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Abstract. In recent years a number of authors have suggested that
combining classifiers within local regions of the measurement space might
yield superior classification performance to rigid global weighting
schemes. In this paper we describe a modified version of the CART algo-
rithm, called ARPACC, that performs local classifier combination. One
obstacle to such combination is the fact that the ‘optimal’ covariance
combination results originally assumed only two classes and classifier
unbiasedness. In this paper we adopt an approach based on minimiz-
ing the Brier score and introduce a generalized matrix inverse solution
for use in cases where the error matrix is singular. We also report some
preliminary experimental results on simulated data.
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1 Introduction

The notion that the combination of classifiers based on local accuracy estimates
may prove superior to an ensemble based on globally defined weights is one that
has emerged several times in recent years ([10],[9],[13],[2]), though as yet there
would seem to exist little understanding of why such methods should work in
practice beyond the purely intuitive, and no algorithmic method for defining a
useful partition of the feature space for local combination. In this paper we pro-
pose using a modified version of the CART tree algorithm [3] for this purpose.
We combine the classifiers in our ensemble locally, by assigning separate weight-
ing schemes to each leaf node of our ‘combination tree’. Note the distinction
between this idea and the model trees proposed by other authors [6], where local
models are fitted within nodes of a tree; we assume that our ensemble classifiers
are induced using the full design set, and given this our aim is to combine their
output in the most efficient way possible.

Our algorithm, called ARPACC (Automatic Recursive Partitioning Algo-
rithm for Classifier Combination), relies on the use of the ‘optimal’ results for
the weighted sum combination of classifiers through the minimisation of com-
bined error covariance. We have extended these results in a number of ways.
We drop the assumption of classifier unbiasedness with respect to the training
data, and propose a natural extension to the case of more than two classes. We
motivate this through the use of the Brier score measure of classifier fit. We
also introduce a solution for the optimal weights in cases where the error ma-
trix is singular, together with a necessary and sufficient condition for this to be
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true (singular error matrices become more common as we consider smaller and
smaller subsamples of the design data).

Our intention is to increase the flexibility of our combination scheme and
thereby exploit a corresponding decrease in the bias of the combined classifier.
The computation of the optimal weighting scheme across a node depends, how-
ever, upon our ability to estimate the mean error of a classifier across the corre-
sponding subsample of the design data. As we recursively partition our training
space the variance of these estimates is bound to increase, due to the diminishing
size of the sample over which it is calculated. This is the familiar bias-variance
tradeoff that affects most recursive classification methods. We have observed,
however, that ARPACC trees tend to be robust to overfitting especially when
combining classifiers that tend naturally to underfit. This is most likely to occur
in feature spaces of high dimensionality, or when the number of class labels is
large.

In Section 2 of this paper we describe the optimal combination scheme ar-
gument that we use to calculate weighting schemes for terminal nodes. Section
3 details the ARPACC algorithm and the results of some simulated trials, while
Section 5 provides a visual illustration of local classifier combination.

2 Optimal Weighted-Sum Combination

Suppose that we are presented with a supervised classification problem in some
measurement space x, where for a fixed location the posterior class probability of
observing class c is generated by some underlying target function f(c|x) taking
real values in [0, 1]. Suppose also that we have an ensemble of classifiers f̂k(c|x)
that are approximations to this underlying function. Our goal is to combine these
classifiers in such a way as to ensure optimal classifier performance, measured
in terms of test error rate on future observations. Kittler [11] has demonstrated
that one of the most robust combination strategies in this circumstance is the
weighted sum rule, or

f̂(c|x) =
K∑

k=1

wkf̂k(c|x).

where the wk are positive classifier weights to be determined. It is natural to
treat this as a regression problem and adopt the strategy of minimizing the total
mean-squared distance across the training data between each observed value and
our approximation,

1
N

∑

c

N∑

n=1

(
δ(c|xn) − f̂(c|xn)

