
Combining Explicit and Recursive Blocking
for Solving Triangular Sylvester-Type Matrix

Equations on Distributed Memory Platforms

Robert Granat, Isak Jonsson, and Bo Kågström

Department of Computing Science and HPC2N, Ume̊a University,
SE-901 87 Ume̊a, Sweden

{granat,isak,bokg}@cs.umu.se

Abstract. Parallel ScaLAPACK-style hybrid algorithms for solving the
triangular continuous-time Sylvester (SYCT) equation AX − XB = C
using recursive blocked node solvers from the novel high-performance
library RECSY are presented. We compare our new hybrid algorithms
with parallel implementations based on the SYCT solver DTRSYL from
LAPACK. Experiments show that the RECSY solvers can significantly
improve on the serial as well as on the parallel performance if the problem
data is partitioned and distributed in an appropriate way. Examples
include cutting down the execution time by 47% and 34% when solving
large-scale problems using two different communication schemes in the
parallel algorithm and distributing the matrices with blocking factors
four times larger than normally. The recursive blocking is automatic for
solving subsystems of the global explicit blocked algorithm on the nodes.

Keywords: Sylvester matrix equation, continuous-time, Bartels–Stewart
method, blocking, GEMM-based, level 3 BLAS, LAPACK, ScaLAPACK-
style algorithms, RECSY, recursive algorithms, automatic blocking.

1 Introduction

This contribution deals with parallel algorithms and software for the numerical
solution of the triangular continuous-time Sylvester equation (SYCT)

AX − XB = C, (1)

on distributed memory (DM) environments, where A of size m × m, B of size
n×n and C of size m×n are arbitrary matrices with real entries. The matrices
A and B are in upper (quasi-)triangular Schur form. A quasi-triangular matrix
is upper triangular with some 2 × 2 blocks on the diagonal that correspond to
complex conjugate pairs of eigenvalues. SYCT has a unique solution X of size
m×n if and only if A and B have disjoint spectra, or equivalently the separation
sep(A, B) �= 0. The Sylvester equation appears naturally in several applications.
Examples include block-diagonalization of a matrix in Schur form and condition
estimation of eigenvalue problems (e.g., see [17, 10, 19]).

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 742–750, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Combining Explicit and Recursive Blocking 743

Using the Kronecker product notation, ⊗ , we can rewrite the Sylvester
equation as a linear system of equations

ZSYCTx = c, (2)

where ZSYCT = In ⊗A−BT ⊗ Im is a matrix of size mn×mn, x = vec(X) and
c = vec(C). As usual, vec(X) denotes an ordered stack of the columns of the
matrix X from left to right starting with the first column. Since A and B are
(quasi-)triangular, the triangular Sylvester equation can be solved to the cost
O(m2n + mn2) using a combined backward/forward substitution process [1]. In
blocked algorithms, the explicit Kronecker matrix representation Zx = c is used
in kernels for solving small-sized matrix equations (e.g., see [11, 12, 17]).

Our objective is to investigate the performance of our ScaLAPACK-style
algorithms for solving SYCT [7, 6] when combined with recursive blocked matrix
equation solvers from the recently developed high-performance library RECSY
[11–13]. The recursive approach works very well on single processor architectures
and shared memory machines utilizing just a few nodes. In a distributed memory
environment, recursion can hardly be applied efficiently on the top-level of our
parallel algorithms for solving SYCT. Still, we can gain performance by applying
recursion when solving medium-sized instances of SYCT on the nodes, and this
motivates our investigation of ScaLAPACK-style hybrid algorithms.

The rest of the paper is organized as follows; In Section 2, we review our
ScaLAPACK-style algorithms for solving SYCT. Then the RECSY library, which
is used for building the hybrid algorithms, is briefly presented in Section 3. In
Section 4, we display and compare some experimental results of the standard
and hybrid ScaLAPACK-style algorithms, respectively. Finally, in Section 5, we
summarize our findings and outline ongoing and future work.

