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Abstract. Scientific computing is evolving from parallel processing to
distributed computing with the availability of new computing infras-
tructures such as computational grids. We investigate the design of a
component model for the Grid aiming at combining both parallel and
distributed processing in a seamless way. Our approach is to extend com-
ponent models with the concept of parallel components. At runtime, most
component models rely on a distributed object model. In this paper, we
study an exception handling mechanism suitable for dealing with parallel
entities, such as parallel objects, that appear as collections of identical
objects but acting as a single object from the programmer’s viewpoint.

1 Introduction

Scientific computing has become a fundamental approach to model and to sim-
ulate complex phenomena. With the availability of parallel machines in the late
1980’s, a strong emphasis was made to design algorithms and applications for
scientific computing suitable for such machines. However, nowadays, science or
engineering applications, such as multiphysics simulations, require computing
resources that exceed by far what can be provided by a single parallel machine.
Moreover, complex products (such as cars, aircrafts, etc.) are not designed by
a single company, but by several of them, which are often reluctant to grant
access to the source of their tools. From these constraints, it is clear that dis-
tributed and parallel processing cannot be avoided to manage such applications.
More precisely parallel simulation codes will have to be interconnected through
a specific middleware to allow a distributed execution, thus complying with lo-
calization constraints and/or availability of computing resources. Programming
a computing resource, such as a Grid infrastructure, that has both dimensions,
parallel and distributed processing, is challenging.

The objective of our research activities is to conciliate these two technologies
in a seamless way achieving both performance and transparency. More specifi-
cally, we aim at providing a programming model based on the use of distributed
software components. Since most component models are based on distributed
objects, much of our work focuses on extending a distributed object model. This
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Fig. 1. A PaCO++ parallel object.
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work specifically aims at handling exceptions in the presence of a collection of
distributed objects, called parallel objects in the remaining of the paper. A col-
lection of distributed objects is the basic principle we introduced into Corba
for the encapsulation of parallel codes that rely on a SPMD execution model.

Section 2 introduces PaCO++ which implements the extension to the Corba
distributed object model for managing collections of identical objects. In Sec-
tion 3, we describe our proposed model to manage exceptions in the presence
of collections of objects. Related works aiming at handling exceptions in the
context of concurrent or parallel systems are presented in Section 5. Section 4
gives some technical details about the implementation of the exception handling
mechanism and Section 6 concludes the paper.

2 A Parallel Object Model: PaCO++

From the early 90’s, several projects were set up to build distributed object mid-
dleware systems. However, most of these projects did not provide an efficient and
adequate support for handling parallel codes. Research activities started in the
late 1990’s to support parallelism such as Corba [5, 9, 6, 8]. All of them intro-
duce the concept of parallel object. A parallel object is an entity that behaves
like a regular object but whose implementation is parallel. Hence, a parallel ob-
ject can be referenced and methods can be invoked on it as a single entity. Some
of them also support data redistribution.

This section briefly describes PaCO++ [8], our research platform, so as to let
Section 4 illustrates how parallel exceptions might be implemented. PaCO++
is the continuation of PaCO [9]. It is a portable extension to Corba that is
intended to be the foundation of GridCCM [7], our parallel extension of the
Corba Component Model. PaCO++ defines a parallel object as a collection
of identical Corba objects whose execution model is Spmd. A parallel object is
implemented by a coordinated set of standard Corba objects. As shown in Fig-
ure 1, a PaCO++ parallel object provides a standard external interface which
is mapped to an internal interface. An invocation on a parallel object results
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in the simultaneous invocation of the corresponding operation of the internal
interface on all the objects being part of the parallel object. Special attention
has been devoted to the support of distributed arguments. The arguments can
be distributed at both the client and the server sides. PaCO++ provides mech-
anisms (static and dynamic) to specify the data distribution on both sides. As
the two data distributions may be different, data redistribution may be required
during the communication between the client and the server.

3 Managing Exceptions Within Parallel Objects

The problem addressed in this paper is the management of exceptions in the
presence of parallel objects such as those provided by PaCO++ (but it is not
limited to them). If we consider a distributed application made of two parallel
objects (a client and a server) like in Figure 2, it may happen that an operation
invocation of the client on the server side raises an exception. However, since the
server is a collection of objects, several scenarios may happen depending on which
objects have raised an exception at the server side. One or several objects may
raise exceptions with different values associated with them. It is thus necessary
to define a model for exception management that gives a coherent view of the
exceptions raised by the server to all the objects of a parallel client.

Scenarios. We have identified four scenarios that need to be handled. The sim-
plest one is a single exception where only one object of the collection throws an
exception. The multiple exception occurs when several objects of the server throw
potentially different exceptions. A Spmd exception requires that all objects at
the server side coherently throw the same type of exception. Last, a chain of
exceptions occurs when the server calls a method on another remote object and
this second object throws an exception.

Definition of a parallel exception. We define a parallel exception as the collection
of exceptions thrown by one or several nodes of a method of a parallel object.
We define an Spmd exception as an exception declared as Spmd by the parallel
object. From an execution point of view, it is a parallel exception which is made
of exceptions of identical type which have been coordinately raised by the all
nodes of a parallel object.