)2

,

where δ(c|xn) = 1 if training example n has class c, and 0 otherwise. The above
is the Brier or quadratic score, a common measure of classifier performance. The
Brier score is an estimate of the Brier Inaccuracy over the full space χ:

Eχ

∑

c

Eδ|c,x

(
δ(c|x) − f̂(c|x)

)2

.
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It can be shown (see [7]) that minimizing the Brier inaccuracy is equivalent to
minimising

Eχ

∑

c

(f(c|x) − f̂(c|x))2,

which is the mean squared error of our f̂ relative to f . This is important because
it means that in the absence of any knowledge about f(c|x), we can use our
observed design set class labels as a proxy in solving for the optimal weights.
Of course, any solution derived in this way is only ‘optimal’ with respect to the
training data: as always we rely on a large sample that is in some sense a good
reflection of the target function.

If we denote the ‘error’ of a particular classifier within our ensemble relative to
a specific training object as ek(xn) = δ(c|xn)−f̂k(xn) for class c, then minimising
the Brier score of our ensemble is the same as minimising

1
N

N∑

n=1

∑

c

[
K∑

k=1

wkek(xn)

]2

,

which may be written in matrix form as w′Ew, where w is a vector of weights
and the ijth entry of the square ‘error’ matrix E, eij = 1

N

∑
n [eiej ]. Prior

applications of this method set out to minimize either the total error variance of
the combined classifier, or the total mean square error of a two class combined
classifier. By adopting the multi-class Brier score, we are able to extend the
solution to more than two classes in a natural way. We assume that each class
label has its own separate associated weighting scheme, so that by minimizing
the error of the combined classifier for each δ(c|x) we are minimizing the total
Brier score.

The solution for the weights vector was first derived by Bates and Granger in
1969 [1] for ensembles of size two, and extended to ensembles of more than two
classifiers by Dickinson [4]. Dickinson began by assuming that the errors were
normally distributed with mean zero, ie. that Eχek = 0 ∀ k, and this assumption
leads to a solution that minimizes the error variance of the combined classifier.
In fact the assumption is unnecessary, and for our purposes it would clearly be
restrictive. Across the global space it may be fair to assume that the expected
error of a classifier is zero with respect to the target function, but within a small
local region of that space this is very unlikely to be true.

Dropping the assumption leads us to the following revised solution for classi-
fier combination based on mean square error, derived by Hashem and Schmeiser
[8] in the context of regression neural networks. They impose the restriction
that the wk should sum to one by introducing the Lagrange multiplier λ, and
minimising the function

σ =
K∑

i,j

wiwjeij + λ

(
k∑

i=1

wi − 1

)
.
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We differentiate with respect to each of the parameters (w1, ..., wk, λ) in turn,
so that

δσ

δwi
= 2

K∑

j=1

wjeij + λ (i = 1, ..., K)

and
δσ

δλ
=

K∑

i=1

wi − 1.

Setting these equal to 0, we get
(

1′K (0)
E 1K

)(
wmin

λ/2

)
=

(
(1)
0K

)

where 1K and 0K are the column vectors of K ones and K zeros respectively,
and the notation () denotes a single integer. Thus

(
wmin

λ/2

)
=

(
1′K (0)
E 1K

)−1 (
(1)
0K

)
.

The solution to the above is given by the first entry in the inverted matrix, so:

wmin =
E−11K

1′KE−11K
.

Negative weights may arise for ensembles of more than two classifiers. In
extreme cases, this can lead to combined predictions outside the range [0, 1]. As
a stop-gap measure, we can deal with this by setting negative output predictions
to 0, and output predictions greater than 1 to 1.

In the course of our research we also extended the solution to cases where the
matrix E proves to be singular. This can frequently happen by accident, espe-
cially where component classifiers make similar predictions, or where we perform
a large number of calculations on training sets of diminishing size, as with the al-
gorithm in the next section. As we base our combination weights on smaller and
smaller subsets of the training data, the likelihood of our encountering a singular
error matrix becomes very high. Our more general solution is as follows:
If E is non-singular

wmin =
E−11K

1′KE−11K
.

