∗ = ((−1)z∗

1 c1, . . . , (−1)z∗
mcm) according to a Gaussian distribution with a

diagonal variance-covariance matrix 1/
√
N · Im, where Im is an m×m identity

matrix. This is illustrated in Fig. 1. From (6) we can now directly compute the
log-likelihood:
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Lt(z) = logLt(z) = logPz(t) ≈ C − N

2

m∑

j=1

(ĉj − (−1)zj · cj)2 . (7)

The constant C depends on m and N only, and is irrelevant to the attack. From
this formula we immediately derive the following property.

Lemma 1. The relative likelihood of a key class z is completely determined by
the Euclidean distance |ĉ − cz|, where ĉ is an m-dimensional vector containing
the estimated imbalances derived from the known texts, and cz = ((−1)z1c1, . . . ,
(−1)zmcm).

The lemma implies that LT(z) > LT(z∗) if and only if |ĉ− cz| < |ĉ− cz∗ |. This
type of result is common in coding theory.

3.2 Estimating the Gain of the Attack

Based on the geometrical interpretation given above, and using the results from
Sect. 2.3, we can now easily derive the gain of the attack.

Theorem 1. Given m approximations and N independent pairs (Pi, Ci), an
adversary can mount a linear attack with a gain equal to:

γ = − log2

[
2 · 1

|Z|
∑

z∈Z∗
Φ

(
−
√
N · |cz − cz∗ |

2

)
+

1
|Z|

]
, (8)

where Φ(·) is the cumulative normal distribution function, cz = ((−1)z1c1, . . . ,
(−1)zmcm), and |Z| is the number of key classes induced by the approximations.

Proof. The probability that the likelihood of a key class z exceeds the likelihood
of the correct key class z∗ is given by the probability that the vector ĉ falls
into the half plane Tc = {c | |ĉ − cz| ≤ |ĉ − cz∗ |}. Considering the fact that ĉ
describes a Gaussian distribution around cz∗ with a variance-covariance matrix
1/

√
N · Im, we need to integrate this Gaussian over the half plane Tc and due to

the zero covariances, we immediately find:

Pr [LT(z) ≥ LT(z∗) | z∗] = Φ

(
−
√
N · |cz − cz∗ |

2

)
.

By summing these probabilities as in (3) we find the expected number of trials:

M∗ =
2n

|Z| ·
[

1
2

+
∑

z∈Z∗
Φ

(
−
√
N · |cz − cz∗ |

2

)]
+

1
2
. (9)

The gain is obtained by substituting this expression for M∗ in equation (1). 	


The formula derived in the previous theorem can easily be evaluated as long as
|Z| is not too large. In order to estimate the gain in the other cases as well, we
need to make a few approximations.
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Corollary 1. If |Z| is sufficiently large, the gain derived in Theorem 1 can
accurately be approximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−

√
N · c̄2

2

)
+

1
|Z|

]
� f(N · c̄2, |Z|) , (10)

where c̄2 =
∑m

j=1 c
2
j .

Proof. See App. A.

An interesting conclusion that can be drawn from the corollary above is that
the gain of the attack is mainly determined by the product N · c̄2. As a result, if
we manage to increase c̄2 by using more linear characteristics, then the required
number of known plaintext–ciphertext pairs N can be decreased by the same
factor, without affecting the gain. Since the quantity c̄2 plays a very important
role in the attacks, we give it a name and define it explicitly.

Definition 2. The capacity c̄2 of a system of m approximations is defined as

c̄2 =
m∑

j=1

c2j = 4 ·
m∑

j=1

ε2j .

3.3 Extension: Multiple Approximations and Matsui’s Algorithm 2

The approach taken in the previous section can be seen as an extension of Mat-
sui’s Algorithm 1. Just as in Algorithm 1, the adversary analyses parity bits
of the known plaintext–ciphertext pairs and then tries to determine parity bits
of internal round keys. An alternative approach, which is called Algorithm 2
and yields much more efficient attacks in practice, consists in guessing parts of
the round keys in the first and the last round, and determining the probability
that the guess was correct by exploiting linear characteristics over the remaining
rounds. In this section we will show that the results derived above can still be
applied in this situation, provided that we modify some definitions.