2 Parallel ScaLAPACK-Style Algorithms
for Solving SYCT Using Explicit Blocking

To solve SYCT we transform it to triangular form, following the Bartels–Stewart
method [1], before applying a direct solver. This is done by means of a Hessen-
berg reduction, followed by the QR-algorithm applied to both A and B. The
right hand side C must also be transformed with respect to the Schur decompo-
sitions of A and B. Reliable and efficient algorithms for the reduction step can
be found in LAPACK [2], for the serial case, and in ScaLAPACK [9, 8, 3] for dis-
tributed memory environments. Assuming that this reduction step has already
been performed, we partition the matrices A and B in SYCT using the blocking
factors mb and nb, respectively. This implies that mb is the row-block size and
nb is the column-block size of the matrices C and X (which overwrites C). By
defining Da = �m/mb� and Db = �n/nb�, SYCT can be rewritten in blocked
form as

AiiXij − XijBjj = Cij − (
Da∑

k=i+1

AikXkj −
j−1∑

k=1

XikBkj), (3)



744 R. Granat, I. Jonsson, and B. K̊agström

for j=1, Db

for i=Da, 1, -1
{Solve the (i, j)th subsystem using a kernel solver}
AiiXij − XijBjj = Cij

for k=1, i − 1
{Update block column j of C}
Ckj = Ckj − AkiXij

end
for k=j + 1, Db

{Update block row i of C}
Cik = Cik + XijBjk

end
end

end

Fig. 1. Block algorithm for solving AX − XB = C, A and B in real Schur form.

where i = 1, 2, . . . , Da and j = 1, 2, . . . , Db. The resulting serial blocked algo-
rithm is outlined in Figure 1 [17, 19].

We now assume that the matrices A, B and C are distributed using 2D
block-cyclic mapping across a Pr × Pc processor grid. We then traverse the
matrix C/X along its block diagonals from South-West to North-East, starting
in the South-West corner. To be able to compute Xij for different values of i
and j, we need Aii and Bjj to be held by the same process that holds Cij .
We also need to have the blocks used in the general matrix-multiply and add
(GEMM) updates of Cij in the right place at the right time. In general, this
means we have to communicate for some blocks during the solves and updates.
This can be done “on demand”: whenever a processor misses any block that it
needs for solving a node subsystem or doing a GEMM update, it is received from
the owner in a single point-to-point communication [7]. Because of the global
view of data in the ScaLAPACK environment all processors know exactly which
blocks to send in each step of the algorithm. Moreover, the subsolutions Xij are
broadcasted in block row i and block column j for use in updates of right hand
sides. A brief outline of a parallel algorithm PTRSYCTD that uses this approach
is presented in Figure 2. The matrices can also be shifted one step across the
process mesh for every block diagonal that we solve for [19, 6]. This brings all
the blocks needed for the solves and updates associated with the current block
diagonal into the right place in one single global communication operation. A
brief outline of such a parallel algorithm is presented in Figure 3. The “matrix-
shifting” approach puts restrictions on the dimensions of the processor grid and
the data distribution: Pr must be an integer multiple of Pc or vice versa, and the
last rows/columns of A and B must be mapped onto the last process row/column
[19]. Both communication schemes have been implemented in the same routine
PGESYCTD [7, 6], which can solve four variants of SYCT with one or both of A
and B replaced by their transposes.

The parallel algorithms presented in Figures 2 and 3 both tend to give
speedup of O(

√
p), where p is the number of processors used in the parallel

execution [19, 6, 7].



