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Abstract. Several clustering algorithms equipped with pairwise hard
constraints between data points are known to improve the accuracy of
clustering solutions. We develop a new clustering algorithm that extends
mixture clustering in the presence of (i) soft constraints, and (ii) group-
level constraints. Soft constraints can reflect the uncertainty associated
with a priori knowledge about pairs of points that should or should not
belong to the same cluster, while group-level constraints can capture
larger building blocks of the target partition when afforded by the side
information. Assuming that the data points are generated by a mixture
of Gaussians, we derive the EM algorithm to estimate the parameters of
different clusters. Empirical study demonstrates that the use of soft con-
straints results in superior data partitions normally unattainable without
constraints. Further, the solutions are more robust when the hard con-
straints may be incorrect.

1 Introduction

Modern cluster analysis [1] is largely driven by the quest for scalable and more ro-
bust clustering algorithms capable of detecting clusters with diverse shapes and
densities. Data clustering is an ill-posed problem when the associated objective
function is not well defined, leading to fundamental limitations of generic clus-
tering algorithms. Multiple clustering solutions may seem to be equally plausible
due to an inherent arbitrariness in the notion of a cluster. Any side (auxiliary)
information must be used in order to reduce this degeneracy of possible solutions
and improve the quality of clustering.

Unlike supervised classification, only recently some attention has been given
to the role of prior information in data clustering. Prior information can be avail-
able in several forms: labelled data, known data groupings or associations, addi-
tional inter-pattern similarity estimates, feature relevance, object ranks, etc. We
are primarily interested in various inter-point constraints that can complement
already known pattern or proximity matrix. For example, pairwise constraints
on the data points tell us which pairs of points must be placed in the same
cluster (positive constraint) or different clusters (negative constraint). Ideally,
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the target partition must satisfy all the given data constraints. Hence, a clus-
tering algorithm should be driven by attribute (feature) values as well as the
constraint information, such that the clustering solution is biased in favor of the
constraints.

Constraints are naturally available in many clustering applications. For in-
stance, in image segmentation one can have partial grouping cues for several
regions to assist in the overall clustering [2]. Clustering of customers in market-
basket database can have multiple records pertaining to the same person. In
video retrieval tasks different users may provide alternative annotations of im-
ages in small subsets of a large database [3]. Such groupings may be used for
semi-supervised clustering of the entire database.

The prior knowledge was provided at the instance level in the form of posi-
tive (must-link) and negative (cannot-link) pairwise constraints in [4, 5]. A con-
strained k-means algorithm is proposed in [4]: must-link data points are replaced
by their centroid, and a data point is assigned to the closest cluster center that
does not violate any constraints. “Soft” constraints were introduced in the disser-
tation of Wagstaff [6], where a heuristic is employed to assign a point to a cluster
that gets the lowest penalty for constraint violations. Similarly, the constrained
version of COBWEB algorithm is considered in [5]. Constrained modification of
the complete-link algorithm was proposed in [7]. Spectral clustering is modified
in [8] to work with constraints. Again, a heuristic procedure augments the affin-
ity matrix derived from feature space by the constraints. The EM algorithm for
mixture model clustering with hard data constraints was developed in [9] and
was shown to be superior to the constrained k-means algorithm [4]. Constraints
were also incorporated into image segmentation algorithms using graph-based
clustering in [10, 2]. Recently, Xing et al. [11] proposed a way to perform clus-
tering by metric learning using side-information: metric can be learned from the
constraints and then applied globally in the feature space to obtain the final
clustering. Correlation clustering [12] uses only the positive and negative con-
straints to partition the vertices in a graph. It has been extended to cope with
soft constraints [13, 14].

The main contribution of this paper is to adopt soft constraints in mixture
(model-based) clustering. Each constraint becomes a real valued variable in be-
tween 0 and 1. The value of the constraint reflects the certainty of the prior
knowledge that a pair of objects comes from the same cluster. Variable strength
of the constraint allows for better control of clustering bias introduced by the
constraints. Our main clustering algorithm is based on a generative model, where
constraint variables are explicitly identified with the nodes in the corresponding
Bayesian network. In this sense, we extend the work by Shental et al. [9] whose
method included only the hard constraints into the mixture model clustering.
To account for soft constraints, we use a more sophisticated graphical model,
yet preserve linear complexity of the inference process (clustering) in the model.
Coupled with mixture clustering, soft constraints are not strictly enforced but
rather serve as prior values that can be changed by the observed data. Mutually
conflicting “soft”constraints are allowed. Moreover, our model can operate with
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group constraints, namely we can specify the certainty of each of several points
belonging to the same cluster (not in a pairwise manner).