Let us denote by ZO the set of possible guesses for the targeted subkeys of the
outer rounds (round 1 and round r). For each guess zO and for all N plaintext–
ciphertext pairs, the adversary does a partial encryption and decryption at the
top and bottom of the block cipher, and recovers the parity bits of the intermedi-
ate data blocks involved in m different (r−2)-round linear characteristics. Using
this data, he constructs m′ = |ZO| · m counters tj , which can be transformed
into a m′-dimensional vector ĉ containing the estimated imbalances.

As explained in the previous section, the m linear characteristics involve m
parity bits of the key, and thus induce a set of equivalent key classes, which we
will here denote by ZI (I from inner). Although not strictly necessary, we will
for simplicity assume that the sets ZO and ZI are independent, such that each
guess zO ∈ ZO can be combined with any class zI ∈ ZI , thereby determining a
subclass of keys z = (zO, zI) ∈ Z with |Z| = |ZO| · |ZI |.
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At this point, the situation is very similar to the one described in the previous
section, the main difference being a higher dimension m′. The only remaining
question is how to construct the m′-dimensional vectors cz for each key class
z = (zO, zI). To solve this problem, we will need to make some assumptions.
Remember that the coordinates of cz are determined by the expected imbalances
of the corresponding linear expressions, given that the data is encrypted with
a key from class z. For the m counters that are constructed after guessing the
correct subkey zO, the expected imbalances are determined by zI and equal to
(−1)zI,1c1, . . . , (−1)zI,mcm. For each of the m′ −m other counters, however, we
will assume that the wrong guesses result in independent random-looking parity
bits, showing no imbalance at all4. Accordingly, the vector cz has the following
form:

cz = (0, . . . , 0, (−1)zI,1c1, . . . , (−1)zI,mcm, 0, . . . , 0)

With the modified definitions of Z and cz given above, both Theorem 1 and
Corollary 1 still hold (the proofs are given in App. A). Notice however that the
gain of the Algorithm-2-style linear attack will be significantly larger because it
depends on the capacity of linear characteristics over r − 2 rounds instead of r
rounds.

3.4 Influence of Dependencies

When deriving (5) in Sect. 3, we assumed statistical independence. This assump-
tion is not always fulfilled, however. In this section we discuss different potential
sources of dependencies and estimate how they might influence the cryptanalysis.

Dependent plaintext–ciphertext pairs. A first assumption made by equa-
tion (5) concerns the dependency of the parity bits xi,j with 1 ≤ i ≤ N , com-
puted with a single linear approximation for different plaintext–ciphertext pairs.
The equation assumes that the probability that the approximation holds for a
single pair equals pj = 1/2 + εj , regardless of what is observed for other pairs.
This is a very reasonable assumption if the N plaintexts are chosen randomly,
but even if they are picked in a systematic way, we can still safely assume that
the corresponding ciphertexts are sufficiently unrelated as to prevent statistical
dependencies.

Dependent text mask. The next source of dependencies is more fundamental
and is related to dependent text masks. Suppose for example that we want to use
three linear approximations with plaintext–ciphertext masks (χ1

P , χ
1
C), (χ2

P , χ
2
C),

(χ3
P , χ

3
C), and that χ1

P ⊕ χ2
P ⊕ χ3

P = χ1
C ⊕ χ2

C ⊕ χ3
C = 0. It is immediately clear

that the parity bits computed for these three approximations cannot possibly be
independent: for all (Pi, Ci) pairs, the bit computed for the 3rd approximation
xi,3 is equal to xi,1 ⊕ xi,2.

