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Abstract. It is a fact that current methodologies for automatic translation cannot
be expected to produce high quality translations. An alternative approach is to use
them as an aid to manual translation. We focus on a possible way to help human
translators: to interactively provide completions for the parts of the sentences
already translated. We explain how finite state transducers can be used for this
task and show experiments in which the keystrokes needed to translate printer
manuals were reduced to nearly 25% of the original.

1 Introduction

It is becoming increasingly clear that current automatic translation methodologies can-
not be expected to produce high quality translation in the near future. An alternative
way to take advantage of the technologies developed is to use them in order to help
human translators. One such approach, proposed by [1], can be explained as follows:
the translator begins to type the translation and the system guesses the best completion
for the text typed so far. The user can then accept the suggestion of the computer or part
of it. This should reduce the amount of work of the translator.

This approach has two important aspects: the models need to provide adequate com-
pletions and they have to do so efficiently. To fulfill these two requirements, we have
decided to use Stochastic Finite State Transducers (SFST) since they have proved in
the past to be able to provide adequate translations [2–4] and, as we show in this paper,
efficient parsing algorithms can be easily adapted in order to provide completions.

The rest of the paper is structured as follows. The following section presents the
general setting for machine translation and finite state models. In section 3, the search
procedure for an interactive translation is presented. Experimental results are presented
in section 4. Finally, some conclusions and future work are explained in section 5.

2 Machine Translation with Finite-State Transducers

Given a source sentence s, the goal of MT is to find a target sentence t̂ that maximizes:

t̂ = argmax
t

Pr(t | s) = argmax
t

Pr(t, s) ≈ argmax
t

PrT (t, s) (1)
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The joint distribution Pr(t, s) can be modeled by Stochastic Finite State Transducers
(SFST) T [5]. They have been successfully applied into many translation tasks [2–4].
Furthermore, there exist efficient parsing algorithms like Viterbi[6] for the best parse
and REA [7] for the n-best parses.

One possible way of inferring SFSTs from training data is the Grammatical Infer-
ence and Alignments for Transducer Inference1 (GIATI) technique [8]. Given a finite
sample of string pairs, it works in three steps:

1. Building training strings. Each training pair is transformed into a single string from
an extended alphabet to obtain a new sample of strings. The “extended alphabet”
contains words or substrings from source and target sentences coming from training
pairs.

2. Inferring a (stochastic) regular grammar. Typically, a smoothed n-gram is inferred
from the sample of strings obtained in the previous step.

3. Transforming the inferred regular grammar into a transducer. The symbols associ-
ated to the grammar rules are transformed into source/target symbols by applying
an adequate transformation, thereby transforming the grammar inferred in the pre-
vious step into a transducer.

The transformation of a parallel corpus into a corpus of single sentences is per-
formed with the help of statistical alignments: each word is joined with the word in the
target sentence it is aligned to, creating an “extended word”. This joining is done taking
care not to invert the order of the output words. The third step is trivial with this arrange-
ment. In our experiments, the alignments are obtained using the GIZA software [9, 10],
which implements IBM statistical models [11, 12].

3 Interactive Search

In the previous section the training process undergone to generate a SFST T from a
parallel corpus was described. The aim of interactive search is to find a suffix of tar-
get sentence t̂s that maximizes the a posteriori probability given a SFST T , a source
sentence s and a prefix of the target sentence tp produced by a human translator:

t̂s = argmax
ts

Pr(ts | s, tp) ≈ argmax
ts

PrT (tpts, s) (2)

This equation is similar to the one for general translation but in this case, the op-
timization is performed over the set of target suffixes rather than the set of complete
target sentences.

The solution to this problem has been devised in two phases. The first phase copes
with the extraction of a word graph W from a SFST T given a source sentence s. In a
second phase, the search of the best translation (or translations) is performed over the
word graph W .