If E is singular form the matrix Q = E + 1K1′K . If Q is non-singular

wmin = Q−11K .

If Q is singular

wmin =
Qg1K

1′KQg1K

where g denotes the generalized matrix inverse. We derived the following as a
necessary and sufficient condition for the matrix E to be singular. Let Ŷi denote
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the vector of predictions of ensemble classifier i on the training data and Y
denote the vector of true class labels. If the matrix E is singular, then for some
subset(s) of classifiers i ∈ S, say, there exists a linear combination

∑
i∈S siŶi

such that
(
∑

i∈S

si)Y =
∑

i∈S

siŶi.

The converse is also true.
The above condition will be met if one or more classifiers match the train-

ing data predictions exactly (but note that this does not necessarily imply that
the classifiers are identical). It will also be met if two or more classifiers, or
linear combinations of subsets of classifiers, make identical predictions (this cor-
responds to

∑
i∈S si = 0). This is most likely to happen when the number of

training samples is small, as for a fine partition of the training data.
It is also possible to show that the total squared error of the combined en-

semble is less than or equal to that of any component classifier. The proof is
similar to the proof in [5] relating to combined variance.

3 The ARPACC Algorithm

In this section we outline the results of some preliminary experiments on simu-
lated data produced using ARPACC, a modification of the CART algorithm [3]
that uses the optimal weighting results of the previous section to build classifier
combination trees.

To modify the CART algorithm to perform local classifier combination we
need to change the the splitting criterion and the calculation of node predic-
tions. Rather than associating each terminal node with a prediction based on
the assigned training data, each node is treated as a partition and is assigned
the optimal local weighting scheme for the given training sample at that node,
calculated via the expressions at the end of the previous section. The splitting
criterion is calculated by applying these weights to the predictions of the clas-
sifiers under consideration, and summing the training error of the combined
classifier.

We deal with problems of more than two classes by associating a separate set
of weights with each class (so that we might simultaneously decide that we trust
ensemble classifier A’s class 1 predictions, but assign a low weight to its class 3
predictions, for example). During splitting the total current error of the tree is
replaced by the expected Brier score across all nodes and training examples.

The chief difference between this and the standard tree classifier is that our
algorithm does not make any predictions in its own right. The model output by
ARPACC is only a framework in which global classifiers are combined locally.
This is underlined by the fact that any or all of these classifiers could themselves
be trees.

Our first simulated experiment consists of a series of trials, each comprising
five random repetitions of classifier fitting and combination. In each trial we
first fix the value of three parameters: s, the sample size for each class, d, the
dimensionality of the problem, and c, the total number of classes.
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For each class and each dimension, we generate two integer values between 1
and 100 uniformly and at random, and then generate s random normal variates
using these values as the mean and variance. These values are rounded down
to the nearest integer (to speed up computation). The resulting clusters are
rotated by forty-five degrees in consecutive pairs of dimensions. Two classifiers
are fitted to the training sample: a CART tree computed using S-Plus with the
default parameters, and Venables and Ripley’s multinomial method, computed
with S-Plus using the function multinom [12], which uses neural networks to fit
log-linear models. The CART tree stopping criterion is a node size of 5, and the
ARPACC trees are grown to a fixed size of 50 terminal nodes.

Five trials are run for each choice of parameters. The results in Table 1
below summarize the sample sizes, and the mean improvement of the global and
local combination methods over the best single-classifier test error rate, as a
percentage of points misclassified.

Table 1. Results of simulated experiments with a local combination algorithm.

Global ARPACC
Classes Dimensions Train Size Test Size Test Error Test Error

Improvement Improvement

2 2 2,000 2,000 0.00% s.d 0.14 0.16% s.d 0.13

3 3 3,000 3,000 -0.03% s.d 0.10 0.52% s.d. 0.42

5 5 5,000 5,000 1.00% s.d. 1.12 2.90% s.d. 1.55

6 4 2,000 2,000 0.42% s.d. 0.34 1.70% s.d. 0.39

10 8 2,000 2,000 1.72% s.d. 2.89 3.90% s.d. 2.00

The above results would appear to suggest that the performance of the
ARPACC tree improves as the number of dimensions and classes is increased.
We believe that this is due to the propensity of our standard classifiers to un-
derfit problems of high dimension, with the combination tree providing us with
a measured means of correcting for this underperformance.

