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Abstract. The aim of this article is to purpose a distance measure between At-
tributed Graphs (AGs) and Second-Order Random Graphs (SORGs) for recog-
nition and classification proposes. The basic feature of SORGs is that they in-
clude both marginal probability functions and joint probability functions of
graph elements (vertices or arcs). This allows a more precise description of both
the structural and semantic information contents in a set (or cluster) of AGs
and, consequently, an expected improvement in graph matching and object rec-
ognition. The distance measure is derived from the probability of instantiating a
SORG into an AG.
SORGs are shown to improve the performance of other random graph models
such as FORGs and FDGs and also the direct AG-to-AG matching in two ex-
perimental recognition tasks.

1   Introduction

Some attempts have been made to try to reduce the computational time of matching
the unknown input patterns to the whole set of models from the database. Assuming
that the AGs that represent a cluster or class are not completely dissimilar in the data-
base, only one structural model is defined from the AGs that represent the cluster, and
thus, only one comparison is needed for each cluster.

One of the most common methodologies are based on keeping the probabilistic in-
formation in the structure that represent the cluster of AGs. These models, which are
usually called Random Graphs (RGs), are described in the most general case through
a joint probability space of random variables ranging over graph vertices and arcs.
They are the union of the AGs in the cluster, according to some synthesis process,
together with its associated probability distribution. In this manner, a structural pat-
tern can be explicitly represented in the form of an AG and an ensemble of such rep-
resentations can be considered as a set of outcomes of the RG. The most important
probabilistic methods are First-Order Random Graphs (FORGs) [4], the Sengupta
method [3], Function-Described Graphs (FDGs) [1,6,7] and Second-Order Random
Graphs (SORGs), which can be seen as a generalisation of both of them [5].

In the following section, we introduce the formal definitions used throughout the
paper. In section 3, we recall the general formulation for estimating the joint prob-
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ability of the random elements in a RG synthesised from a set of AGs. In section 4,
we present the new distance measure between AGs and SORGs derived from the joint
probabilities of the random elements. Finally, we present a comparative study be-
tween SORGs and FORGs, FDGs and direct AG-to-AG matching. In the last section,
we provide some discussion about our distance measure.

2   Formal Definitions of Random-Graph Representation

Definition 1: Attributed Graph (AG).  Let ∆v and ∆e denote the domains of possible
values for attributed vertices and arcs, respectively. These domains are assumed to
include a special value Φ that represents a null value of a vertex or arc. An AG G over
(∆v,∆e) is defined to be a four-tuple ( )evevG γγ ,,,ΣΣ= , where { }nkvkv ,...,1==Σ  is a

set of vertices (or nodes), { }{ }jinjieije ≠∈=Σ ,,...,1,  is a set of arcs (or edges), and the

mappings 
vvv ∆→Σ:γ  and 

eee ∆→Σ:γ  assign attribute values to vertices and arcs,

respectively.

Definition 2: Random Graph (RG). Let Ωv and Ωe be two sets of random variables
with values in ∆v (random vertices) and in ∆e (random arcs), respectively. A random-
graph structure R over (∆v,∆e)  is defined to be a tuple ( )Pevev ,,,, γγΣΣ , where

{ }nkkv ,...,1==Σ ω  is a set of vertices, { }{ }jinjiije ≠∈=Σ ,,...,1,ε  is a set of arcs, the

mapping vvv Ω→Σ:γ  associates each vertex 
vk Σ∈ω  with a random variable

( )kvk ωγα =  with values in ∆v, and 
eee Ω→Σ:γ  associates each arc 

eij Σ∈ε  with a

random variable ( )ijek εγβ =  with values in ∆e. And, finally, P is a joint probability dis-

tribution ( )mnP ββαα ,,,,, 11 ��  of all the random vertices { }niiii ≤≤= 1),(ωγαα ω

and random arcs { }mjkljj ≤≤= 1),(εγββ ε
.

