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Abstract. Model-based image recognition requires a general model of the ob-
ject that should be detected. In many applications such models are not known a 
priori, but have to be learnt from examples. In this paper we describe our pro-
cedure for the acquisition and learning of general contour models. We devel-
oped a modified Procrustes algorithm for alignment and similarity calculation 
of shapes. Based on the calculated pair-wise similarity we learn groups of 
shapes. For each group we calculated prototypes. The set of prototypes will be 
used as models for the detection of object instances in new images.  

1   Introduction 

One of the most commonly encountered problems in image analysis is the recognition 
of objects in an image. This can be done by a model-based object recognition method. 
Such a method works as follows: A shape model is applied to the image and matched 
according to the pixel points of the image. If the considered pixels have an appearance 
that is similar to the model points, then the result of the matching process will be a 
score equal to one for identity and less then one for similarity. The basis for such a 
method is a good model of the object to be recognized and a good similarity measure. 
We will consider in this paper the generation of the models from exemplars.  

The model can be generated synthetically or from the original image. We are con-
sidering the process where the model or a set of models should be learnt from a set of 
instances elicited from a set of real images. Generally we are attempting to solve the 
following problems: Create a set of m shape instances from real images, each is repre-
sented by a set of arbitrary boundary points. Align these shapes and calculate the pair-
wise similarity, partition them into a set of clusters and, for each shape cluster, com-
pute a prototype. The set of prototypes will be used as models for the detection of 
object instances in new images. 

In Section 2 of this paper we give the basic notion and we briefly describe the ma-
terial used for this study. The acquisition of shape instances is described in Section 3. 
The alignment of shapes and the computation of the pair-wise similarity is described 
in Section 4. Clustering and prototype calculation is presented in Section 5 and Sec-
tion 6. Finally we give results in Section 7. The methods described in this paper are 
implemented in a program named CACM Version 1.0 that assists the user in the ac-
quisition of 2-D shapes and learns groups of shape models and their prototypes. An 
outlook to our research is given in Section 8.  
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2   Basic Notions and Material Used for this Study 

Model-based object recognition can be done based on the object model or based on 
the contour model. We are considering the contour of an object S but not the appear-
ance of the object inside the contour. Therefore we want to elicit from the real image 
the shape ( ){ }cicic yxS ,= cni ...1=  represented by a set of cn  boundary points 

( )cc yx , .  
The material we used for our study are fungal strains that are naturally 3-D objects, 

but which are acquired in a 2-D image. These objects have a great variance in the 
appearance of the shape of the object because of their nature and the imaging con-
straints.  Six fungal strains representing species with different spore types were used 
for the study (Table 1). A database of images from the spores of these species was 
produced.  

Table 1. Images of Six Different Fungi Strains 

   

Alternaria Alternata  Aspergillus Niger Rhizopus Stolonifer 

   

Scopularioupsis 
Brevicaulis 

Ulocladium Botrytis Wallenia Sebi 

3   Acquisition of Shape Cases 

We obtain the set of boundary pixels by implementing into our program a function 
that allows the user to mark the contour SC of an object S by moving the mouse cursor 
of the computer or by moving an electronic pen over a digitizer tablet (Figure 1). 
Notice that the sampled points are not required to be landmark co-ordinates [1] or 
curvature extrema. The user starts labelling an object S at an arbitrary pixel sstart of its 
contour. After having traced the complete object the labelling ends at a pixel sj in the 
8-neighbourhood of sstart. To obtain the complete set SC of all boundary pixels we need 
to ensure that the contour is closed, which means sj is a direct neighbour of sstart. 
Therefore we insert missing boundary pixels using the Bresenham [2] procedure. 

As a result of the labelling process we obtain set SC with an amount of nC ordered, 
connected points that describe the boundary of object S with the highest possible 
accuracy as far as is possible with this kind of labelling procedure. 

Having labelled the contour SC of the object S its boundary pixels are still defined 
by their absolute position in the 2-D matrix of the original image. In order to describe 
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and compare the shapes of objects it is useful to specify a common co-ordinate system 
that is invariant for translation. Therefore we transform the set SC of boundary points 
to the origin x = 0 and y = 0 .  

A following approximation of the contour might reduce this set of pixels to a suffi-
ciently large set of pixels that will speed up the succeeding computation time of the 
alignment and clustering process. The numbers of pixels in this set will be influenced 
by the chosen order of the polygon and the allowed approximation error. Our ap-
proach to the polygonal approximation is based on the area/length ratio according to 
Wall and Daniellson [3]. 
 

