Multiple Classifier Prediction Improvements against
Imbalanced Datasets through Added Synthetic Examples

Herna L. Viktor and Hongyu Guo

School of Information Technology and Engineering, University of Ottawa
800 King Edward Road, Ottawa, Ontario, Canada, KIN 6N5
(hlviktor,hguo028}@site.uottawa.ca

Abstract. Ensembles of classifiers have successfully been used to improve the
overall predictive accuracy in many domains. In particular, the use of boosting
which focuses on hard to learn examples, have application for difficult to learn
problems. In a two-class imbalanced data set, the number of examples of the
majority class is much higher than that of the minority class. This implies that,
during training, the predictive accuracy against the minority class of a tradi-
tional boosting ensemble may be poor. This paper introduces an approach to
address this shortcoming, through the generation of synthesis examples which
are added to the original training set. In this way, the ensemble is able to focus
not only on hard examples, but also on rare examples. The experimental results,
when applying our Databoost-IM algorithm to eleven datasets, indicate that it
surpasses a benchmarking individual classifier as well as a popular boosting
method, when evaluated in terms of the overall accuracy, the G-mean and the
F-measures.

1 Introduction

Over the past few years, ensembles have emerged as a promising technique with the
ability to improve the performance of weak classification algorithms [1, 2]. Ensem-
bles of classifiers consist of a set of individually trained classifiers whose predictions
are combined to classify new instances [1, 2]. In particular, boosting is an ensemble
method where the performance of weak classifiers is improved by focusing on hard
examples which are difficult to classify. Boosting produces a series of classifiers and
the outputs of these classifiers are combined using weighted voting in the final predic-
tion of the model [3]. In each step of the series, the training examples are re-weighted
and selected based on the performance of earlier classifiers in the training series. This
produces a set of “easy” examples with low weights and a set of hard ones with high
weights. During each of the iterations, boosting concentrates on classifying the hard
examples correctly. Recent studies have indicated that boosting algorithm is applica-
ble to a broad spectrum of problems with great success [3, 4].

The class imbalance problem corresponds to domains for which one class is repre-
sented by a large number of examples while the other is represented by only a few [5].
Many real world applications involve learning from imbalanced sets, such as fraud
detection, telecommunications management, oil spill detection and text classification
[6]. When learning from imbalanced data sets, machine learning algorithms tend to
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produce high predictive accuracy over the majority class, but poor predictive accuracy
over the minority class [7]. There have been several proposals for coping with imbal-
anced data sets [5], including under-sampled examples of the majority class and/or
over-sampling of the minority class [6, 7, 8] and weighing examples in an effort to
bias the learning toward the minority class [7]. Research into the use of boosting in-
cludes [9], which evaluated boosting algorithms to classify rare classes; and [10]
which combined boosting and synthetic data to improve the prediction of the minority
class.

In this paper, we discuss the DataBoost-IM approach, which combines data genera-
tion and boosting procedures to improve the predictive accuracies of both the majority
and minority classes, without forgoing one of the two classes. The aim of our ap-
proach is therefore to ensure that the resultant predictive accuracies of both classes are
high. Our approach differs from prior work in the following ways. Firstly, we sepa-
rately identify hard examples from, and generate synthetic examples for, the minority
as well as the majority classes. Secondly, we generate synthetic examples with bias
information toward the hard examples on which the next component classifier in the
boosting procedures needs to focus. That is, we provide additional knowledge for the
majority as well as the minority classes and thus prevent boosting over-emphasizing
the hard examples. Thirdly, the class frequencies of the new training set are rebal-
anced to alleviate the learning algorithm’s bias toward the majority class. Fourthly,
the total weights of the different classes in the new training set are rebalanced to force
the boosting algorithm to focus on not only the hard examples, but also the minority
class examples. In this way, we focus on improving the predictions of both the minor-
ity and majority classes.

This paper is organized as follows. The performance measures used to evaluate the
performance of our approach is introduced in Section 2. Section 3 describes the Da-
taBoost-IM algorithm. This is followed, in Section 4, with an evaluation of the Data-
Boost-IM algorithm against eleven data sets from the UCI data set repository [11].
Finally, Section 5 concludes the paper.