Definition 3: Probability of a RG instantiation. Given an AG G and a RG R, the joint
probability of random vertices and arcs is defined over an instantiation that produces
G, and such instantiation is associated with a structural isomorphism RG →’:µ ,

where ’G  is the extension of G to the order of R. G’ represents the same object than
G but some vertices or arcs have been added with the null value Φ to be µ bijective.
Let G be oriented with respect to R by the structurally coherent isomorphism µ; for
each vertex 

iω  in R, let ( )( )ivi ωµγ 1−=a  be the corresponding attribute value in G’,

and similarly, for each arc 
klε  in R (associated with random variable 

jβ ) let

( )( )klej εµγ 1−=b  be the corresponding attribute value in G’. Then the probability of G

according to (or given by) the orientation µ, denoted by ( )µGPR
, is defined as

( ) ( ) ( ) ( )mnjj
m

j
ii

n

i
R pGP bbaaba ,,,,,Pr 1111

��=


 =∧==
==

∧∧ βαµ        (1)
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We define di to represent a vertex or arc attribute value (ai or bi). Thus, if s is the
number of vertices and arcs, s=m+n, eq. (1) can be rewritten as,

( ) ( )sR pGP dd ,,1 �=µ                                                          (2)

3   Second-Order Random-Graph Representation

If we want to represent the cluster of AGs by a RG, it is impractical to consider the
high order probability distribution defined in the RGs P(α1,…,αn,β1,…,βm) (definition
2), where all components and their relations in the structural patterns are taken jointly
due to time and space costs. For this reason, some other more practical approaches
have been presented that propose different approximations [3,4,5,7]. All of them take
into account in some manner the incidence relations between attributed vertices and
arcs, i.e. assume some sort of dependence of an arc on its connecting vertices. Also, a
common ordering (or labelling) scheme is needed that relates vertices and arcs of all
the involved AGs, which is obtained through an optimal graph mapping process
called synthesis of the random graph representation. We showed in [5] that all the
approximations in the literature of the joint probability of an instantiation of the ran-
dom elements in a RG (eq. 1) can be described in a general form as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )∏∏∏∏∏∏∏∏
−

= +== =

−

= +===

==
1

1 11 1

1

1 111
11 ,,,,,,,,,,

m

i

m

ij
jiij

n

i

m

j
jiij

n

i

n

ij
jiij

m

i
ii

n

i
iimnR rrrpppGP bbbaaababbaaµ     (3)

where pi are the marginal probabilities of the s random elements 
iγ , (vertices or arcs)

and ijr  are the Peleg compatibility coefficients [2] that take into account both the

marginal and 2nd-order joint probabilities of random vertices and arcs.
According to eq. (2), we can generalise the joint probability as,

                 ( ) ( ) ( ) ( )∏ ∏∏
= +==

==
s

i

s

ij
jiij

s

i
iisR rppGP

1 11
1 ,,,, dddddµ                            (4)

and define the Peleg coefficient,

                                 ( ) ( )
( ) ( )jjii

jiij
jiij pp

p
r

dd

dd
dd

,
, =                               (5)

The Peleg coefficient, with a non-negative range, is related to the “degree” of de-
pendence between two random variables. If they are independent, the joint probabil-
ity, pij, is defined as the product of the marginal ones, thus, rij = 1 (or a value close to 1
if the probability functions are estimated). If one of the marginal probabilities is null,
the joint probability is also null. In this case, the indecisiveness 0/0 is solved as 1,
since this do not affect the global joint probability, which is null.

4   Distance Measure between AGs and SORGs

The distance measure presented in this section provides a quantitative value of the
match between an AG G (data graph) and a SORG S (model graph) similar to the one
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presented in [1]. It is related to the probability of G according to the labelling function
SG →:µ , denoted ( )µGP  in eq. (4). We may attempt to minimise a global cost

measure C of the morphism µ  in the set H of allowable configurations, by taking the
cost as a monotonic decreasing function of the conditional probability of the
data graph given the labelling function, ( )( )µGPfC = . For instance,

( )( )µGPC ln−=  would be a possible choice. Thus, considering eq. (4),

( ) ( ) ( ) ( )( ) ( )( )jiij

s

i

s

ij

s

i
ii

s

i

s

ij
jiij

s

i
ii rprpGC dddddd ,lnln,ln

1

1 11

1

1 11
∑ ∑∑∏ ∏∏

−

= +==

−

= +==

−−=





−=µ  (6)

and using the definition of the Peleg coefficient (eq. 5) we obtain the following equa-
tion in the case that ( ) 0>iip d  and ( ) 0>jjp d

( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]∑ ∑∑
−

= +==

−−−−=
1

1 11

lnln,lnln
s

i

s

ij
jjiijiij

s

i
ii ppppGC dddddµ       (7)

Rearranging the second term of the expression we arrive at the equation

( ) ( )( ) ( ) ( )( ) ( )( )[ ]∑ ∑∑∑
−

= +===

−−+−=
1

1 111

,lnln1ln
s

i

s

ij
jiij

s

i
ii

s

i
ii ppspGC ddddµ       (8)

And we obtain the final expression in which the cost of the labelling monotonically
depends on the probabilities provided that ( ) 0: >∀ iipi d .

( ) ( ) ( )( ) ( )( )[ ]∑ ∑∑
−

= +==

−−=
1

1 11

,lnln2
s

i

s

ij
jiij

s

i
ii ppsGC dddµ       (9)

In the case that there is only one random element any joint probability is not de-
fined and s=1. Then, the global cost of the matching is ( ) ( )( )iipGC dln−=µ .

Moreover, in the case that there is a couple of random elements (s=2), the cost de-
pends only on the joint probability, ( ) ( )( )2112 ,ln ddpGC −=µ , although it has to be

considered that ( ) 011 >dp  and ( ) 022 >dp . And finally, in the case that there are 3

random elements (s=3), the cost is defined as, ( ) ( )( )+= 11ln dpGC µ  ( )( )+22ln dp

( )( )33ln dp  ( )( )2112 ,ln ddp−  ( )( )3113 ,ln ddp−  ( )( )3223 ,ln ddp− . In the last case (and all

the cases that s≥3, the marginal probabilities make the global cost decrease and the
joint probabilities make the cost increase.

4.1   Assuming Independence between Random Elements

In the case that the random elements are independent, the joint probability is defined
as the product of the marginal ones, ( ) ( ) ( )jjiijiij ppp dddd =, . Thus, eq. (9) is rewrit-

ten as,
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( ) ( ) ( )( ) ( ) ( )( )[ ]

( ) ( )( ) ( )( ) ( )( )[ ]

( ) ( )( ) ( ) ( )( )∑∑

∑ ∑∑

∑ ∑∑

==

−

= +==

−

= +==

−−−=

=+−−=

=−−=

s

i
ii

s

i
ii

s

i

s

ij
jjii

s

i
ii

s

i

s

ij
jjii

s

i
ii

psps

ppps

pppsGC

11

1

1 11

1

1 11

ln1ln2

lnlnln2

lnln2

dd

ddd

dddµ

      (10)

Thus, the final equation is,

( ) ( )( )∑
=

−=
s

i
iipGC

1

ln dµ       (11)

Note that this expression could be obtained by considering eq. (4) and (6) with rij = 1,
that is, assuming independence between the random elements.

4.2   Approximating the Distance Using Bounded Individual Costs

Using the above distance, only that one graph element had a probability of zero, the
global joint probability would be zero and C would be infinite. Since this may happen
due to the noisy presence of an unexpected element or the absence of a model’s ele-
ment, only that one graph element were not properly mapped, the involved graphs
would be wrongly considered to be completely different. We must therefore admit the
possibility of both extraneous and missing elements in the data graphs, since the data
extracted from the information sources (e.g. images) will usually be noisy, incomplete
or uncertain. As a consequence, the matches for which ( ) 0=µGP  should not be

discarded since they could be the result of a noisy feature extraction and graph for-
mation. In addition, a model (SORG) should match to a certain degree not only the
objects (AGs) in its learning set but also the ones that are “near”.