 

Fig. 1. Labeled and Approximated Shape with Co-ordinates 

4   Shape Alignment and Similarity Calculation 

4.1   Theory of Procrustes Alignment 

The aim of the alignment process is to compare the shapes of two objects in order to 
define a measure of similarity between them. Consider two shape instances P and O 
defined by the point-sets Ci niRp ...,,2,1², =∈  and Kj njRo ...,,2,1², =∈ respec-

tively. The basic task of aligning two shapes consists of transforming one of them 
(say P) so that it fits in some optimal way the other one (say O). Generally the shape 

instance  })yx({P P
i

P
i ,=  with cni ...1= is said to be aligned to the shape in-

stance })yx({O O
j

O
j ,= with knj ...1=  if a distance function d(P, O) between the 

two shapes cannot be decreased by applying to P a transformation . The differences 
between various alignment approaches is the group of allowed transformations (simi-
larity, rigid, affinity) on one side and the definition of the distance function on the 
other side. 

In our application we use for the Procrustes distance [4] [5], a least-squares type 
distance function. The alignment of shapes is limited to similarity transformation in 
order to eliminate differences in rotation and scale of the two shapes P and O.  
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After computing a similarity transformation between P and O the Procrustes dis-
tance is defined by 

∑
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whereθ  is the rotation matrix, µP and µO are the centroids of the object P and O re-

spectively and σP and σO are the sums of squared distances of each point-set from the 
centroids. 

In its basic form, the Procrustes alignment centers and scales each set of points so 
that the sum of squared distances of all points in each point-set is unity. Then it is 
possible to compute a similarity transformation based on these centered pre-shapes. 
Finally the Procrustes average shape and Procrustes residuals can be evaluated. 

4.2   Our Approach to Shape Alignment 

As described in Section 3 we are considering a set of shape instances where differ-
ences in translation were already eliminated. To compare the shapes of two instances 
we still have to eliminate differences in rotation and scale. As a measure of similarity 
we use the Procrustes distance between all points of P and their correspondences in O.  

As can be seen from equation (1) the Procrustes distance requires the knowledge of 
point correspondences between the shapes P and O. Therefore we are confronted with 
the following problems:  
 

1. In our application we use an approximation of the manually labelled set of contour 
points instead of a predefined number of landmark coordinates. Therefore we can-
not guarantee that all shape instances are defined by an identical number of contour 
points. We can only assume to have nearly the same amount of contour points re-
gardless of which size or shape an object has. 

2. The point correspondences between the two shapes of the instance P and O are 
completely unknown. 

3. As a result of the above-mentioned facts we do not have information about point 
outliers either. 

 

The Softassign Procrustes Matching algorithm [7] solves the point correspondence 
problem using deterministic annealing. This algorithm works robust with respect to 
outlier identification and noise, but is it also a computationally-expensive procedure. 
Belongie et al. [8] found correspondences between points on the basis of the shape 
context descriptor. 

We are solving the problem of unknown point correspondences by applying an it-
erative robust point matching algorithm. The outline of our approach to shape align-
ment is as follows:  

For every pair of points (pi, oj) ∈  P x O we calculate the similarity transformation 

ij that aligns these two points { pi, oj }. The transformation� ij is applied to all points 
in P to obtain the transformed shape instance P’, which is defined by the point-
set Ci niRp ...,,2,1²,' =∈ . For every point p’i we define the nearest neighbour 
NN(p’i) in O as a point correspondence of p’i. Note that we do not enforce one-to-one 
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point correspondences. One point in O can have more than one point correspondence 
or even not a single point correspondence in P. The sums of squared distances dij(P, 
O) between every point correspondence were added. In addition to that we define the 

quantity ),(*
1

OPd
k ij  as the mean alignment error ),( POijε : 

),(*
1

),( OPd
k

OP ijij =ε   (2) 
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If the distance dji(P, O) is smaller then all earlier calculated distances, dmin(P, O) is set 
to dji(P, O), ),(min POε  is set to ),( POijε   and� min is set to� ij.  

After having cyclically aligned every possible pair of points (pj, oi) ∈  P x O, we 
may estimate the similarity between the shape instances P and O based on the value 
of dmin (P, O).  

To ensure that the final measure of similarity ranges from 0 to 1, we normalize the 
measure  ),(min POε  to a predefined maximum distance T: 

T

OP ),(min
min

εε =′  (4) 

If 0),(min =POε  then the shape instance P is identical with the shape instance O. 

With an increasing value of ),(min POε  the shape instance P is less similar to the 

shape instance O. If ( ) TOP >,minε  then the term 
( )
T

OP,minε
 is automatically set to 

value one. 
It is obvious that the constant T has a direct influence to the value of the resulting 

score. The parameter T can be defined by the user in the settings dialog of our pro-
gram CACM. For our calculations we set T to 35% of the centroid size of O. Our 
investigations showed that this value leads to good results. Figure 2 shows pair-wise 
aligned shapes and the calculated values of the dissimilarity measure. It can be seen 
that in case of identity the shapes are superposed. If the similarity score is less than 
one, we can see a deviation of the two shapes. 