1 The previous name of this technique was MGTI - Morphic-Generator Transducer Inference.
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3.1 Word Graph Derivation

A word graph is a compact representation of all the possible translations that a SFST
T can produce from a given source sentence s together with the probabilities of those
translations. In fact, the word graph could be seen as a kind of weighted finite state
automaton in which the probabilities are not normalized.

The construction of the word graph is reminiscent of the intersection of two au-
tomata: a SFST and a linear DFA (deterministic finite state automaton) representing the
input sentence. We will explain it through a simple example. Assume that we have to
translate the sentence “haga clic en siguiente .” (click next) using the SFST of Figure 1.
The first step is to build the DFA of Figure 2. It is easy to see that the DFA has as
many states as words in the source sentence plus one and the ith word of the sentence
connects states i − 1 and i.

0

1
"haga" / "click" (0.13)

4"haga" / "check" (0.12)

2
"haga" / "click" (0.28)

3
"haga" / "choose" (0.17)

5

"presione" / "(null)" (0.08)

6

"haga" / "select" (0.12)

11

"seleccione" / "select" (0.1)

7
"clic" / "the" (0.49)

15"doble" / "the" (0.51)

9"clic" / "(null)" (1)

8

"clic" / "(null)" (0.32)

16

"doble" / "(null)" (0.68)

"clic" / "(null)" (1)

"clic" / "(null)" (1)

10
"clic" / "(null)" (1)

12

"siguiente" / "next" (0.23)

"aceptar" / "ok" (0.02)

"abrir" / "open" (0.15)

"guardar" / "save" (0.1)

"enviar" / "send" (0.5)

"en" / "(null)" (1)

"clic" / "(null)" (1)

"en" / "(null)" (1)

"en" / "(null)" (1)"clic" / "(null)" (1)

"en" / "(null)" (1)

13
f=1

"." / "." (1)

Fig. 1. A transducer inferred from a parallel corpus

a b
"haga"

c
"click"

d
"en"

e
"siguiente"

f
"."

Fig. 2. A DFA representing the sentence: “haga clic en siguiente.”

From these two automata, we can easily build the word graph. For the moment,
assume that the output of the arcs of the SFST have at most one word. The states of
the word graph will be pairs composed of a state of the DFA and a state of the SFST.
The initial state of the word graph will be the pair composed of the initial states of
those automata. The probability of a pair being final will be the final probability of
the corresponding state in the SFST. Now, assume that p and r are states of the DFA,
p′ and r′ are states of the SFST and that there is an arc from p to r with input w in the
DFA and another arc in the SFST from p′ to r′ with input w and output y. Then, the
word graph will have an arc from q ≡ (p, p′) to q′ ≡ (r, r′) with input y (remember that
the word graph represents sentences of the output language, i.e. possible translations).
This arc will have the same probability as the arc (p′, w, y, r′) in the SFST that we
will denote as P (q, y, q′). The final-state probability of each state q will be denoted as
PF (q). The result of this process in our example can be seen in Figure 3.

There are a couple of minor issues to deal with in this construction. On one hand, the
output symbol for a given arc could be empty string (which are represented by “(null)”
in the Figures) or could contain more than one word. Since the word graph generated
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[0, a]

[1, b]"click" (0.13)

[4, b]
"check" (0.12)

[2, b]

"click" (0.28)

[3, b]
"choose" (0.17)

[6, b]

"select" (0.12)

[7, c]

"the" (0.49)

[9, c]
"(null)" (1)

[8, c]"(null)" (0.32)

"(null)" (1)

[10, c]"(null)" (1)

[11, d]

"(null)" (1)

"(null)" (1)

"(null)" (1)

"(null)" (1)

[12, e]
"next" (0.23) [13, f]

f=1
"." (1)

Fig. 3. Word graph resulting from the SFST in Figure 1 and the DFA in Figure 2. Isolated states
are not shown

is not deterministic, the inclusion of empty outputs coming from the SFST is integrated
easily. In the case of arcs with more than one word, auxiliary states were created in
order to assign only one word for each arc. On the other hand, it is possible to have
words in the input sentence that do not belong to the input vocabulary in the SFST.
This problem is solved with the introduction of a special “unknown word” in the input
vocabulary of the SFST.