2 Clustering with Constraints

Consider a data set D = {y1, . . . ,yN} of size N . Let zi ∈ {1, . . . , K} be the
(hidden) cluster label of point yi, where K is the number of clusters. Suppose
we want to incorporate the constraint that the first three points y1, y2 and y3

are in the same group and should belong to the same cluster. This can be done by
setting z1, z2 and z3 to a common value w1, z1 = w1, z2 = w1 and z3 = w1. Here,
w1 is an auxiliary random variable that serves as a “group-label”1 – cluster label
of the group {y1,y2,y3}. The likelihood function for the observed data D can
be derived based on the group membership assumptions, and the EM algorithm
is used for parameter estimation [9].

Note that the equalities z1 = w1 and z2 = w1 mean that this pairwise con-
straint is “hard”, namely, the points y1 and y2 are certain to have the same
cluster label. In general, this may not be true. Alternatively, we require zi = wl

to be true only with a probability γil. The value of γil ∈ [0, 1] can be interpreted
as the strength of the constraint that yi belongs to the l-th group. To have a
logically consistent framework, any yi without any associated constraint infor-
mation should be equivalent to γil = 0, ∀l. This ensures uniform treatment for
data points with and without constraints. If γil = 0, zi is chosen independently
of the other group and cluster labels.

Formally, let αj be the prior probability for the j-th mixture component
qj(y; θj), which is parameterized by θj . For simplicity, we write qj(y) = qj(y; θj).
Let wl (l = 1, . . . , L) be the set of (hidden) group-labels. Each group label can
take a value from 1 to K. Let vi be a discrete random variable that takes value in
{0, . . . , L} and determines how zi is generated. If vi = l, the point yi participates
in the l-th group and thus zi = wl and P (vi = l) = γil. When vi = 0, label zi

is generated independently according to the prior probabilities {αj}. Hence, the
model for yi is specified as follows:

P (wl = j) = αj , l ∈ {1, . . . , L}, j ∈ {1, . . . , K} (1)
P (vi = l) = γil, i ∈ {1, . . . , N}, l ∈ {1, . . . , L} (2)

P (zi = j|vi, w1, . . . , wL) =

{
αj if vi = 0
δwl,j if vi = l

(3)

p(y|z = j) = qj(y), (4)

where δij is the Kronecker delta. An example of such model with seven data
points and three group labels is shown in Figure 1. Typically, when a user speci-
fies γil, many of them are set to zero. It means that the label zi is only tied to a
small number of group-labels. The case when zi has more than one group-label
corresponds to the existence of possibly incompatible constraint, because zi can
1 It corresponds to the term “chunklet” defined in [9].
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Fig. 1. An example of the graphical model for the proposed soft constraint. There
are seven data points {y1, y2, . . . ,y7} with three group-labels {w1, w2, w3}. There are
competing constraints for z5. Note that each connected component in the graph is
a polytree and hence the belief propagation algorithm can be used. The number of
clusters, K, determine the possible values that wl and zi can assume.

belong to more than one group. This probabilistic model can be given generative
interpretation (Figure 1). First, the L group-labels {wl} are generated according
to the component prior probabilities {αj}. For each i ∈ {1, . . . , N}, we generate
vi with the probabilities {γil}. The outcome determines how zi gets its value: if
vi is between 1 and L, zi is set to wl; otherwise, zi is generated independently
according to {αj}. Based on the value of zi, the point yi is generated from qzi(y).

2.1 Constraints Specification

One important advantage of adopting soft constraints is its robustness. It is usu-
ally difficult to obtain definitive statements on the properties of patterns in real
world applications. Thus a practical clustering algorithm using constraint infor-
mation should tolerate noisy constraints. However, a single erroneous “cannot-
link” constraint can break down the constrained k-means algorithm in [4]. The
dissimilarity values between multiple items can be drastically altered by a single
bad constraint. In our proposed approach, zi = wl is required to be true only
with a certain probability. This flexibility protects us from disastrous clustering
solution when some constraints may be wrong. Although the algorithm in [9]
also does not break down in view of erroneous constraints, later in section 3 we
shall demonstrate that the use of soft constraints in the proposed algorithm can
lead to superior results when the constraints are noisy.

