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Abstract. 3-dimensional pattern recognition requires the definition of
a similarity measure between 3-dimensional patterns. We discuss how
to match 3-dimensional patterns, which are represented by a set of im-
ages taken from multiple directions and approximately represented by
subspaces. The proposed method is to calculate the canonical angles, in
particular the third smallest angle between two subspaces. We demon-
strate the viability of the proposed method by performing a pilot study
of face recognition.

1 Introduction

We aim to extend pattern recognition coverage from 2-dimensional (2-D) appli-
cations to 3-dimensional (3-D). One expected application of such 3-D pattern
recognition is differentiation between an object and its photograph as well as
identification of the object.

In general, for pattern recognition, we define a similarity measure between
two patterns and use this as the criterion for performing recognition. Thus, for
our purpose, we need a definition of similarity between two 3-D patterns.

A set of images taken from multiple directions are used to describe a 3-D
object1 and the set is approximately represented by a subspace. A subspace
representation of 3-D objects was introduced, for example, in the parametric
eigenspace representation [1], although the subspace representation of a pattern
set had been known as the subspace method [2]. In most cases, the principal
component analysis (PCA) is used for making the subspace as an approximation
of the distribution of the patterns in the set. However, the pattern matching
method in [1] is limited to measure the nearest distance between an input rep-
resented by a vector and a reference that is the nearest vector in a class.

The largest problem with such a framework is that a single photograph which
happens to be identical to an image that is captured from a particular direction
matches exactly even though the actual objects are different. More concretely,
it is impossible to differentiate between an object and its photograph using
conventional methods.
1 3-D modeling provides a representation of 3-D objects, but it takes a long time to

construct such models for real objects. It is therefore currently impractical to acquire
real-time results with this approach.
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We present a 3-D pattern matching method to solve this problem. The pro-
posed method is an extension of a 2-D pattern matching method, the mutual
subspace method (MSM) [3]. The extension is to calculate angles between two
subspaces, in particular the third smallest one rather than the smallest one that
is used in the MSM. We also show the results of a pilot study where faces and
their photographs are dealt with.

2 Approach to the Task

2.1 Use of the Subspace Method Framework

It is desirable that the 3-D pattern matching method is an extension of a 2-D
method. Among existing 2-D methods, we chose the subspace method framework
[2] because most of its calculations are linear operations that are executable at
high speed, in particular with the SIMD instructions of today’s CPUs. The sub-
space method framework has been widely applied in various pattern recognition
tasks, such as character, speech, and face recognition. However, if we try to ap-
ply the subspace method directly to the 3-D problem, a 3-D model is required:
which is expensive.

Among the subspace methods, the MSM has the most interesting proper-
ties. It was initially developed in order to provide greater tolerance for hand-
printing deformation of Kanji in early 80’s, and outperformed the classical sub-
space method in a Kanji recognition experiment [3]. It was later applied to face
recognition, which is originally a form of 3-D recognition, and achieved satisfac-
tory accuracy [4].

2.2 Review of the Mutual Subspace Method

The MSM2 was the first method to utilize the angle between two subspaces
for defining the similarity between an input and a reference3, though they are
originally two sets of vectors. Given subspaces, U and V , the angle between these
is defined as the minimum angle between vectors u and v, where u ∈ U and
v ∈ V , according to [7]. Let θ be the angle. Then θ is calculated as

cos2 θ
.= sup

u ∈ U, v ∈ V
‖u‖ �= 0, ‖v‖ �= 0

(u,v)2

‖u‖2‖v‖2
. (1)

This is also used as the definition of the similarity of the subspaces, i.e. the sets
of the vectors, in the MSM. In order to calculate the similarity, we apply the
following theorem.

2 Since the first MSM paper [3] is only in Japanese, we summarize the major topics
in this subsection.

3 The concept of using the angle between subspaces was also discussed in [5] and [6],
but the aim was other than defining similarity between an input and a reference.
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Theorem 1:
Let U and V be two subspaces and P and Q be orthogonal projection operators
onto U and V , respectively. Then the angle between U and V is calculated as the
maximum eigenvalue of PQP or QPQ [3] [8] [9]. Let µ and ν be the maximum
eigenvalues of PQP and QPQ, i.e.