4 Note that for some ciphers, other assumptions may be more appropriate. The rea-
soning in this section can be applied to these cases just as well, yielding very similar
results.
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Even in such cases, however, we believe that the results derived in the pre-
vious section are still quite reasonable. In order to show this, we consider the
probability that a single random plaintext encrypted with an equivalent key z
yields a vector5 of parity bits x = (x1, . . . , xm). Let us denote by χj

T the con-
catenation of both text masks χj

P and χj
C . Without loss of generality, we can

assume that the m masks χj
T are linearly independent for 1 ≤ j ≤ l and linearly

dependent (but different) for l < j ≤ m. This implies that x is restricted to a
l-dimensional subspace R. We will only consider the key class z′ = (0, . . . , 0) in
order to simplify the equations. The probability we want to evaluate is:

Pz′(x) = Pr [Xj = xj for 1 ≤ j ≤ m | z′]

These (unknown) probabilities determine the (known) imbalances cj of the linear
approximations through the following expression:

cj =
∑

x∈R
Pz′(x) · (−1)xj .

We now make the (in many cases reasonable) assumption that all 2l −m masks
χT , which depend linearly on the masks χj

T , but which differ from the ones
considered by the attack, have negligible imbalances. In this case, the equation
above can be reversed (note the similarity with the Walsh-Hadamard transform),
and we find that:

Pz′(x) =
1
2l

m∑

j=1

cj · (−1)xj .

Assuming that m · cj � 1 we can make the following approximation:

Pz′(x) ≈ 2m

2l

m∏

j=1

1 + cj · (−1)xj

2
.

Apart from an irrelevant constant factor 2m/2l, this is exactly what we need:
it implies that, even with dependent masks, we can still multiply probabilities
as we did in order to derive (5). This is an important conclusion, because it
indicates that the capacity of the approximations continues to grow, even when
m exceeds twice the block size, in which case the masks are necessarily linearly
dependent.

Dependent trails. A third type of dependencies might be caused by merging
linear trails. When analyzing the best linear approximations for DES, for exam-
ple, we notice that most of the good linear approximations follow a very limited
number of trails through the inner rounds of the cipher, which might result in
dependencies. Although this effect did not appear to have any influence on our
experiments (with up to 100 different approximations), we cannot exclude at
this point that they will affect attacks using much more approximations.
5 Note a small abuse of notation here: the definition of x differs from the one used in

Sect. 2.1.
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Table 1. Attack Algorithm MK 1 and its complexity.

Distillation phase. Obtain N plaintext–ciphertext pairs (pi, ci). For 1 ≤
j ≤ m, count the number tj of pairs satisfying pi[χ

j
P ] ⊕ ci[χ

j
C ] = 0 and

compute the estimated imbalance ĉj = 2 · tj/N − 1.
Analysis phase. For each equivalent key class z ∈ Z, determine the distance

|ĉ − cz|2 =
m∑

j=1

(ĉj − (−1)zj · cj)
2

and use these values to construct a sorted list, starting with the class with
the smallest distance.

Search phase. Run through the sorted list and exhaustively try all n-bit
keys contained in the equivalence classes until the correct key is found.

Data compl. Time compl. Memory compl.

Distillation: O(1/c̄2) O(m/c̄2) O(m)
Analysis: - O(m · |Z|) O(|Z|)
Search: - O(2n−γ) O(|Z|)

Dependent key masks. We finally note that we did not make any assumption
about the dependency of key masks in the previous sections. This implies that
all results derived above remain valid for dependent key masks.

4 Experimental Results

In Sect. 3 we derived an optimal approach for cryptanalyzing block ciphers using
multiple linear approximations. In this section, we implement practical attack
algorithms based on this approach and evaluate their performance when applied
to DES, the standard benchmark for linear cryptanalysis. Our experiments show
that the attack complexities are in perfect correspondence with the theoretical
results derived in the previous sections.