Different constraints are specified by assigning different values to γil, which
in turn specifies the topology of the graphical model by the sparsity of the ma-
trix {γil}. Note that we have made the abstraction that the group-label may not
correspond to the label of any particular data point. However, it is easy to en-
force the group-label wl to be the same as the cluster label zi by setting γil = 1.
Equivalence constraint information between yi and yj can then be incorporated
by setting γjl to be the confidence that they are in the same cluster. The ab-
straction of group-label is useful in the distributed learning scenario described
in [9]. Different teachers are asked to assign group labels to different subsets of
the data. Further, suppose the teachers also provide confidence values in their
assignment. Let wl correspond to a group labelled by a certain teacher. The
confidence that yi belongs to the l-th group is represented by γil.
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2.2 Parameter Estimation

The model parameters {αj} and {θj} can be estimated by maximizing the data
log-likelihood function. Note that γil values are provided by the user and do
not need to be estimated. Since {zi}, {vi} and {wl} are hidden variables, this
is a missing data problem and the EM algorithm can be used. We refer the
readers to texts like [15] for more details on the EM algorithm. The complete
data log-likelihood can be written as

L = log p({yi}, {zi}, {wl}, {vi})

=

{
−∞ ∃vi �= 0 : zi �= wvi∑N

i=1

(
log qzi(yi) + log γvi,i + δvi,0 log αzi

)
+

∑L
l=1 log αwl

otherwise
(5)

The data is said to be inconsistent (have zero probability) if there exists vi �=
0 such that zi �= wvi . Let θ denote the current parameter estimate. Taking
expectation of L with respect to the missing data, given θ and D, we obtain

E[log p({yi}, {zi}, {wl}, {vi})]

=
N∑

i=1

K∑
j=1

P (zi = j|{yi}) log qj(yi) +
L∑

l=1

K∑
j=1

P (wl = j|{yi}) log αj+

N∑
i=i

L∑
l=0

P (vi = l|{yi}) log γli +
N∑

i=1

K∑
j=1

P (vi = 0, zi = j|{yi}) log αj

(6)

Note that different yi’s may not be independent because they can be related
indirectly by a common wl. Also, the inconsistency of hidden data does not
depend on the parameter values. The expected value of L is computed over only
the set of consistent values of hidden variables and hence no infinite values are
encountered. The expected complete data log-likelihood can be maximized with
respect to the parameters {αj, θj} by

α̂j =
∑L

l=1 P (wl = j|{yi}) +
∑N

i=1 P (vi = 0, zi = j|{yi})∑K
j=1

(∑L
l=1 P (wl = j|{yi}) +

∑N
i=1 P (vi = 0, zi = j|{yi})

) (7)

µ̂j =
∑N

i=1 P (zi = j|{yi})yi∑N
i=1 P (zi = j|{yi})

(8)

Ĉj =
∑N

i=1 P (zi = j|{yi})(yi − µ̂j)(yi − µ̂j)T∑N
i=1 P (zi = j|{yi})

, (9)

where the j-th component is assumed to be a Gaussian with mean µj and co-
variance Cj . The parameter update in Equations (7) to (9) corresponds to the
M-step of the EM algorithm. The E-step consists of the computation of the
probabilities P (wl=j|{yi}), P (zi=j|{yi}) and P (vi=0, zi=j|{yi}). Unlike the
standard Gaussian mixture, it is not easy to express these probabilities by simple
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equations because of the interdependence of {yi} via wl. Instead, these proba-
bilities can be computed by standard Bayesian network inference algorithms like
belief propagation or junction tree. The two-variable query P (vi=0, zi=j|{yi})
can be easily handled since the node vi is a parent of zi. Because of the simplicity
of the structure of the graphical model, inference can be carried out efficiently.
In particular, the complexity is virtually the same as the standard EM algorithm
when there are no competing constraints for all the data points. This is the most
usual scenario in constraint clustering.

3 Experiments

3.1 Synthetic Data

In the first experiment, we investigate how constraint information can be used
to bias the search for the appropriate clusters. Four 2D Gaussian distributions
with mean vectors [ 1.5

2.5 ],
[ −1.5

2.5

]
,
[−1.5
−2.5

]
,
[

1.5−2.5

]
, and identity covariance matrix

are considered (Figure 2). 200 data points are generated from each of the four
Gaussians. The number of target clusters (K) is two. The two natural clusters
are recovered by the EM algorithm without any constraint (Figure 2(a)). Ten
multiple random restarts are used to avoid poor local minima.