2 Performance Measures

Traditionally, the performance of a classifier is evaluated by considering the overall
accuracy against test cases [12]. However, when learning from imbalanced data sets,
this measure is often not sufficient [12]. Following [7, 8, 10, 13], we employ the
overall accuracy, G-Mean [8] and F-Measures [14] metrics to evaluate our Data-
Boost-IM method. The confusion matrix, as shown in Table 1, represents the typical
metrics for evaluating the performance of machine learning algorithms on skew class
problems.

Table 1. Confusion Matrix

Predicted Negative Predicted Positive
Actual Negative | TN ( the number of True Negatives) FP( the number of False Positives)
Actual Positive FN (the number of False Negatives) TP( the number of True Positives)
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In Table 1, the Precision and Recall are calculated as TP /(TP + FP) and TP /(TP
+ FN). The F-measure is defined as
((1+ B° )x Re call X Pr ecision )/ ( B? X Re call + Pr ecision ) @)

where [} corresponds to the relative importance of precision versus the recall and it is
usually set to 1. The F-measure incorporates the recall and precision into a single
number. It follows that the F-measure is high when both the recall and precision are
high [9]. This implies that the F-measure is able to measure the “goodness” of a
learning algorithm on the current class of interest. Note that we also use this measure
for the majority class, since we are interested in measuring the performance of both
classes. Another criteria used to evaluate a classifier’s performance on skew data is
the G-mean [8, 10, 13]. The G-mean is defined as

‘/ PositiveAcuracyx NegativeAcuracy (2)

where Positive Accuracy and Negative Accuracy are calculated as TP / (FN+TP) and
TN / (TN+FP). This measure relates to a point on the ROC curve and the idea is to
maximize the accuracy on each of the two classes while keeping these accuracies
balanced [8]. For instance, a high Positive accuracy by a low Negative accuracy will
result in poor G-mean [8].

3 DataBoost-IM Algorithm

The DataBoost-IM approach extends our earlier DataBoost algorithm which was
successfully used to produce highly accuracy classifiers in balanced domains contain-
ing hard to learn examples [15]. In this section, we describe a variation, the Data-
Boost-IM algorithm, applied to imbalanced data sets. This approach extends the
original DataBoost algorithm as follows. Firstly, we separately identify hard exam-
ples from and generate synthetic examples for different classes. Secondly, the class
distribution and the total weights of different classes are rebalanced to alleviate the
learning algorithms’ bias toward the majority class.

Recall that boosting involves the creation of a series of classifiers which aims to
correctly classify hard to learn examples, through focusing on these hard examples
during training. Following this mechanism, the DataBoost-IM algorithm, as shown in
Figure 1, consists of the following three stages. Firstly, each example of the original
training set is assigned an equal weight. The original training set is used to train the
first classifier of the DataBoost-IM ensembles. Secondly, the hard examples (so-
called seed examples) are identified and for each of these seed examples, a set of
synthetic examples is generated. During the third of the algorithm, the synthetic ex-
amples are added to the original training set and the class distribution and the total
weights of different classes are rebalanced. The second and third stages of the Data-
Boost-IM algorithm are re-executed until reaching a user-specified number of itera-
tions or the current component classifier’s error rate is worse than a threshold value.
Following the AdaBoost ensemble method, this threshold is set to 0.5 [1, 2].

The seed selection, data generation and re-balancing process of the DataBoost-IM
algorithm are described next.
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Input:  Sequence of 72 examples <( XY oo Xy Vi )> with labels y,eY= {1,..k)}
Weak learning algorithm WeakLearn
Integer T specifying number of iterations
Initialize Dj( i) = 1/mforall i.
Dofor f=1,2,..,T
1. Identify hard examples from the original data set for different classes.
Generate synthetic data to balance the training knowledge of different classes
Add synthetic data to the original training set to form a new training data set
Update and balance the total weights of the different classes in the new training data set
Call WeakLearn, providing it with the new training set with synthetic data and rebalanced
weights
6.  Get back a hypothesis h,:X >Y-

A

7. Calculate error of h, &= zl)t(l) If €, > [/ 2, set T=1t-1and abort loop.
i ey
8. Set fi, =¢,/(1I'-¢, ).

D(i) |B < ifh(x)=y
AR

Z, 1 < otherwise

9.  Update distribution Dz . Dt+1( i ) — , where Zt is a normali-

zation constant (chosen so that DH] will be a distribution).