Combining Explicit and Recursive Blocking 745

for k=1, the number of block diagonals in C
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

if(mynode does not hold Aii and/or Bjj)
Communicate for Aii and/or Bjj

Solve for Xij in AiiXij − XijBij = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

if(mynode does not hold block in A needed for updating block column j)
Communicate for requested block in A

Update block column j of C in parallel
if(mynode does not hold block in B needed for updating block row i)

Communicate for requested block in B
Update block row i of C in parallel

endif
end

Fig. 2. Parallel “communicate-on-demand” block algorithm for AX −XB = C, A and
B in real Schur form.

Notice that we are free to choose any kernel solver for the subsystems AiiXij−
XijBjj = Cij in the algorithms presented in Figures 1, 2 and 3. Here Aii and
Bjj are of size mb×mb and nb×nb, respectively, and C/X is of size mb×nb. The
original implementation of the parallel algorithms used LAPACK’s DTRSYL as
node solver, which is essentially a level-2 BLAS algorithm. For more information
about the ScaLAPACK-style algorithms we refer to [19, 7, 6].

3 RECSY – Using Recursive Blocked Algorithms
for Solving Sylvester-Type Subsystems

RECSY [13] is a high-performance library for solving triangular Sylvester-type
matrix equations, based on recursive blocked algorithms, which are rich in GEMM-
operations [4, 15, 16]. The recursive blocking is automatic and has the potential
of matching the memory hierarchies of today’s high-performance computing sys-
tems. RECSY comprises a set of Fortran 90 routines, all equipped with Fortran
77 interfaces and LAPACK/SLICOT wrappers, which solve 42 transpose and
sign variants of eight common Sylvester-type matrix equations. Table 1 lists the
standard variants of these matrix equations.

Table 1. The Sylvester-type matrix equations considered in the RECSY library. CT
and DT denote the continuous-time and discrete-time variants, respectively.

Name Matrix Equation
Standard Sylvester (CT) AX − XB = C

Standard Lyapunov (CT) AX + XAT = C

Standard Sylvester (DT) AXBT − X = C

Standard Lyapunov (DT) AXAT − X = C
Generalized Coupled Sylvester (AX − Y B, DX − Y E) = (C, F )

Generalized Sylvester AXBT − CXDT = E

Generalized Lyapunov (CT) AXET + EXAT = C

Generalized Lyapunov (DT) AXAT − EXET = C



746 R. Granat, I. Jonsson, and B. K̊agström

for k=1, number of block diagonals in C
if(m = n) then

if(Pc �= 1) Shift A East
if(Pr �= 1) Shift B North

elseif(m < n) then
Shift A South-East
if(Pr �= 1) Shift C South

else
Shift B North-West
if(Pc �= 1) Shift C West

endif
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

Solve for Xij in AiiXij − XijBij = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

Update block column j of C in parallel
Update block row i of C in parallel

endif
end

Fig. 3. Parallel “matrix-shifting” block algorithm for AX −XB = C, A and B in real
Schur form.

Depending on the sizes of m and n, three alternatives for doing a recursive
splitting are considered [11, 13]. In Case 1 (1 ≤ n ≤ m/2), A is split by rows and
columns, and C by rows only. Similarly, in Case 2 (1 ≤ m ≤ n/2), B is split by
rows and columns, and C by columns only. Finally, in Case 3 (n/2 < m < 2n)
both rows and columns of the matrices A, B and C are split:

[
A11 A12

A22

] [
X11 X12

X21 X22

]
−

[
X11 X12

X21 X22

] [
B11 B12

B22

]
=

[
C11 C12

C21 C22

]
.

This recursive splitting results in the following four triangular SYCT equations:

A11X11 − X11B11 = C11 − A12X21,

A11X12 − X12B22 = C12 − A12X22 + X11B12,

A22X21 − X21B11 = C21,

A22X22 − X22B22 = C22 + X21B12.

First, X21 is solved for in the third equation. After updating C11 and C22 with
respect to X21, one can solve for X11 and X22. Both updates and the triangular
Sylvester solves are independent operations and can be executed concurrently.
Finally, one updates C12 with respect to X11 and X22, and solves for X12. In
practice, all four subsystems are solved using the recursive blocked algorithm. If
a splitting point (m/2 or n/2) appears at a 2 × 2 diagonal block of A or B, the
matrices are split just below this diagonal block.