4.1 Attack Algorithm MK 1

Table 1 summarizes the attack algorithm presented in Sect. 2 (we call this al-
gorithm Attack Algorithm MK 1 ). In order to verify the theoretical results, we
applied the attack algorithm to 8 rounds of DES. We picked 86 linear approx-
imations with a total capacity c̄2 = 2−15.6 (see Definition 2). In order to speed
up the simulation, the approximations were picked to contain 10 linearly inde-
pendent key masks, such that |Z| = 1024. Fig. 2 shows the simulated gain for
Algorithm MK 1 using these 86 approximations, and compares it to the gain of
Matsui’s Algorithm 1, which uses the best one only (c̄2 = 2−19.4). We clearly see
a significant improvement. While Matsui’s algorithm requires about 221 pairs
to attain a gain close to 1 bit, only 216 pairs suffice for Algorithm MK 1. The
theoretical curves shown in the figure were plotted by computing the gain using
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Fig. 2. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

the exact expression for M∗ derived in Theorem 1 and using the approximation
from Corollary 1. Both fit nicely with the experimental results.

Note, that the attack presented in this section is just a proof of concept,
even higher gains would be possible with more optimized attacks. For a more
detailed discussion of the technical aspects playing a role in the implementation
of Algorithm MK 1, we refer to App. B.

4.2 Attack Algorithm MK 2

In this section, we discuss the experimental results for the generalization of Mat-
sui’s Algorithm 2 using multiple linear approximations (called Attack Algorithm
MK 2 ). We simulated the attack algorithm on 8 rounds of DES and compared
the results to the gain of the corresponding Algorithm 2 attack described in
Matsui’s paper [9].

Our attack uses eight linear approximations spanning six rounds with a total
capacity c̄2 = 2−11.9. In order to compute the parity bits of these equations,
eight 6-bit subkeys need to be guessed in the first and the last rounds (how this
is done in practice is explained in App. B). Fig. 3 compares the gain of the attack
to Matsui’s Algorithm 2, which uses the two best approximations (c̄2 = 2−13.2).
For the same amount of data, the multiple linear attack clearly achieves a much
higher gain. This reduces the complexity of the search phase by multiple orders
of magnitude. On the other hand, for the same gain, the adversary can reduce
the amount of data by at least a factor 2. For example, for a gain of 12 bits, the
data complexity is reduced from 217.8 to 216.6. This is in a close correspondence
with the ratio between the capacities. Note that both simulations were carried
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Fig. 3. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

out under the assumption of independent subkeys (this was also the case for
the simulations presented in [9]). Without this assumption, the gain will closely
follow the graphs on the figure, but stop increasing as soon as the gain equals
the number of independent key bits involved in the attack.

As in Sect. 4.1 our goal was not to provide the best attack on 8-round DES,
but to show that Algorithm-2 style attacks do gain from the use of multiple linear
approximations, with a data reduction proportional to the increase in the joint
capacity. We refer to App. B for the technical aspects of the implementation of
Algorithm MK 2.

4.3 Capacity – DES Case Study

In Sect. 3 we argued that the minimal amount of data needed to obtain a certain
gain compared to exhaustive search is determined by the capacity c̄2 of the linear
approximations. In order to get a first estimate of the potential improvement of
using multiple approximations, we calculated the total capacity of the best m
linear approximations of DES for 1 ≤ m ≤ 216. The capacities were computed
using an adapted version of Matsui’s algorithm (see [1]). The results, plotted for
different number of rounds, are shown in Fig. 4 and 5, both for approximations
restricted to a single S-box per round and for the general case. Note that the
single best approximation is not visible on these figures due to the scale of the
graphs.

Kaliski and Robshaw [5] showed that the first 10 006 approximations with a
single active S-box per round have a joint capacity of 4.92 · 10−11 for 14 rounds



On Multiple Linear Approximations 15

Fig. 4. Capacity (14 rounds). Fig. 5. Capacity (16 rounds).

of DES6. Fig. 4 shows that this capacity can be increased to 4 · 10−10 when
multiple S-boxes are allowed. Comparing this to the capacity of Matsui’s best
approximation (c̄2 = 1.29·10−12), the factor 38 gained by Kaliski and Robshaw is
increased to 304 in our case. Practical techniques to turn this increased capacity
into an effective reduction of the data complexity are presented in this paper,
but exploiting the full gain of 10 000 unrestricted approximations will require
additional techniques. In theory, however, it would be possible to reduce the
data complexity form 243 (in Matsui’s case, using two approximations) to about
236 (using 10 000 approximations).