Hence, it is more appropriate for practical purposes to decompose the global cost C
into the sum of some bounded individual costs, one for each of the graph element
matches (first-order costs on the marginal probabilities) and one for each relation
between a pair of element matches (second-order costs on the joint probabilities)

( ) ( ) ( ) ( )∑ ∑∑
−

= +==

+−−=
1

1 1

2
,

1

1 ,2
s

i

s

ij
jiji

s

i
ii CCsGC dddµ                                  (12)

where first-order costs are given by

( ) ( )( )iiii pCostC dd =1                          (13)

and second-order costs are given by

( ) )),((, ,
2
, jijijiji pCostC dddd = (14)

and the function Cost(Pr) yields a bounded normalised cost value between 0 and 1
depending on the negative logarithm of a given probability Pr and parameterised by a
positive constant Kpr∈[0,1], which is a threshold on low probabilities that is intro-
duced to avoid the case ln(0), which would give negative infinity. This is,
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                        ( )










 ≥
−
−

=
otherwise1

Prif
)ln(

ln(Pr)

Pr

Pr
Pr

K
K

Cost                                     (15)

Once a cost measure C is defined, a distance measure between an AG and a SORG
and the optimal labelling *µ  are defined respectively as

          ( ){ }µ
µ

GCd
H∈

= min         and     ( ){ }µµ
µ

GC
H∈

= minarg*                (16)

The algorithm we use to calculate d and *µ  is a classical recursive tree search pro-
cedure, where the search space is reduced by a branch and bound technique (not de-
scribed here due to lack of space).

5   Results

We carried out two different types of experiments to assess the usefulness of our new
representation and to compare it with some other representations presented in the
literature. In the first experiments, the AGs were synthetically generated varying some
parameters such as the number of vertices or the distance between the AGs in their
clusters. In the second experiments, we used a real application in which AGs repre-
sent coloured 3D objects. They were extracted and recognised from some 2D images.
The first experiments are useful to study our representation from the theoretical point
of view and the second ones are useful to apply our methods on noisy, real and com-
plex images.

We present the experiments in the following three sections. In each experiment, we
compare SORGs with three other methods: FDGs, FORGs and AG-to-AG matching.
First, we show  some information of the AGs and the structures obtained in the syn-
thesis process and then we show the run time and ratio of correctness of the classifi-
cation processes for each method. SORGs, FDGs and FORGs were synthesised using
the dynamic clustering in which the models are incrementally updated from a se-
quence of AGs that represent the same cluster or 3D-object [6] (We used the order of
presentation of AGs that obtained the best results). In the SORG method, AGs were
classified using the distance measure described in this paper. In the FDG method, the
AGs were classified applying the distance measure between AGs and FDGs relaxing
second-order constraints (moderate costs on the antagonisms, existences and occur-
rences), without the efficient module, presented in [7]. FORGs were compared using
the methods presented in [4]. Finally, in the  direct AG-to-AG matching method, we
used the edit-operations distance between AGs presented in [8]. The algorithms pre-
sented here were implemented in visual C++ and run on a Pentium IV (1.6Ghz).

5.1   Experiments with Randomly Generated AGs

The AGs used in this section were generated by the random graph generator process
shown in figure 1 (this graph generator was also used and explained in depth in [6]).
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Initial 
AG 1 

AG1 1 

Initial 
AG 10 

AG1 2 AG1 10 AG10 1 AG10 10 AG10 2 

Reference set:  100 elements 

AG1 
1 AG1 2 AG1 10 AG10 1 AG10 10 

Test set:  

FDG 1 FDG 10 

100 elements 

Fig. 1. Random generation of reference and test sets and FDG synthesis.

We first generated 10 initial AGs randomly, one for each model, that had 15 verti-
ces and 5 arcs per vertex. From these AGs, the reference and test sets were derived in
the following way. For each initial AG, a reference and a test set of 10 AGs was built
by randomly deleting 3 vertices and replacing the attribute of the other vertices by
adding gaussian noise with variance V to the attribute values. Then, from each set of
10 reference AGs, an FDG was synthesised.