The recursive approach is natural to SMP-parallelize, which is implemented
in RECSY using OpenMP. The performance gain compared to standard algo-
rithms is remarkable, including 10-fold speedups, partly due to new superscalar



Combining Explicit and Recursive Blocking 747

kernels. The software and documentation concerning RECSY is available for
download [14]. For details we also refer to the papers by Jonsson and Kågström
[11, 12].

4 Computational Experiments

In this section, we compare measured performance results for the parallel al-
gorithms in Figures 2 and 3 solving SYCT using two different node solvers
DTRSYL (from LAPACK) and RECSYCT (from RECSY) in PGESYCTD. The
test results are for different values of m = n and different process configurations
Pr × Pc on the HPC2N Linux Super Cluster seth. The cluster consists of 120
dual Athlon MP2000+ nodes (1.667 GHz), where each node has 1–4 GB mem-
ory. The cluster is connected through the Wolfkit3 SCI high-speed interconnect
with a bandwidth of 667 Mbytes/second. The network connects the nodes in a
3-dimensional torus organized as a 4 × 5 × 6 grid, where each link is “one-way”
directed. The theoretical peak system performance of seth is 800 Gflops/sec.
The fraction ta/tw, where ta and tw denote the time for one flop and the per-
word transfer time, respectively, is approximately 0.025. Compared to other more
well-balanced systems, e.g., the HPC2N IBM SP system which has ta/tw = 0.11,
communication is almost a factor 10 more expensive on seth.

The results are displayed in Tables 2 and 3. The variables qs and qd are the
ratios between the execution times of PGESYCTD using the two different commu-
nication schemes. These ratios are presented for both node solvers (LAPACK,
RECSY). If a ratio is larger than 1.0, the RECSY variant is the fastest, and
represents the speedup gain compared to the LAPACK variant.

5 Discussion and Conclusions

The results in Table 2 show that the RECSYCT solver decreases the execution
time up to 24% for moderate-sized block sizes mb = nb = 128 when “on-demand”
communication is used, while the gain is only up to 8% for the “matrix-shifting”
scheme, and even negative for a few cases.

From the results in Table 3, we conclude that the execution times for PGESYCTD
using RECSYCT decrease for larger block sizes (mb = nb = 512), while the exe-
cution times for PGESYCTD using DTRSYL increase drastically compared to the
results in Table 2.

In Table 4, we display the ratios of the shortest execution times of PGESYCTD
using DTRSYL and RECSYCT, respectively, and one of the two communica-
tion schemes for a given processor grid and problem size. Overall the RECSYCT
solver decreases the execution times between 15% and 43% compared to DTR-
SYL. The best results for RECSYCT are obtained when “on-demand” com-
munication is used, while the best results for DTRSYL are obtained for the
“matrix-shifting” scheme.

In conclusion, PGESYCTD with the RECSYCT solver has a large impact on the
performance when mb and nb are several hundreds, mainly because the perfor-



748 R. Granat, I. Jonsson, and B. K̊agström

Table 2. Timing results (in seconds) of PGESYCTD using different kernel solvers DTR-
SYL (LAPACK) and RECSYCT (RECSY) and different communication schemes
“matrix-shifting” (S) and “on-demand”(D). Here we use moderate-sized blocking fac-
tors mb = nb = 128.