Output The final hypothesis:
P P hp,(x)=arg max Yy, log—
yeY t:h,(x)=y ﬂt

Fig. 1. Pseudo-code of the DataBoost-IM algorithm

3.1 Identify Seed Examples

The aim of the seed selection process is to identify hard examples for both the major-
ity and minority classes. These examples, are used as input for the data generation
process as discussed in Section 3.2.

The seed examples are selected as follows. Firstly, the examples in the training set

) are sorted descending, based on their weights. The original training set E,, ;.

(E

train
contains N, . examples from the majority class and N,

min

examples from the minority
class. The number of examples that is considered to be hard (denoted by N) is calcu-
lated as (E
Next, the set £, which contains the N, examples with the highest weights in E,_. , is

and E, . i.e. examples

and E

smaj

wain X E77), Where Err is the error rate of the currently trained classifier.

created. The set E_ consists of two subset of examples E

smin

from the minority and majority classes, respectively. Here, E contain

N_ . and N

smin smaj

seed examples of the majority class in E_, . by calculating M;, which is equal to min

(Nyaj/ Nopin, Npg)- Correspondingly, a subset M of the minority class examples in
E,,;, 1s selected as seeds, where My is calculated as min ( (N, x M;) /' N,;,.. N,...).

The final sets of seed examples are placed in sets £, ,and E, .

examples, where N, <N, and N, . <N, .. We select a number of
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3.2 Generate Synthetic Data and Balance Class Frequencies

The aim of the data generation process is to generate additional synthesis instances to

add to the original training set E, . . The data generation process extends our earlier

work, as presented in [15, 16, 17], by generating data for the majority and minority
classes separately. That is, the data generation process generates two sets of data.
Firstly, a total of M, sets of new majority class examples, based on each seed instance
in E,. are generated. For each attribute included in the synthetic example, a new
value is generated based on the following constraints [15, 16, 17].

For Nominal attribute, the data generation produces a total of N, . attribute values
for each seed in Emaj. The values are chosen to reflect the distribution of values con-

tained in the original training attribute with respect to the particular class. This is
achieved by considering, for each class, the number of occurrences of different attrib-
ute values in the original data set.

For Continuous attribute, the data generation produces a total of N, . attribute val-

ues. The values are chosen by considering the range [min, max] of the original attrib-

ute values with respect to the seed class. Also, the distribution of original attribute

values, in terms of the deviation and the mean, is used during data generation.
Similarly, M different sets of new minority class examples, each based on a seed

instance in E

e are constructed. These sets of instances are added to the original
training set. Interested readers are referred to [15, 16, 17] for a description of the data

generation process and its evolution.

3.3 Balance the Training Weights of Separate Classes

In the final step prior to re-training, the total weights of the examples in the different
classes are rebalanced. By rebalancing the total weights of the different classes, boost-
ing is forced to focus on hard as well as rare examples.

Recall that the data generation process generates sets of synthetic examples based
on seed examples E, .and E,, corresponding to the majority and minority classes.
Before the generated data are added to the original data set, each of the synthetic ex-
amples is assigned an initial weight. The initial weight of each example is calculated
by dividing the weight of the seed example by the number of instances generated
from it. In this way, the very high weights associated with the hard examples are bal-
anced out. Rebalancing ensures that the boosting algorithm focuses on hard as well as
minority class examples.

When the new training set is formed, the total weights of the majority class exam-
ples (denoted by W, ) and the minority class examples (denote by W, ) in the new

training data are rebalanced as follows. If W _.> W, . the weight of each instance in

aj

the minority class is multiplied by W, ./ W, . Otherwise, the weight of each instance

aj min,
in the majority class is multiplied by W, /W, .
majority and minority classes will be balanced. Note that, prior to training, the
weights of the new training set will be renormalized, following the AdaBoost method,

so that their sum equals 1 [1, 2, 3].

In this way, the total weight of the
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4 Experiments

This section describes the results of evaluating the performance of the DataBoost-IM
algorithm against imbalanced data sets, in comparison with the AdaBoost benchmark-
ing boosting algorithm [1, 2] and as well as the C4.5 decision tree, which has become
a de facto standard against which new algorithms are being judged [18]. The C4.5
algorithm is also used as base classifier.