In order to provide a more conservative (and probably rather realistic) es-
timation of the implications of our new attacks on full DES, we searched for
14-round approximations which only require three 6-bit subkeys to be guessed
simultaneously in the first and the last rounds. The capacity of the 108 best
approximations satisfying this restriction is 9.83 · 10−12. This suggests that an
MK 2 attack exploiting these 108 approximations might reduce the data com-
plexity by a factor 4 compared to Matsui’s Algorithm 2 (i.e., 241 instead of 243).
This is comparable to the Knudsen-Mathiassen reduction [6], but would preserve
the advantage of being a known-plaintext attack rather than a chosen-plaintext
one.

Using very high numbers of approximations is somewhat easier in practice
for MK 1 because we do not have to impose restrictions on the plaintext and
ciphertext masks (see App. B). Analyzing the capacity for the 10 000 best 16-
round approximations, we now find a capacity of 5 · 10−12. If we restrict the
complexity of the search phase to an average of 243 trials (i.e., a gain of 12 bits),
we expect that the attack will require 241 known plaintexts. As expected, this
theoretical number is larger than for the MK 2 attack using the same amount
of approximations.

5 Future Work

In this paper we proposed a framework which allows to use the information
contained in multiple linear approximations in an optimal way. The topics below
are possible further improvements and open questions.

6 Note that Kaliski and Robshaw calculated the sum of squared biases:
∑

ε2j = c̄2/4.
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Application to 16-round DES. The results in this paper suggest that Algo-
rithms MK 1 and MK 2 could reduce the data complexity to 241 known
plaintexts, or even less when the number of approximations is further in-
creased. An interesting problem related to this is how to merge multiple lists
of key classes (possibly with overlapping key-bits) efficiently.

Application to AES. Many recent ciphers, e.g., AES, are specifically designed
to minimize the bias of the best approximation. However, this artificial flat-
tening of the bias profile comes at the expense of a large increase in the
number of approximations having the same bias. This suggests that the gain
made by using multiple linear approximations could potentially be much
higher in this case than for a cipher like DES. Considering this, we expect
that one may need to add a few rounds when defining bounds of provable se-
curity against linear cryptanalysis, based only on best approximations. Still,
since AES has a large security margin against linear cryptanalysis we do not
believe that linear attacks enhanced with multiple linear approximations will
pose a practical threat to the security of the AES.

Performance of Algorithm MD. Using a very high number of independent
approximations seems impractical in Algorithms MK 1 and MK 2, but could
be feasible with Algorithm MD described in App. B.3. Additionally, this
method would allow to replace the multiple linear approximations by multi-
ple linear hulls.

Success rate. In this paper we derived simple formulas for the average number
of key candidates checked during the final search phase. Deriving a simple
expression for the distribution of this number is still an open problem. This
would allow to compute the success rate of the attack as a function of the
number of plaintexts and a given maximal number of trials.

6 Conclusions

In this paper, we have studied the problem of generalizing linear cryptanalytic
attacks given m multiple linear approximations, which has been stated in 1994
by Kaliski and Robshaw [5]. In order to solve the problem, we have developed
a statistical framework based on maximum likelihood decoding. This approach
is optimal in the sense that it utilizes all the information that is present in the
multiple linear approximations. We have derived explicit and compact gain for-
mulas for the generalized linear attacks and have shown that for a constant gain,
the data-complexity N of the attack is proportional to the inverse joint capacity
c̄2 of the multiple linear approximations: N ∝ 1/c̄2. The gain formulas hold for
the generalized versions of both algorithms proposed by Matsui (Algorithm 1
and Algorithm 2).