4 Combining a Tree and a Neural Network
Using ARPACC

The aim of this section is to provide a visual representation of what an ensemble
classifier created using the ARPACC algorithm might look like. We begin by
generating 500 training and 2,000 test observations distributed uniformly in two
dimensions, and use the target probability function
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f(1|x) =
cos

(
2π

√
(x2

1 + x2
2)

)
+ 1

2

to randomly assign each observation to one of two categorical classes. Panel 1 in
Figure 1 shows how the design sample appears in two dimensional space. Panel
2 is a contour plot of the generating function f across the same range.

To our design sample we fit a CART tree, using the tree function in S-Plus,
and a neural net created using Venables and Ripley’s neural net library for S-Plus
[12]. This is a 2-3-1 neural network with 13 weights, and the fitting algorithm is
allowed to run for 100 iterations.

Contour plots of the predictions made by the tree model and the neural net-
work model are shown in panels 3 and 4 of figure 5. Here the greyscale level
represents the ‘confidence’ level of the prediction, ranging from black (high con-
fidence in the first class) to white (high confidence in the second class). The test
error rates for the tree and the neural net, ie. the number of misclassified test
examples divided by the total number of test examples, are 0.221 and 0.2225
respectively. Although these test error rates are close, a visual inspection tells
us that the forms of the fitted models are in fact very different, and that both
underfit. Empirically we have found that the pairing of a tree and a neural net
model is a good one for combination, since they tend to complement each other
well.

We now combine the two models globally using two sets of weights generated
using the optimal MSE solution. The weights are 0.91 for the tree and 0.09 for
the neural network. This means that the combined model heavily favours the
tree over the neural network. The resultant predictions are plotted in panel 5.
The test error rate of this globally combined model is 0.215, lower than that
of either of the component models. Visually, the combined classifier appears a
slightly better fit to the true f .

Our final model is that produced when the ARPACC algorithm uses the
training data to fit a fifty node combination tree. The test error rate for this
model is 0.2, a further improvement on the global combination. A visual exam-
ination of the plot in panel 6 tells us that at least some of this improvement
probably results from an improved model fit in the region around the centre of
the plot.

The test error results for all our models, as a fraction of points misclassified,
are summarized in Table 2.

Table 2. Absolute training and test errors for the models used in the simulated exam-
ple.

Model Training error Test Error

CART Tree 0.1280 0.2210
Neural Net 0.1780 0.2225

Global Combined Model 0.1260 0.2150
50-Node ARPACC 0.1100 0.2000



616 Ross A. McDonald, Idris A. Eckley, and David J. Hand

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

(1) (2)

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

(3) (4)

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

(5) (6)

Fig. 1. An example of local classifier combination. (1) 500 data points in 2 dimensions
randomly mapped to 2 classes with probabilities generated via a smooth cosine func-
tion. (2) The underlying function f . (3) A CART tree fitted to the training data. (4)
A 2-3-1 neural network fitted to the training data. (5) The optimal global combined
classifier. (6) A local combination as fitted by a 50-node ARPACC tree.



A Classifier Combination Tree Algorithm 617

5 Conclusions and Future Work

In this paper we have proposed the use of optimal weights within local regions of
the measurement space, have introduced solutions for more than two classes and
singular error matrices, and have experimented with the ARPACC algorithm as
one means of defining a suitable feature space partition.

We have also experimented with a pruning method for ARPACC based on
the minimal cost-complexity pruning methods used for CART. At present our
Matlab implementation of this proves computationally expensive, and we hope to
improve it in the future. We also plan to experiment with ensembles of more than
two classifiers, and to produce test error results for real classification problems.
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