LAPACK RECSY Ratios LAPACK RECSY Ratios
m = n Pr × Pc S D S D qs qd m = n Pr × Pc S D S D qs qd

2048 1 × 1 18.0 18.1 16.0 15.9 1.12 1.12 6144 2 × 2 573 215 528 200 1.08 1.08
2048 2 × 1 25.3 15.1 26.5 13.6 0.95 1.11 6144 4 × 2 277 156 276 148 1.00 1.05
2048 2 × 2 20.9 9.8 20.2 8.4 1.04 1.16 6144 4 × 4 160 112 160 103 1.00 1.09
2048 4 × 2 11.8 8.2 11.5 6.8 1.03 1.21 6144 8 × 4 74.2 73.0 73.4 62.3 1.01 1.17
2048 4 × 4 7.6 6.8 7.5 5.5 1.01 1.24 6144 8 × 8 68.9 65.2 68.4 59.5 1.01 1.09
2048 8 × 4 4.6 5.4 5.0 4.1 0.91 1.32 8192 4 × 2 662 359 651 347 1.02 1.03
2048 8 × 8 4.4 4.6 4.0 3.8 1.10 1.21 8192 4 × 4 369 247 367 231 1.01 1.07
4096 1 × 1 134 134 125 126 1.07 1.07 8192 8 × 4 172 152 169 133 1.02 1.14
4096 2 × 1 198 111 196 106 1.01 1.05 8192 8 × 8 153 136 152 127 1.00 1.08
4096 2 × 2 159 66.1 156 62.7 1.02 1.05 10240 4 × 4 742 462 714 442 1.04 1.04
4096 4 × 2 84.9 50.1 84.8 45.9 1.00 1.09 10240 8 × 4 362 272 336 245 1.08 1.11
4096 4 × 4 50.1 38.1 49.1 33.8 1.02 1.13 10240 8 × 8 302 247 301 234 1.00 1.06
4096 8 × 4 23.8 26.7 22.3 21.8 1.07 1.23 12288 8 × 4 559 441 556 406 1.01 1.08
4096 8 × 8 23.3 23.6 22.8 20.8 1.02 1.14 12288 8 × 8 490 405 488 385 1.00 1.05

Table 3. Timing results (in seconds) of PGESYCTD using different kernel solvers DTR-
SYL (LAPACK) and RECSYCT (RECSY) and different communication schemes
“matrix-shifting” (S) and “on-demand” (D). Here we use large blocking factors mb
= nb = 512. The sign ’–’ means that the restriction on the data distribution imposed
by the “matrix-shifting” scheme was not fulfilled (see Section 2).

LAPACK RECSY Ratios LAPACK RECSY Ratios
m = n Pr × Pc S D S D qs qd m = n Pr × Pc S D S D qs qd

2048 1 × 1 57.5 54.7 13.0 10.8 4.43 5.06 6144 2 × 2 425 410 187 123 2.28 3.34
2048 2 × 1 63.6 53.5 14.9 9.7 4.27 5.52 6144 4 × 2 329 381 109 93.7 3.02 4.07
2048 2 × 2 38.3 40.0 10.9 7.2 3.51 5.55 6144 4 × 4 198 335 75.3 72.5 2.63 4.63
2048 4 × 2 35.6 38.8 7.9 6.2 4.51 6.25 6144 8 × 4 – 297 – 59.2 – 5.02
2048 4 × 4 28.1 32.7 6.4 5.6 4.35 5.83 6144 8 × 8 – 245 – 50.9 – 4.81
2048 8 × 4 – – – – – – 8192 4 × 2 580 707 247 202 2.35 3.51
2048 8 × 8 – – – – – – 8192 4 × 4 350 614 158 152 2.21 4.04
4096 1 × 1 258 255 80.9 80.1 3.19 3.19 8192 8 × 4 288 521 107 113 2.68 4.60
4096 2 × 1 267 234 87.1 63.3 3.05 3.69 8192 8 × 8 183 413 90.7 91.7 2.02 4.50
4096 2 × 2 167 170 57.7 40.5 2.89 4.20 10240 4 × 4 542 989 296 275 1.83 3.60
4096 4 × 2 138 162 36.6 32.7 3.78 4.97 10240 8 × 4 – 848 – 200 – 4.24
4096 4 × 4 89.2 143 31.1 26.5 2.86 5.40 10240 8 × 8 – 688 – 170 – 4.06
4096 8 × 4 80.3 122 20.2 22.1 3.98 5.53 12288 8 × 4 657 1220 311 314 2.11 3.89
4096 8 × 8 55.7 95.4 17.1 17.1 3.26 5.57 12288 8 × 8 406 971 257 256 1.58 3.80