3.2 Search of n-Best Translations Given a Prefix of the Target Sentence

Once the word graph is constructed, it can be used for finding the best completions
for the part of the translation typed by the human translator. Not that the word graph
depends only on the input sentence, so it is used repeatedly for finding the completions
of all the different prefixes provided by the translator.

Ideally, the task would be to find the target suffix ts that maximizes the probability
a posteriori given a prefix tp of the target sentence and the input sentence. In practice,
however, it may happen that tp is not present in the word graph W . The solution is to
use not tp but a prefix t′p that minimizes the edition distance with tp and is compatible
with W . Therefore, the score of a target translation t ≡ tp · ts is characterized by two
functions, the edition cost between the target prefix tp and the optimal prefix t′p found
in the word graph W and the a posteriori probability of ts (Pr(ts | t′p)). However, the
list of n-best translations has been prioritized first by minimum edition cost and then by
a posteriori probability to value more significantly those translations that were closer
to the user preferences.

Let qp be the state(s) in W that is (are) reached from the initial state using t′p and
let P(W , tp, qp) be the set of possible paths (q0, t1, q1), . . . , (qm−1, tm, qm) in W from
q0 = qp that produce the translation suffix ts = t1, . . . , tm of length m . Pr(ts | t′p) is
calculated as:

Pr(ts | t′p) =
∑

Pm∈P(W,ts,qp)

∏

1≤i≤m

P (qi−1, ti, qi)PF (qm) (3)
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The search for the ts that maximize Pr(ts | t′p) has been demonstrated to be an
NP-hard problem, so the Viterbi approach [6] will be adopted to make feasible the cal-
culation of Pr(ts | t′p), that is:

P̂ r(ts | t′p) = max
Pm∈P(W,ts,qp)

∏

1≤i≤m

P (qi−1, ti, qi)PF (qm) (4)

This simplification is imperative because of the real-time constraints under which our
prototype is required to run. However, a better approximation to Pr(ts | t′p) will be
presented in next section.

The algorithm proposed to solve this search problem is an adapted version of the
Recursive Enumeration Algorithm (REA) described in [7] that integrates the minimum
edition cost algorithm in the search procedure. This algorithm consist on two parts:

– Forward search that calculates the 1-best path from the initial state q0 to every state
in the word graph W . Paths in the word graph are weighted not only based on their
a posteriori probability, but also on their edition cost respect to the target sentence
prefix.

To this purpose, ficticious edges have been inserted into the word graph to represent
edition operations like insertion, substitution and deletion. These edition operations
have been included in the word graph in the following way:

• Insertion: An insertion edge has been inserted as a loop for each state in the
word graph.

• Deletion: A deletion edge is added for each arc in the word graph having the
same source and target state than its sibling arc.

• Substitution: Each arc in the word graph is treated as a substitution edge
whose edition cost is proportional to the levenshtein distance between the sym-
bol associated with this arc and the word prefix employed to traverse this arc
during the search.

For example, in Figure 3 if the user would type “press” as an initial prefix, we
would have two different classes of translation sentences. Those ones that applying
an insertion operation would start from the initial stage at state [0, a], and those
ones that applying a deletion or substitution operation would depart from states in
the second stage.

– Backward search that enumerates candidates for the k-best path along the (k − 1)-
best path. This recursive algorithm defines the next best path that arrives at a given
state q as the next best path that reaches q′ plus the arc leaving from q′ to q, being
(q′, b, q) ∈ E. If this next best path arriving at state q′ has not been calculated yet,
then the next best path procedure is called recursively until a 1-best path is found
or no best paths are found.