Table 2. Summary of the data sets used in this paper. Shown are the number of examples in the
data set; the number of minority class; the number of majority class; the class distribution; the
number of continous, and the number of discrete input features

Data set Case Minority Majority Class Feature
Class Class Distribution  Continuous Discrete
CREDIT-G 1000 300 700 0.30:0.70 7 13
BREAST-CANCER 286 85 201 0.30:0.70 0 9
PHONEME 5484 1586 3818 0.29:0.71 5 0
VEHICLE 846 199 647 0.23:0.77 18 0
HEPATITIS 155 32 123 0.20:0.80 6 13
SEGMENT 2310 330 1980 0.14:0.86 19 0
GLASS 214 29 185 0.13:0.87 9 0
SATIMAGE 6435 626 5809 0.09:0.91 33 0
VOWEL 990 90 900 0.09:0.91 10 3
SICK 3772 231 3541 0.06:0.94 6 23
PRIMARY-TUMOR 339 14 325 0.04:0.96 0 17

To evaluate the performance of the DataBoost-IM method, we obtained eleven data
sets from the UCI data repository [11]. These data sets were carefully selected to
ensure that they (a) are based on real-world problems, (b) varied in feature character-
istics, and (c) vary extensively in size and class distribution. Table 2 gives the charac-
teristics of the data sets used for the experiments. Shown are the number of cases, the
number of the majority and minority classes, the class distribution, and the type of the
features. For the glass, vowel, vehicle, satimage and primary-tumor data sets, we
increased the degree of skew by converting all but the smallest class into a single
class. For the sick data sets, we deleted the TBG’ attribute due to the high occurrence
of missing values.

4.1 Methodology and Experimental Results

We implemented the experiments using Weka [19], a Java-based knowledge learning
and analysis environment developed at the University of Waikato in New Zealand.
Results for the data sets, as shown in Table 2, are averaged over five standard 10-fold
cross validation experiments. For each 10-fold cross validation the data set was first
partitioned into 10 equal sized sets and each set was then in turn used as the test set
while the classifier trains on the other nine sets. A stratified sampling technique was
applied here to ensure that each of the sets had the same proportion of different
classes. For each fold an ensemble of fen component classifiers was created. In the
experiments, the C4.5 decision trees were pruned [18].
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Table 3. Test set G-mean, F-measure of minority class, F-measure of majority class, overall
accuracy , true positive rate of minority class, and true positive rate of majority class for the
data sets using (1) C4.5, (2) AdaBoost ensembles, and (3) DataBoost-IM ensembles

Data Set Methods G- F re F e Overall TP rate of TP rate of
Name Mean of min. class of maj. class Accuracy min. class Maj. Class
CREDIT-G C4.5 56.72 43.88 80.53 71.10 37.66 85.42
AdaBoost 5891 45.74 78.69 69.40 43.00 80.71
DataBoost-IM  61.96 49.64 80.22 71.60 46.66 82.28
BREAST- C4.5 50.84 39.31 84.39 7517 27.05 95.52
CANCER AdaBoost 58.12 44.06 74.93 65.38 45.88 73.63
DataBoost-IM  60.04 46.51 77.00 67.83 47.05 76.61
PHONEME C4.5 84.22 77.23 90.07 86.17 79.88 88.78
AdaBoost 86.74 81.86 92.60 89.48 80.83 93.08
DataBoost-IM  88.40 83.83 93.29 90.52 83.73 93.34
VEHICLE C4.5 92.50 87.90 96.19 94.20 89.44 95.67
AdaBoost 95.58 92.57 97.67 96.45 93.96 97.21
DataBoost-IM 95,77 93.70 98.06 97.04 93.46 98.14
HEPATITIS C4.5 57.91 42.10 86.95 78.70 37.50 89.43
AdaBoost 66.86 52.45 88.35 81.29 50.00 89.43
DataBoost-IM  76.25 62.68 89.71 83.87 65.62 88.61
SEGMENT C4.5 92.28 87.23 97.87 96.36 86.96 97.92
AdaBoost 95.98 93.59 98.94 98.18 93.03 99.04
DataBoost-IM  97.35 95.59 99.26 98.74 95.45 99.29
GLASS C4.5 85.91 78.57 96.77 94.39 75.86 97.29
AdaBoost 89.48 81.35 97.01 94.85 82.75 96.75
DataBoost-IM  92.34 89.28 98.38 97.19 86.20 98.91
SATIMAGE C4.5 72.70 56.44 95.41 91.70 55.27 95.62
AdaBoost 77.01 66.72 96.76 94.11 60.70 97.71
DataBoost-IM  80.42 68.86 96.76 94.14 66.61 97.10
VOWEL C4.5 95.81 93.78 99.38 98.88 92.22 99.55
AdaBoost 97.69 97.17 99.72 99.49 95.55 99.88
DataBoost-IM  99.38 98.88 99.88 99.79 98.88 99.88
SicK C4.5 93.03 89.13 99.30 98.70 87.01 99.46
AdaBoost 94.23 91.15 99.43 98.93 89.17 99.57
DataBoost-IM  95.96 91.84 99.46 98.99 92.64 99.40
PRIMARY- C4.5 0.00 0.00 97.89 95.87 0.00 100.0
TUMOR AdaBoost 37.50 19.04 97.41 94.98 14.28 98.46
DataBoost-IM  52.62 28.57 96.92 94.10 28.57 96.92