PQPx = µx, (2)

and
QPQx = νx, (3)

respectively. Then

cos2 θ = ‖QP‖2, (4)
= ‖PQ‖2, (5)
= µ, (6)
= ν, (7)

where the norm of an operator A is defined as

‖A‖ .= sup
‖z‖�=0

‖Az‖
‖z‖ . (8)

According to this theorem, µ or ν itself can be used as the similarity in the
sense that it is the angle between the two subspaces. However, as the eigenvalue
calculation of PQP or QPQ is costly, the matrices basically being large, we
actually calculate the eigenvalue of a smaller matrix X whose eigenvalues are
identical.

Let X = (xij) be

xij =
M∑

m=1

(ψi,φm)(φm,ψj), (9)

or

xij =
N∑

n=1

(φi,ψn)(ψn,φj), (10)

where {φm}M
m=1 and {ψn}N

n=1 are the bases of U and V , respectively. Then the
eigenvalues of X are equal to those of PQP and QPQ [3].

In the sense that an input is represented by a subspace, the MSM is an
extension of the classical subspace method where the input is represented by a
vector: which is also a basis of a 1-D subspace.

2.3 Use of Other Canonical Angles

Canonical Angles in Previous Methods. The canonical angles are defined
as the angles between two subspaces which are measured from the directions
that are orthogonal to one another [9]. The angle calculated in the MSM is the
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smallest one, calculated as the largest eigenvalue. It is sufficient for application
to 2-D pattern matching, but there exists a serious problem for 3-D pattern
matching, as described earlier.

The problem can be modeled as follows; if we imagine a case where two
subspaces share a smaller subspace, e.g. two 2-D subspaces sharing a line, as
shown in Fig. 1, the smallest angle is zero. In such a case, the two patterns will
be evaluated as identical in the MSM framework.

Fig. 1. Two 2-D subspaces in 3-D space.

As an alternative definition of distance between two subspace, Oja and Park-
kinen proposed to use the smallest eigenvalue, µmin, i.e. the largest canonical
angle [5]. This method does not have the above problem, because it uses another
angle of the shared line in Fig. 1.

Let P and Q be the projections to the subspaces U and V , respectively. Then
the equation in [5] is

PQPx = µminPx, (11)

where
‖Px‖ = 1. (12)

As the eigenvectors of PQP are on the subspace U , (11) is equivalent to (2). But
for the condition of (12), the smallest eigenvalue would be zero in most cases
because it corresponds to a direction that is out of the subspaces, so it would
not represent the canonical angle.

Canonical Angles for 3-D Recognition. We have found a possibility of fur-
ther extension of the subspace method framework, using other angles4, referring
to the two previous methods. The methods adopted the opposite definitions of
subspace distance; the smallest angle in the MSM and the largest angle in [5].
However we can have more canonical angles by solving the eigenvalue problem,
(2) or

Xy = µy. (13)

Now the question is determining which one is suitable for 3-D recognition.
4 A similar approach was presented in [10], but the meanings of the other angles and

similarity were not clearly discussed.
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In order to simplify the issue of 3-D recognition, we assume the following
conditions, so that a linear approximation can be applied:
– The moving object is captured using a fixed camera.
– Motion primarily consists of small rotations.
– An appropriate normalization is performed.

These conditions ensure that variations in the recognition patterns are small.
When variation, e.g. lateral rotation, in the patterns is small, the distribution

of the patterns caused by the variation can be assumed to be on a 2-D subspace,
reflecting the dimension of the pattern itself and that of the variation. A differ-
ent variation, e.g. vertical rotation5, makes another 2-D subspace that shares a
dimension of the pattern itself with the previous one.

Ωy

Ωx Ωz

Fig. 2. Rotation of a 3-D object – a face –.

We should consider both lateral and vertical rotations, so that the rotations
of a different direction or multiple directions can be described as a combination
of these two rotations. Therefore a 3-D subspace is a good approximation of
distributions due to rotation6.

Given two 3-D objects that are identical, the 3-D subspaces for them should
also be identical, or more precisely, the 3-D intersecting parts of two higher-
dimensional subspaces should be identical. This means that the three smallest
canonical angles should be zero. Since some actual objects like human faces have
other variations, the canonical angles may have small values. However the three
angles are still good measures of the similarity between the objects.