Now suppose that prior information favors two vertical clusters instead of
the more natural horizontal clusters. This prior information can be incorporated
by constraining a data point in the leftmost (rightmost) top cluster to belong to
the same cluster as a data point on the leftmost (rightmost) bottom cluster. We
select 50 points randomly (L = 50) and link them to seven different points. To
create more realistic constraints, a link can be absent with a probability of 0.05.
The strength of the constraint is randomly drawn from the interval [0.6,1]. To
demonstrate the importance of soft constraints, the constraints are corrupted
with some noise: a data point is connected to a randomly chosen point with
probability one minus the constraint strength. An example of the constraints is
shown in Figure 2(b).

The proposed algorithm is run using the specified soft constraints and the
obtained clustering solution is shown in Figure 2(c). The constraint information
indeed helps to detect the preferred cluster structure, instead of natural clus-
ters in Figure 2(a) when the constraints are absent. The soft constraints can
be converted to hard constraints by changing all nonzero γli to 1. In this case,
the proposed algorithm becomes equivalent to the algorithm in [9] for positive
constraints. The result of using hard constraints is shown in Figure 2(d). While
the estimated cluster structure is close to what we seek, the noise in the con-
straints notably distorts the detected clusters. This confirms that the use of soft
constraints can significantly improve the robustness of mixture model clustering
with hard constraints.

3.2 Real World Data Set

In the second experiment, we investigate how constraints can assist in obtain-
ing superior cluster boundaries. Two data sets from the UCI machine learning
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(a) Result without constraints (b) Soft constraints

(c) Result of soft constraints (d) Result of hard constraints

Fig. 2. The results of soft constraint clustering on a synthetic data set of 800 points.
The ellipses represent the estimated Gaussian components. The solid lines in (b) cor-
respond to the “strong” constraints, while the dotted lines correspond to the “weak”
constraints.

repository are considered. The Iris data set (iris) has 150 points in 4D from 3
classes. The wine recognition data set2 (wine) has 178 points with 13 features
from 3 classes. For each data set, half of the points are used for training (learning
the clusters), and the rest for testing (comparing the clusters obtained with the
ground truth). A Gaussian is fit to each of the classes and the ambiguous data
points (5% of the total number of data) are identified by examining the class
posterior probabilities and the true class labels. The ambiguous data points are
then constrained to be in the same cluster as the points near the center of the
class. Examples of ambiguous data points are shown in Figure 3. For each data
set, we randomly split them into two parts. As in the previous experiment, the
strength of the constraint is drawn randomly from [0.6,1], and the constraint
is additionally corrupted by noise. The clusters obtained (with soft constraints)
are used to “classify” the other half of the data points. The experiment is re-

2 The variables of wine are standardized to have means equal to zero and variances
equal to one.
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Fig. 3. The iris data set projected to the first two principal components. The eight
ambiguous data points are circled.

peated 20 times. The error rates of “no constraint’, “soft constraint” and “hard
constraint” are 6.7%, 2.7% and 8% for iris, and 5.6%, 3.4% and 3.4% for wine.
For both the data sets, soft constraints yield clusters that are at least as good
as clusters obtained by hard constraints 19 times out of 20, with 8 ties for iris
and 6 ties for wine. Soft constraints also give better clusters than no constraints
(18 out of 20 for iris and 19 out of 20 for wine), with 6 ties for iris and 7 ties
for wine. Soft constraint information indeed helps to identify the target clusters
more accurately and tolerates potentially erroneous constraints.

4 Conclusion and Future Work

We have proposed a new EM algorithm for clustering in the presence of soft
constraints. Experimental results demonstrate that the proposed approach is
promising and can be superior to hard constraints in the presence of noise. One
notable property of the proposed approach is its efficiency. Despite the apparent
increase in the complexity of the model, no additional parameters need to be
estimated when compared with a standard mixture of Gaussians. Also, the infer-
ence procedure is of similar complexity as the standard EM algorithm when each
data point is associated with few group-labels. One limitation of the proposed
algorithm is that it does not deal with the negative constraints. In principle,
the graphical model can be extended in a manner similar to [9] to include the
negative constraints. We choose not to do so, however, for two reasons. First, the
addition of negative constraints results in only a slight improvement as reported
in [9]. Secondly, the presence of negative constraints can increase the complexity
of the graphical model and hence increase the inference complexity.

There are several directions for future work. The total strength of constraint
information is currently determined by the number of constrained data points.
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This can be undesirable as a large amount of data can dilute the constraint
information. This relates to the fundamental issue of how to appropriately weight
the information contained in the data and the constraints. One possibility is
to include an additional penalty term in the likelihood function that balances
the posterior probabilities of cluster labels with the constraints. The number of
cluster, K, is assumed to be given. Since we are using a mixture model, the
idea of minimum message length described in [16] can be adopted to the current
algorithm to estimate K.
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