To reduce the computational cost of the search, the beam-search technique has been
implemented. During the word graph construction, two beam coefficients were em-
ployed to penalize those edges leading to backoff states over those ones arriving at
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normal states. Finally, a third beam coefficient controls how far in terms of number
of edition operations a hypothesis could be from the best hypothesis in a given stage
during the parsing procedure.

3.3 An Improved Approximation to the Translation Probability

A better approximation to the true translation probability of equation (3) can be obtained
on the base of the Viterbi n-best path approach. This approximation is achieved by
summing up the probability of those paths with the same translation ts in the set of
n-best paths PN (W , ts, qp):

PrN (ts | t′p) =
∑

Pm∈PN (W,ts,qp)

∏

1≤i≤m

P (qi−1, ti, qi)PF (qm) (5)

Indeed, the Viterbi approximation could be considered to be a particular case of the
n-best approximation, that is, when the number of paths is 1. As the reader may expect,
this approximation improves as the size of PN (W , ts, qp) increases. However it should
be noted that PrN (ts | t′p) follows a log-wise growth, since most of the probability
associated with the translation ts is accumulated in the first n-best paths.

4 Experimental Results

4.1 Corpus Features

We performed experiments using the so-called Xerox corpus [13]. This corpus consists
in a collection of technical Xerox manuals written in English, Spanish, French and
German. The English versions are the original and the rest are translation of them. The
sizes (in thousands of words) of the subsets used can be seen in Table 1.

Table 1. Features of the Xerox Corpus: training, vocabulary and test sizes are measured in thou-
sands of words

EN / ES EN / DE EN / FR

TRAINING 600/700 600/500 600/700

VOCABULARY 26 / 30 25 / 27 25 / 37

TEST 8 / 9 9 / 10 11 / 10

PERPLEXITY (3-gram) 107/60 93/169 193/135

4.2 Translation Quality Evaluation

We have used three different measures in order to assess the techniques presented:

1. Translation Word Error Rate (TWER). It is defined as the minimum number of
word substitution, deletion and insertion operations to convert the target sentence
provided by the transducer into the reference translation. Also known as edit dis-
tance.
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2. Character Error Rate (CER). Edit distance in terms of characters between the target
sentence provided by the transducer and the reference translation.

3. Key-Stroke Ratio (KSR). Number of key-strokes that are necessary to achieve the
reference translation plus the acceptance key-stroke divided by the number of run-
ning characters.

These experiments were performed with GIATI transducers based on trigrams. The
results are shown in Table 2. On the leftmost column appears the language pair em-
ployed for each experiment, English (En), Spanish (Es), French (Fr) and German (De).
The main two central columns compare the results obtained with 1-best translation to
5-best translations. In the latter case, the target sentence out of the five suggested trans-
lations that minimizes most the correspondent error measure was selected.

Table 2. Results for the Xerox Corpus comparing 1-best to 5-best translations

GIATI 3-gram (1-best) GIATI 3-gram (5-best)
XRCE 2 KSR CER TWER KSR CER TWER

En-Es 29.1 30.3 43.1 26.2 25.0 37.8
Es-En 33.5 35.5 51.4 29.7 28.1 45.2
En-Fr 58.5 54.3 73.8 53.7 48.5 69.6
Fr-En 58.4 55.3 71.9 54.0 49.5 67.7
En-De 66.2 62.8 81.3 60.1 56.7 77.2
De-En 59.0 61.5 78.5 53.9 55.1 73.3

The best results were obtained between English and Spanish language pairs, in
which the human translator would only need to type 25% of the total reference sen-
tences. In theory, this could result in a factor of 4 increase in the productivity of human
translators.

Furthermore, in all cases there is a clear and significant improvement in error mea-
sures when we move from 1 to 5-best translations. This gain in translation quality di-
minishes in a log-wise fashion as we increase the number of best translations. Pair of
languages as English and French present somewhat higher error rates, as is also the
case between English and German, reflecting the complexity of the task faced in these
experiments.