Referring to the definition of distance used in [5], we propose to use just the
third smallest angle or the third largest eigenvalue among the three. The fourth
largest eigenvalue should be nearly zero because we assume that the distribution
is approximated by a 3-D subspace. The second largest eigenvalue can be 1 or
near 1 if the photograph has a cylinder shape whose side view is the same as
that of the object. This makes the third largest more appropriate.
5 There is yet another rotation for 3-D objects; a rotation around the axis of the lens.

However, considering the task of differentiating an object from its photograph, this
the rotation is of no use, we take only Ωx and Ωy into account, and not Ωz (see
Fig. 2).

6 Since the actual distribution lies in a higher-dimensional subspace due to many
variations such as facial expressions, the input and reference subspaces should be
represented in higher dimensions, e.g. in five or seven dimensions, shown empirically
in [11].
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The proposed method corresponds to calculating the largest canonical angle
between two 3-D subspaces that are the closest part of the two original subspaces.
Assume that {µk}K

k=1 are the eigenvalues of matrix X in (9) or (10) which
are sorted in descending order. Then µ3(= cos2 θ3) is the answer. Since the
calculation of the eigenvalues is in descending order and we need only the third
largest one, the condition of (12) is no longer required.

3 A Pilot Study on Differentiating an Object
from Its Photograph

We performed a pilot study on differentiating an object from its photograph in
face recognition, which we consider to be a typical application in this paper (see
Fig. 3). As described earlier, it is impossible to make this differentiation if we
use a single image that is taken head-on.

Fig. 3. Differentiation between an object – a face – and its photograph.

If we use the images of a 3-D object taken from multiple directions, some
images may exhibit occlusions, or the lighting and shading conditions may be
different among the images. Differently, all the images of a 2-D object are affine
transformed ones of any single image. Even with the difference between these
two situations, the largest eigenvalues of the two cases in the MSM framework
are identical.

We experimented with using µ3 as well as µ1. Due to the normalization
process [4], the variation in the normalized 3-D patterns is small as shown in
Fig. 4. The experimental set therefore fulfills the conditions assumed in the last
section.

We registered a set of face images (subject P0), and performed recognition
for 11 people’s faces including the registered person’s and their photographs.
Figure 5 shows an example set of face images, and Figure 6 shows an example
set of photograph images of the same subject. Table 1 shows the experimental
results for face inputs, and Table 2 shows the experimental results for photograph
inputs.
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Fig. 4. Normalized recognition area.

Fig. 5. Example set of face images.

Fig. 6. Example set of photograph images.

Table 1. Recognition results for face in-
puts.

Person µ1 µ3

P0 0.989 0.937
P1 0.702 0.256
P2 0.707 0.520
P3 0.786 0.488
P4 0.701 0.457
P5 0.643 0.459
P6 0.730 0.227
P7 0.554 0.334
P8 0.750 0.557
P9 0.716 0.545
P10 0.772 0.435

Table 2. Recognition results for photo-
graph inputs.

Person µ1 µ3

P0 0.977 0.204
P1 0.591 0.165
P2 0.619 0.237
P3 0.741 0.123
P4 0.665 0.075
P5 0.626 0.124
P6 0.612 0.055
P7 0.678 0.238
P8 0.732 0.246
P9 0.600 0.154
P10 0.648 0.075
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The experimental results show that µ1 is not suitable for differentiating be-
tween the face and the photograph since the values for P0’s face and photograph
are 0.989 and 0.977, respectively. It is difficult to determine a threshold of rejec-
tion between such similar values.

Conversely, µ3 makes a good criterion because the values for the face and the
photograph are 0.937 and 0.204, respectively. As well as µ1, µ3 is also effective
for rejecting other subjects (P1, ..., P10).

4 Conclusion

We have shown that the MSM framework can be extended to 3-D object recog-
nition by using the third largest eigenvalue or the third smallest canonical angle.
The viability of the proposed method has been demonstrated by a face recog-
nition pilot study. Quantitative evaluation of this method with a large data set
will be considered in future work.
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