In the second half of the paper we have proposed several practical methods
which deliver the theoretical gains derived in the first part of the paper. We
have proposed a key-recovery algorithm MK 1 which has a time complexity
O(m/c̄2 +m · |Z|) and a data complexity O(1/c̄2), where |Z| is the number of
solutions of the system of m equations defined by the linear approximations. We
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have also designed an algorithm MK 2 which is a direct generalization of Matsui’s
Algorithm 2, as described in [9]. The performances of both algorithms are very
close to our theoretical estimations and confirm that the data-complexity of the
attack decreases proportionally to the increase in the joint capacity of multiple
approximations. We have used 8-round DES as a standard benchmark in our
experiments and in all cases our attacks perform significantly better than those
given by Matsui. However our goal in this paper was not to produce the most
optimal attack on DES, but to construct a new cryptanalytic tool applicable to
a variety of ciphers.
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A Proofs

A.1 Proof of Corollary 1

Corollary 1. If |Z| is sufficiently large, the gain derived in Theorem 1 can
accurately be approximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−

√
N · c̄2

2

)
+

1
|Z|

]
, (11)

where c̄2 =
∑m

j=1 c
2
j is called the total capacity of the m linear characteristics.

Proof. In order to show how (11) is derived from (8), we just need to construct
an approximation for the expression

1
|Z∗|

∑

z∈Z∗
Φ

(
−
√
N · |cz − cz∗ |

2

)
=

1
|Z∗|

∑

z∈Z∗
Φ

(
−

√
N/4 · |cz − cz∗ |2

)
. (12)

We first define the function f(x) = Φ(−
√
N/4 · x). Denoting the average value

of a set of variables by E[·] = ·̂, we can reduce (12) to the compact expression
E[f(x)], with x = |cz −cz∗ |2. By expanding f(x) into a Taylor series around the
average value x̂, we find

E[f(x)] = f(x̂) + 0 + f ′′(x̂) · E[(x− x̂)2] + . . . .

Provided that the higher order moments of x are sufficiently small, we can use
the approximation E[f(x)] ≈ f(x̂). Exploiting the fact that the jth coordinate
of each vector cz is either cj or −cj, we can easily calculate the average value x̂:

x̂ =
1

|Z∗|
∑

z∈Z∗
|cz − cz∗ |2 = 2 · |Z|

|Z∗|

m∑

j=1

c2j .

When |Z| is sufficiently large (say |Z| > 28), the right hand part can be ap-
proximated by 2 ·

∑m
j=1 c

2
j = 2 · c̄2 (remember that Z∗ = Z \ {z∗}, and thus

|Z∗| = |Z| − 1). Substituting this into the relation E[f(x)] ≈ f(x̂), we find

1
|Z∗|

∑

z∈Z∗
Φ

(
−
√
N · |cz − cz∗ |

2

)
≈ Φ

(
−

√
N · c̄2

2

)
.

By applying this approximation to the gain formula derived in Theorem 1, we
directly obtain expression (11). 	
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A.2 Gain Formulas for the Algorithm-2-Style Attack

With the modified definitions of Z and cz given in Sect. 3.3, Theorem 1 can
immediately be applied. This results in the following corollary.

Corollary 2. Given m approximations and N independent pairs (Pi, Ci), an
adversary can mount an Algorithm-2-style linear attack with a gain equal to:

γ = − log2

[
2 · 1

|Z|
∑

z∈Z∗
Φ

(
−
√
N · |cz − cz∗ |

2

)
+

1
|Z|

]
. (13)

The formula above involves a summation over all elements of Z∗. Motivated
by the fact that |Z∗| = |ZO| · |ZI | − 1 is typically very large, we now derive
a more convenient approximated expression similar to Corollary 1. In order to
do this, we split the sum into two parts. The first part considers only keys
z ∈ Z∗

1 = Z1 \ {z∗} where Z1 = {z | zO = z∗O}; the second part sums over
all remaining keys z ∈ Z2 = {z | zO �= z∗O}. In this second case, we have that
|cz − cz∗ |2 = 2 ·

∑m
j=1 c

2
j = 2 · c̄2 for all z ∈ Z2, such that

∑

z∈Z2

Φ

(
−
√
N · |cz − cz∗ |

2

)
= |Z2| · Φ

(
−

√
N · c̄2

2

)
.

For the first part of the sum, we apply the approximation used to derive Corol-
lary 1 and obtain a very similar expression:

∑

z∈Z∗
1

Φ

(
−
√
N · |cz − cz∗ |

2

)
≈ |Z∗

1 | · Φ
(
−

√
N · c̄2

2

)
.