5   Clustering 

The alignment of every possible pair of objects in our database leads us to N*N pair-
wise similarity measures between the N shape instances. These distances can be col-
lected in an N x N matrix where each row and each column corresponds to an instance 
of our data set.  
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0=′ijε  [identical] 0271.0=′ijε  

 [nearly identical] 

199.0=′ijε  

 [similar] 

5.0=′ijε  

 [neutral] 

Fig. 2. Aligned Shape Instances of Strain Ulocladium Botrytis with Distances 

 

Fig. 3. Dendrogram of Shapes of  the Object Ulocladium Botrytis and the calculated Prototypes 

We want to point out that we do not obtain a symmetric square matrix where the 
distance d(A, B) between an individual A and an individual B is identical to the dis-
tance d(B, A) between individual B and individual A. This is obviously a lack of preci-
sion, but until we do not enforce a strict one-to-one mapping between corresponding 
points we can only assume that d(A, B) � d(B, A). 

Based on this similarity matrix we can divide our set of shape instances into groups 
or clusters. The clustering is done using the single linkage method [6]. The result of 
the hierarchical cluster analysis can be graphically represented by a dendogram. The 
dendogram for the shapes of the fungi strain ulocladium botrytis is shown in Figure 3. 
The dendogram shows the relative distances between all individuals. The merging of 
individuals into clusters is done with increasing distances (from left to right) until all 
individuals are combined in only one cluster. The exemplary cut-point (vertical red-
dotted line) at a distance 0.15 results in two different clusters. The first cluster which 
consists only of the object with 1_ub  is represented by prototype P2_1. The second 

cluster consists of the other seven objects { }8_ub,,3_ub,2_ub �  and is represented 

by prototype 2_2P .  
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6   Prototype Calculation 

Each cluster consists of a subset of j shapes S1, S2…Sj. For each cluster we can now 
compute a prototype µ  that will be the representative of the cluster. This prototype 
can be calculated by computing the mean over all shapes in a cluster. As result we 
will get an artificial prototype, a prototype that does not exist in reality. Therefore we 
decided to calculate the median of all shapes in a cluster. 

As the median shape of that cluster we choose the shape instance which has the 
minimum distance to all other shape instances 

[ ] ( )∑
=

==
j

i
iSSdS

1
minmin ,infargµ̂  (5) 

The main advantage of this solution is that the model represents a natural shape 
that is included in the cluster. An example of using a natural shape instance as the 
prototype of a cluster is shown in Figure 4a. In contrast to this the arithmetic mean as  
prototype is shown in Figure 4b. Visually we would favor the median shape as proto-
type for the cluster since it appears to be more smooth. 

 

  
(a) using a natural shape instance as proto-
type 

(b) using the arithmetic mean as prototype 

Fig. 4. Median of Shapes in a Cluster and Arithmetic Mean of the Shape 

7   Results 

We have applied our method to six different airborne fungi spores (see Table 1). We 
have labelled a total of 60 objects for each of the 6 fungal strains. In the following 
registration process we have aligned every single object with all objects of the same 
strain to calculate the measure of similarity between them. As a result we have ob-
tained six squared similarity matrices, one for each analyzed fungal strain. These 
matrices were the input for the following cluster analysis. The outcome of this process 
was a dendrogram for each of the six different fungi strains. Table 2 presents the 
number of models for each class at two different cut-points.  

For both cut-points we calculated the corresponding set of clusters in each strain 
class. The prototypes of these clusters were used as models for the later recognition 
process which is not part of this work. Figure 5 shows as an exemple the database of 
models for the class Rhizopus Stolonifer at cut-point (1). We can see that a large 
number of models is required for good detection of the object Rhizopus Stolonifer. 
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Table 2. Number of Models for two different Cut Points 

Classes 
max. 
Distance 

Cut- 
Point (1) 

Number  
of Models 

Cut- 
Point (2) 

Number  
of Models 

Alternaria Alternata 0.5264 0.035 23 0.031 34 

Aspergillus Niger 0.2936 0.098 3 0.094 5 

Rhizopus Stolonifer 0.4275 0.058 16 0.055 22 

Scopulariopsis Brevicaulis 0.4911 0.095 8 0.083 10 

Ulocladium Botrytis 0.5332 0.043 24 0.040 30 

Wallenia Sebi 0.5202 0.050 7 0.046 10 

 

 

Fig. 5. Database of Models for Strain Rhizopus Stolonifer representing the 16 resulting Clusters 

8   Conclusions 

The recognition of objects in images can be done based on a model-based recognition 
procedure. That requires to have a model from the objects which should be recog-
nized.  Natural objects have a great variation in shape that does not make it  easy to 
specify a model by hand. Therefore it is necessary to have a computerized procedure 
that helps to acquire the model from the real objects. We have proposed a method for 
the acquisition of contour instances and the learning of general shape models. We use 
the Procustes similarity measure for aligning and determining the similarity between 
different shapes. Based on the calculated similarity measure we create clusters of 
similar shapes by using the single linkage method. The mean shape or the median of 
the cluster is calculated and taken as a prototype of the cluster. The methods are im-
plemented in the program CACM Version 1.0 which runs on a window PC.  
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