The experimental results for all eleven data sets described in Table 2 are presented
in Table 3. For each data set, we present the results achieved when using the C4.5,
AdaBoostM1 and DataBoost-IM methods. Also, for each algorithm, the table presents
the results in terms of the G-mean, overall accuracy rates, TP rate of the majority
class and the minority class, F-measure of the majority class and the minority class.

One conclusion drawn from the experimental results is that the DataBoost-IM
method consistently achieves higher performance on the minority class as well as the
majority class in comparison with the C4.5 and AdaBoost algorithms. However, this
improvement varies with different data sets. Consider the G-mean scores, which re-
flect the classifier’s predictive accuracies against the majority and the minority class,
as well as the degree of balance between classes. The results show that, for the G-
mean score, the DataBoost-IM method surpasses the performance of the C4.5 and the
AdaBoost algorithms in all cases. The experimental results also show that in many
cases, the improvements are large. For example, in the Hepatitis data set, the
AdaBoost algorithm improves on the C4.5 method’s G-mean, i.e. 57.91% compared
to 66.86%, and the DataBoost-IM algorithm significantly improved on the AdaBoost
algorithm’s performance, with a G-mean of 76.25%. In the case of the Primary-
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Tumor data sets, the G-mean for the C4.5 method is 0%, since the C4.5 classifier
achieved a 100% accuracy rate for the majority class but misclassified all minority
examples. In this case, the AdaBoost algorithm produced a G-mean of 37.50%, whilst
the DataBoost-IM ensemble achieved a G-mean of 52.62%. This improvement was
credited with the achievement of the minority class’s TP Rate of 28.57% by the Da-
taBoost-IM compared to 0% by the C4.5 classifier and 14.28% by the AdaBoostM1
method. When considering the F-measures a similar conclusion holds. Table 3 more-
over shows that, when considering the overall accuracy, the DataBoost-IM method
consistently produces highly accurate ensembles.

In conclusion, the results, as shown in Table 3, indicate that the DataBoost-IM ap-
proach described here extends the predictive capabilities of the boosting ensemble and
the component classifier when evaluated in terms of overall accuracy, G-mean and F-
measures. This is achieved through integrating the data generation approach, in which
class frequencies and training weights on different classes are rebalanced, into the
boosting procedures.

5 Conclusion

This paper introduced a technique to create an ensemble of highly accuracy classifi-
ers, when learning from imbalanced data sets. The DataBoost-IM algorithm extends
the standard boosting approach by generating additional synthetic examples for both
the majority and the minority classes, balancing the class distribution and rebalancing
the training weights on different classes. In this way, boosting focuses not only on
hard examples, but also on rare minority class examples. The DataBoost-IM algo-
rithm was illustrated by means of eleven UCI data sets with various features, degrees
of imbalance and sizes. The results obtained indicate that the DataBoost-IM approach
increases the performance power of boosting algorithms when applied to imbalanced
data sets. In particular, the DataBoost-IM algorithm achieved better predictions, in
terms of the G-mean and F-measures metrics, against both the minority and majority
classes, when compared with the C4.5 and AdaBoostM1 algorithms. Importantly, our
method does not sacrifice one class for the other, but produce high predictive accu-
racy against both the majority and the minority class.

It follows that our approach should address two issues, namely finding optimal
way to re-balance the learning bias toward majority class and investigating the per-
formance against noisy data. Also, other weight-assignment methods will be further
investigated. Future work will also include studying the voting mechanism of the
boosting algorithm using different metrics such as the ROC curve and to provide a
sound theoretical justification of the Databoost-IM parameter selection process.
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