Combining both result we find the counterpart of Corollary 1 for an Algorithm-
2-style linear attack.

Corollary 3. If |Z| is sufficiently large, the gain derived in Theorem 2 can
accurately be approximated by

γ ≈ − log2

[
2 · |Z| − 1

|Z| · Φ
(
−

√
N · c̄2

2

)
+

1
|Z|

]
, (14)

where c̄2 =
∑m

j=1 c
2
j is the total capacity of the m linear characteristics.

Notice that although Corollary 1 and 3 contain identical formulas, the gain of
the Algorithm-2-style linear attack will be significantly larger because it depends
on the capacity of linear characteristics over r − 2 rounds instead of r rounds.

B Discussion – Practical Aspects

When attempting to calculate the optimal estimators derived in Sect. 3, the
attacker might be confronted with some practical limitations, which are often
cipher-dependent. In this section we discuss possible problems and propose ways
to deal with them.
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B.1 Attack Algorithm MK 1

When estimating the potential gain in Sect. 3, we did not impose any restrictions
on the number of approximationsm. However, while it does reduce the complex-
ity of the search phase (since it increases the gain), having an excessively high
number m increases both the time and the space complexity of the distillation
and the analysis phase. At some point the latter will dominate, cancelling out
any improvement made in the search phase.

Analyzing the complexities in Table 1, we can make a few observations. We
first note that the time complexity of the distillation phase should be compared
to the time needed to encrypt N ∝ 1/c̄2 plaintext–ciphertext pairs. Given that
a single counting operation is much faster than an encryption, we expect the
complexity of the distillation to remain negligible compared to the encryption
time as long as m is only a few orders of magnitude (say m < 100).

The second observation is that the number of different key classes |Z| clearly
plays an important role, both for the time and the memory complexities of the
algorithm. In a practical situation, the memory is expected to be the strongest
limitation. Different approaches can be taken to deal with this problem:

Straightforward, but inefficient approach. Since the number of different
key classes |Z| is bounded by 2m, the most straightforward solution is to limit
the number of approximations. A realistic upper bound would be m < 32.
The obvious drawback of this approach is that it will not allow to attain
very high capacities.

Exploiting dependent key masks. A better approach is to impose a bound
on the number l of linearly independent key masks χj

K . This way, we limit
the memory requirements to |Z| = 2l, but still allow a large number of ap-
proximations (for ex. a few thousands). This approach restricts the choice
of approximations, however, and thus reduces the maximum attainable ca-
pacity. This is the approach taken in Sect. 4.1. Note also that the attack
described in [5] can be seen as a special case of this approach, with l = 1.

Merging separate lists. A third strategy consists in constructing separate
lists and merging them dynamically. Suppose for simplicity that the m key
masks χj

K considered in the attack are all independent. In this case, we can
apply the analysis phase twice, each time using m/2 approximations. This
will result in two sorted lists of intermediate key classes, both containing
2m/2 classes. We can then dynamically compute a sorted sequence of final
key classes constructed by taking the product of both lists. The ranking of
the sequence is determined by the likelihood of these final classes, which is
just the sum of the likelihoods of the elements in the separate lists. This
approach slightly increases7 the time complexity of the analysis phase, but
will considerably reduce the memory requirements. Note that this approach
can be generalized in order to allow some dependencies in the key masks.

7 In cases where the gain of the attack is several bits, this approach will actually
decrease the complexity, since we expect that only a fraction of the final sequence
will need to be computed.
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B.2 Attack Algorithm MK 2

We now briefly discuss some practical aspects of the Algorithm-2-style multiple
linear attack, called Attack Algorithm MK 2. As discussed earlier, the ideas of
the attack are very similar to Attack Algorithm MK 1, but there are a number of
additional issues. In the following paragraphs, we denote the number of rounds
of the cipher by r.