Table 4. Ratios qbest and gain g = 1− q−1
best in percent between the best timing results

from Tables 2 and 3 for PGESYCTD using different kernel solvers DTRSYL (LAPACK)
and RECSYCT (RECSY) and different communication schemes “matrix-shifting” (S)
and “on-demand” (D).

Pr × Pc m = n qbest g(%) m = n qbest g(%) Pr × Pc m = n qbest g(%) Pr × Pc m = n qbest g(%)
1 × 1 2048 1.67 40 4096 1.67 40 2 × 2 6144 1.75 43 8 × 4 8192 1.42 30
2 × 1 2048 1.56 36 4096 1.75 43 4 × 2 6144 1.66 40 8 × 8 8192 1.50 33
2 × 2 2048 1.36 26 4096 1.63 39 4 × 4 6144 1.54 35 4 × 4 10240 1.68 40
4 × 2 2048 1.32 24 4096 1.53 35 8 × 4 6144 1.23 19 8 × 4 10240 1.36 26
4 × 4 2048 1.24 19 4096 1.44 31 8 × 8 6144 1.28 22 8 × 8 10240 1.45 31
8 × 4 2048 – – 4096 1.18 15 4 × 2 8192 1.22 18 8 × 4 12288 1.42 30
8 × 8 2048 – – 4096 1.35 26 4 × 4 8192 1.63 39 8 × 8 12288 1.58 37



Combining Explicit and Recursive Blocking 749

mance gain provided by RECSY in solving the SYCT subsystems on the nodes
makes the waiting time for the broadcasts much smaller. Typically, PGESYCTD
with the DTRSYL solver is optimal for smaller block sizes. We also expect
PGESYCTD with RECSYCT to give less speedup compared to using DTRSYL,
since a much faster node solver makes overlapping of communication and com-
putation harder. On the other hand, by the use of larger block sizes, i.e., larger
SYCT subsystems are solved on the nodes, we also get less but larger mes-
sages to communicate, which may well compensate for the worse communication-
computation overlap.

Future work includes extending the comparisons to other parallel platforms,
e.g., the HPC2N IBM SP system which has much less compute power but pro-
vides a better “compute/communicate ratio”. Our objective is to develop a soft-
ware package SCASY of ScaLAPACK-style algorithms for solving all transpose
and sign variants of the matrix equations listed in Table 1. The implementations
will build on standard node solvers from LAPACK and SLICOT [18, 20, 5], and
recursive blocked solvers from RECSY. By using the LAPACK/SLICOT wrap-
pers provided in the RECSY library, the ScaLAPACK-style hybrid algorithms
come for free.

Acknowledgements

This research was conducted using the resources of the High Performance Com-
puting Center North (HPC2N).

Financial support has been provided by the Swedish Research Council under
grant VR 621-2001-3284 and by the Swedish Foundation for Strategic Research
under grant A3 02:128.

References

1. R.H. Bartels and G.W. Stewart Algorithm 432: Solution of the Equation AX +
XB = C, Comm. ACM, 15(9):820–826, 1972.

2. E. Anderson, Z. Bai, C. Bischof. J. Demmel, J. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. McKenny, S. Ostrouchov and D. Sorensen. LAPACK
User’s Guide. Third Edition. SIAM Publications, 1999.

3. S. Blackford, J. Choi, A. Clearly, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley.
ScaLAPACK Users’ Guide. SIAM Publications, Philadelphia, 1997.

4. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Soft., 16(1):1–17, 1990.

5. E. Elmroth, P. Johansson, B. K̊agström, and D. Kressner, A Web Computing
Environment for the SLICOT Library, In P. Van Dooren and S. Van Huffel, The
Third NICONET Workshop on Numerical Control Software, pp 53–61, 2001.

6. R. Granat, A Parallel ScaLAPACK-style Sylvester Solver, Master Thesis, UMNAD
435/03, Dept. Computing Science, Ume̊a University, Sweden, January, 2003.

7. R. Granat, B. K̊agström, P. Poromaa. Parallel ScaLAPACK-style Algorithms for
Solving Continous-Time Sylvester Matrix Equations, In H. Kosch et.al. (editors),
Euro-Par 2003 Parallel Processing, Lecture Notes in Computer Science, Springer-
Verlag, Vol. 2790, pages 800–809, 2003.



750 R. Granat, I. Jonsson, and B. K̊agström

8. G. Henry and R. Van de Geijn. Parallelizing the QR Algorithm for the Unsym-
metric Algebraic Eigenvalue Problem: Myths and Reality. SIAM J. Sci. Com-
put. 17:870–883, 1997.

9. G. Henry, D. Watkins, and J. Dongarra. A Parallel Implementation of the Non-
symmetric QR Algorithm for Distributed Memory Architectures. Technical Report
CS-97-352 and Lapack Working Note 121, University of Tennessee, 1997.

10. N.J. Higham. Perturbation Theory and Backward Error for AX − XB = C, BIT,
33:124–136, 1993.

11. I. Jonsson and B. K̊agström. Recursive Blocked Algorithms for Solving Triangular
Matrix Equations – Part I: One-Sided and Coupled Sylvester-Type Equations,
ACM Trans. Math. Software, Vol. 28, No. 4, pp 393–415, 2002.

12. I. Jonsson and B. K̊agström. Recursive Blocked Algorithms for Solving Triangular
Matrix Equations – Part II: Two-Sided and Generalized Sylvester and Lyapunov
Equations, ACM Trans. Math. Software, Vol. 28, No. 4, pp 416–435, 2002.

13. I. Jonsson and B. K̊agström. RECSY - A High Performance Library for Solving
Sylvester-Type Matrix Equations, In H. Kosch et.al. (editors), Euro-Par 2003 Par-
allel Processing, Lecture Notes in Computer Science, Springer-Verlag, Vol. 2790,
pages 810–819, 2003.

14. I. Jonsson and B. K̊agström. RECSY – A High Performance Library for Sylvester-
Type Matrix Equations. www.cs.umu.se/research/parallel/recsy, 2003.

15. B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-
performance model implementations and performance evaluation benchmark. ACM
Trans. Math. Software, 24(3):268–302, 1998.

16. B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: Portability
and optimization issues. ACM Trans. Math. Software, 24(3):303–316, 1998.

17. B. K̊agström and P. Poromaa. Distributed and shared memory block algorithms
for the triangular Sylvester equation with Sep−1 estimators, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 99–101.

18. NICONET Task II: Model Reduction, website:
www.win.tue.nl/niconet/NIC2/NICtask2.html

19. P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design,
Scheduling and Scalability Issues. In K̊agström et al. (eds), Applied Parallel Com-
puting. Large Scale Scientific and Industrial Problems, Lecture Notes in Computer
Science, Vol. 1541, pp 438–446, Springer-Verlag, 1998.

20. SLICOT library in the Numerics in Control Network (NICONET), website:
www.win.tue.nl/niconet/index.html


	1 Introduction
	2 Parallel ScaLAPACK-Style Algorithms for Solving SYCT Using Explicit Blocking
	3 RECSY – Using Recursive Blocked Algorithms for Solving Sylvester-Type Subsystems
	4 Computational Experiments
	5 Discussion and Conclusions
	Acknowledgements
	References