Fig. 2. (a) Ratio of recognition correctness (b) run time spent in the classification. SORG: ;

FDG: ; FORG: ; AG-AG:

Figure 2 shows in (a) the ratio of recognition correctness and in (b) the time in sec-
onds spent to compute an AG classification in average applying 4 different classifica-
tion methods: SORGs, FDGs, FORGs and direct AG-AG matching. We have seen
that the second-order knowledge kept in the SORGs is higher than in the FDGs and
than in the FORGs. We see, through the results, that this knowledge is useful to repre-
sent the cluster of AGs and so to increase the recognition ratio. The direct AG-AG
matching methods have similar results than SORGs and FDGS only when there is few
noise in the test set. When the variance of the noise increases, the AGs in the tests set
are very different from the AGs in the reference sets and then the ratio of classifica-
tion decreases. While considering the run time, we see that the higher differences
appear when the variance of the noise is large. FDGs is the fastest method since the



1142      Francesc Serratosa and Alberto Sanfeliu

antagonisms are useful to prune the search tree (see 10] for more details).  Neverthe-
less, the Peleg coefficients computed in the distance between AGs and SORGs are
also useful to prune the search tree. For this reason, SORGs obtain better results than
FORGs. Finally, the direct AG to AG matching is the slowest method when the vari-
ance is bigger than 0.6. This is due to the fact that the AGs in the test set are very
different to those in the reference set and so the branch and bound algorithm can
scarcely prune the search tree.

Fig. 3. The 20 selected objects at angle 100 and the segmented images with the AGs.

5.2   Application of Graph Structures to 3D Object Recognition

Finally, we present a real application to recognise coloured objects using 2D images.
Images were extracted from the database COIL-100 from Columbia University
(www.cs.columbia.edu/CAVE/research/ softlib/coil-100.html). It is composed by 100
isolated objects and for each object there are 72 views (one view each 5 degrees).
AGs are obtained by the segmentation process presented in [9]. AG nodes represent
regions and their attribute value is their average hue and arcs represent adjacent re-
gions and their attribute value is the distance between average hues. Figure 3 shows
the 20 objects at angle 100 and their segmented images with the AGs. These AGs
have from 6 to 18 vertices and the average number is 10. The test set was composed
by 36 views per object (taken at the angles 0, 10, 20 and so on), whereas the reference
set was composed by the 36 remaining views (taken at the angles 5, 15, 25 and so on).
We made 6 different experiments in which the number of clusters that represents each
3D-object varied. If the 3D-object was represented by only one cluster, the 36 AGs
from the reference set that represent the 3D-object were used to synthesise the
SORGs, FORGs or FDGs. If it was represented by 2 clusters, the 18 first and con-
secutive AGs from the reference set were used to synthesise one of the SORGs,
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FORGs or FDGs and the other 18 AGs were used to synthesise the other ones. A
similar method was used for the other experiments with 3, 4, 6 and 9 clusters per 3D-
object.

Fig. 4. (a) Ratio of recognition correctness (b) run time spent in the classification. SORG: ;

FDG: ; FORG: ; AG-AG:

Figure 4.a shows the ratio of correctness of the four classifiers varying the number
of clusters per each object. When objects are represented by only 1 or 2 clusters, there
are too much spurious regions (produced in the segmentation process) to keep the
structural and semantic knowledge of the object. For this reason, different regions or
faces (or vertices in the AGs) of different views (that is, AGs) are considered to be the
same face (or vertex in the AGs). The best result appears when each object is repre-
sented by 3 or 4 clusters, that is, each cluster represents 90 degrees of the 3D-object.
When objects are represented by 9 clusters, each cluster represents 40 degree views of
the 3D-object and 4 AGs per cluster, there is poor probabilistic knowledge and there-
fore there is a lack of discrimination between objects.

Figure 4.b shows the average run time spent to compute the classification. When
the number of clusters per object decreases, the number of total comparisons also
decreases but the time spent to compute the distance increases since the structures that
represent the clusters (SORGs, FORGs or FDGs) are bigger.

6   Conclusions and Future Work

SORGs are a general formulation of an approximation of the joint probability of ran-
dom elements in a RG, that describes a set of AGs, based on 2nd order joint probabili-
ties and marginal ones. FORG and FDG approaches are two specific cases of SORGs.
A new distance measure between AGs and SORGs has been presented. It is related to
the probability of the AG according to the function that matches the graph elements.
We have commented the features of the new distance measure and we have applied to
two pattern recognition applications. We show that in both cases the use of the 2nd

order probabilities is useful to increase the recognition ratio and decrease the
run time.
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