Choice of characteristics. In order to limit the amount of guesses in rounds 1
and r, only parts of the subkeys in these rounds will be guessed. This restricts
the set of useful r − 2-round characteristics to those that only depend on
bits which can be derived from the plaintext, the ciphertext, and the partial
subkeys. This obviously reduces the maximum attainable capacity.

Efficiency of the distillation phase. During the distillation phase, all N
plaintexts need to be analyzed for all |ZO| guesses zO. Since |ZO| is rather
large in practice, this could be very computational intensive. For example,
a naive implementation would require O(N · |ZO|) steps and even Matsui’s
counting trick would use O(N + |ZO|2) steps. However, the distillation can
be performed in O(N + |ZO|) steps by gradually guessing parts of zO and
re-processing the counters.

Merging Separate lists. The idea of working with separate lists can be ap-
plied here just as for MK 1.

Computing distances. In order to compare the likelihoods of different keys,
we need to evaluate the distance |ĉ − cz|2 for all classes z ∈ Z. The vectors
ĉ and cz are both |ZO| ·m-dimensional. When calculating this distance as
a sum of squares, most terms do not depend on z, however. This allows the
distance to be computed very efficiently, by summing only m terms.

B.3 Attack Algorithm MD (distinguishing/key-recovery)

The main limitation of Algorithm MK 1 and MK 2 is the bound on the number
of key classes |Z|. In this section, we show that this limitation disappears if
our sole purpose is to distinguish an encryption algorithm Ek from a random
permutation R. As usual, the distinguisher can be extended into a key-recovery
attack by adding rounds at the top and at the bottom.

If we observe N plaintext–ciphertext pairs and assume for simplicity that the
a priori probability that they were constructed using the encryption algorithm
is 1/2, we can construct a distinguishing attack using the maximum likelihood
approach in a similar way as in Sect. 3. Assuming that all secret keys k are equally
probable, one can easily derive the likelihood that the encryption algorithm was
used, given the values of the counters t:

LE(t) ≈ 1
2m

m∏

j=1

(
N

tj

)
·
(
p

tj

j · qN−tj

j + q
tj

j · pN−tj

j

)
.

This expression is correct if all text masks and key masks are independent, but
is still expected to be a good approximation, if this assumption does not hold
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(for the reasons discussed in Sect. 3.4). A similar likelihood can be calculated
for the random permutation:

LR(t) =
m∏

j=1

(
N

tj

)
·
(

1
2

)N

.

Contrary to what was found for Algorithm MK 1, both likelihoods can be com-
puted in time proportional to m, i.e., independent of |Z|. The complete distin-
guishing algorithm, called Attack Algorithm MD consists of two steps:

Distillation phase. Obtain N plaintext–ciphertext pairs (Pi, Ci). For 1 ≤ j ≤
m, count the number tj of pairs satisfying Pi[χ

j
P ] ⊕ Ci[χ

j
C ] = 0.

Analysis phase. Compute LE(t) and LR(t). If LE(t) > LR(t), decide that
the plaintexts were encrypted with the algorithm Ek (using some unknown
key k).

The analysis of this algorithm is a matter of further research.

C Previous Work: Linear Cryptanalysis

Since the introduction of linear cryptanalysis by Matsui [8–10], several gen-
eralizations of the linear cryptanalysis method have been proposed. Kaliski-
Robshaw [5] suggested to use many linear approximations instead of one, but
did provide an efficient method for doing so only for the case when all the ap-
proximations cover the same parity bit of the key. Realizing that this limited
the number of useful approximations, the authors also proposed a simple (but
somewhat inefficient) extension to their technique which removes this restriction
by guessing a relation between the different key bits. The idea of using non-
linear approximations has been suggested by Knudsen-Robshaw [7]. It was used
by Shimoyama-Kaneko [13] to marginally improve the linear attack on DES.
Knudsen-Mathiassen [6] suggest to convert linear cryptanalysis into a chosen
plaintext attack, which would gain the first round of approximation for free.
The gain is small, since Matsui’s attack gains the first round rather efficiently
as well.

A more detailed overview of the history of linear cryptanalysis can be found
in the extended version of this paper [1].
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