4.3 A Comparative Evaluation: Viterbi vs. n-Best Approximation

An approximation to the true translation probability based on the n-best path was intro-
duced in section 3.3. Some experiments were performed to assess the evolution of the
translation quality as the calculation of the translation a posteriori probability improves.
To this purpose a simplified version of the Xerox corpus was employed to reduce the
impact of noise due to preprocess and postprocess phases.

The most important conclusion that could be extracted from these results is the
adequacy of the simpler and direct Viterbi approach as an approximation to the actual
a posteriori probability of a target sentence. As it can be observed from Table 3, the
evolution of TWER rates across an increasing number of n-best translations does not
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Table 3. TWER comparative table across different number of n-best paths based on a simplified
version of XRCE2

TWER Viterbi 5-best 10-best 20-best 50-best 100-best 200-best 500-best 1000-best
En-Es 31.7 31.9 32.1 32.0 32.2 32.3 32.3 32.4 32.4
Es-En 35.9 35.3 35.4 35.5 35.6 35.7 35.7 35.7 35.7
En-Fr 60.7 60.7 61.0 61.0 60.8 60.7 60.7 60.8 60.8
Fr-En 56.1 57.0 57.0 57.1 57.0 57.2 57.1 57.2 57.3
En-De 69.7 69.8 69.7 69.8 69.8 69.7 69.7 69.8 69.9
De-En 63.1 63.2 63.3 63.5 63.5 63.4 63.6 63.6 63.6

show a consistent positive growth of the translation quality. It is even negative for large
n in most cases. A possible reason for these results is that for large n translations with
lower quality are more frequent among the set of n-best translations, so summing up the
probability of equal translations favors those ones that even being less probable have
more repetitions.

5 Conclusions and Future Work

Finite-state transducers can be used for computer assisted translation. These models can
be learned from parallel corpus, but the number of states/transitions can be too high.
The concept of interactive search has been introduced in this paper along with some
efficient techniques (word graph derivation and n-best) that solve the parsing problem
given a prefix of the target sentence undeolve the parsing problem given a prefix of the
target sentence under real-time constraints.olve the parsing problem given a prefix of
the target sentence under real-time constraints.

The promising results achieved in the first experiments provide a new field in
machine translation still to be explored, in which the human expertise is combined
with automatic translation techniques to increase productivity without sacrificing high-
quality translation.

Moreover, an alternative approach to Viterbi approximation based on the n-best idea
was explained and the results obtained with it confirm the appropriateness of the Viterbi
approach in real applications.

Finally, the introduction of morpho-syntactic information and/or bilingual cate-
gories in finite-state transducers are topics that leave an open door to future research.
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7. Jiménez, V.M., Marzal, A.: Computing the k shortest paths: a new algorithm and an
experimental comparison. In Vitter, J.S., Zaroliagis, C.D., eds.: Algorithm Engineering. Vol-
ume 1668 of Lecture Notes in Computer Science., London, Springer-Verlag (1999) 15–29

8. Casacuberta, F., Ney, H., Och, F.J., E. Vidal, J.M.V., Barrachina, S., Garcia-Varea, I.,
D. Llorens, C.M., Molau, S., Nevado, F., Pastor, M., Pico, D., Sanchis., A.: Some approaches
to statistical and finite-state speech-to-speech translation. Computer Speech and Language
18 (2004) 25–47

9. Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty, J., Melamed, D., Och, F.J., Purdy,
D., Smith, N., Yarowsky, D.: Statistical machine translation (1999)

10. Och, F.J., Ney, H.: Improved statistical alignment models. In: ACL00, Hongkong, China
(2000) 440–447

11. Brown, P.F., Cocke, J., Pietra, S.D., Pietra, V.J.D., Jelinek, F., Lafferty, J.D., Mercer, R.L.,
Rossin, P.S.: A statistical approach to machine translation. Computational Linguistics 16
(1990) 79–85

12. Brown, P.F., Pietra, S.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of statistical machine
translation: Parameter estimation. Computational Linguistics 19 (1993) 263–312
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