3.1 Motivating Application

Let us introduce the EPSN project [1] as an application that motivates this work.
Its goal is to analyze, design and develop a software environment for steering
distributed numerical simulations from the visualization application. As shown
in Figure 3, it adds a level of constraints which stem from the human interaction
loop: data have to be extracted from the application and sent to a visualization
machine but also the user actions have to be sent back to the application. As a
user can connect to and disconnect from a running application from a priori any
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Fig. 3. Overview of the EPSN project.

machine, a distributed-oriented middleware appears well-suited to handle such
interactions.

When the visualization application requests data, the simulation code might
throw an exception because of memory limitation for example. Since the visual-
ization code and the simulation code are parallel, the middleware has to manage
the “parallel” exception. In particular, each node of the visualization application
has to receive the exception. If the visualization tool can handle partial images,
the exception may be able to carry a partial image. In the same time, it is pos-
sible to have several visualization clients for one simulation. Some of them may
be able to manage partial data and some not. Hence, different exceptions need
to be returned to the different clients.

3.2 The Three Types of Exceptions

Only three types of exception seem to be sufficient to handle all the previous
scenarios. A simple exception type is just a plain exception. It can be obtained
either when only an object of the server throws an exception or when an Spmd
exception is raised. Section 3.4 will detail this. An aggregated exception type
is composed of all the exceptions raised by the server objects. For example,
it occurs when several objects of the server throw different exceptions. These
exceptions have different meanings and cannot be grouped in a simple exception.
A complex exception is composed of an aggregated exception with uncomplete
data. Uncomplete data is the current value of the out arguments of the operation
that generates the exception. Some restrictions may be applied to uncomplete
data as described in Section 3.5.

3.3 Client Side

A client may not be aware of the proposed new types of exceptions or may not be
able to catch them. Therefore, the model must allow a client to choose the kind
of exceptions it wants to handle. The model defines three exception levels that
correspond to the three types of exception defined in Section 3.2. By default, a
client is assumed to only support simple exceptions (simple level ). This level
is the default level because of the legacy clients which are unaware of parallel
objects. The second level which is the aggregated level is used by clients which
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are able to catch exceptions composed of several regular exceptions. The last
level, complex level, indicates that the client may catch exceptions composed of
an aggregated exception and uncomplete data. These levels form a hierarchy.
A client that handles aggregated exceptions implicitly handles simple exceptions.
Similarly, a client handling complex exceptions is assumed to also handle simple
and aggregated exceptions.

3.4 Server Side

For each exception that a method of a parallel object may throw, additional
information may be needed for a correct exception handling. First, Spmd excep-
tions have to be declared as such and data distribution information need to be
specified for the distributed data the exception may contain (see Section 3.5).
Second, priorities may be attached to exceptions. These priorities are fixed by
the application designer (server side) and are not seen by a client. They are
primarily used to decide which exception will be thrown to a client that only
supports the simple level when several unrelated exceptions are raised. Third,
the out arguments of a method that need to be returned as uncomplete data
also have to be declared.

To determine the type of exceptions the server needs to send to a client, the
server needs to know the level of exception the client supports. There are four
cases depending on the type of exception raised by the parallel server and the
level of exception supported by the client. First, if only one node of the server
throws an exception, the server may safely send this exception as the client
at least supports the simple exception type. Each node of a parallel client will
receive this exception. Second, if every node of the server throws the same type
of exception and the exception is defined as an Spmd exception, the server also
applies the same algorithm as in the first case but also adds the management of
distributed data. A sequential client is seen as a parallel client with one node.
Third, if several nodes of the server throw exceptions and the client supports
the aggregated level, the server sends an aggregated exception composed of all the
exceptions raised. The implementation may send additional information like the
object identifier where the exception has occurred. If the client only supports
simple exceptions, the server throws the exception with the highest priority.
Fourth, if the client supports the complex case and some out arguments are
marked as valid for uncomplete data, a complex exception is returned.

3.5 Managing Data Within a Parallel Exception

Managing distributed data within a Spmd exception. An Spmd exception may
contain data declared as distributed. When such an exception is raised, the run-
time system may need to redistribute the data to the client (e.g., the client may
be composed of a different number of nodes than the server). Since an exception
can be seen as a structure with different data fields, there is no difference with
the management of distributed arguments. As the model is not designed for a
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particular distributed object middleware, it just specifies that an implementa-
tion has to use the same mechanism as the out argument management in the
parallel distributed middleware where it is implemented. Some implementation
hints for PaCO++ are given in Section 4.

Uncomplete data. Uncomplete data can only be encapsulated into complex ex-
ceptions. If the client does not support this exception type, the server cannot
send uncomplete data. When the runtime system knows all the raised excep-
tions, it can determine which out arguments need to be sent to the client. Then,
a complex exception made of several exceptions and the valid out arguments is
created. Otherwise, a complex exception without out arguments are returned.

3.6 Managing Exception Chains

For example, an exception chain occurs when a client invokes a method A on
a first server which invokes a method B on a second server that raised an ex-
ception. In the general case, an exception chain occurs when there are several –
at least one – servers between the client which catches the exception, and the
server which raises the exception. Ideally, we would like to send an aggregated
exception combining the server exception and an information that this exception
was thrown by an another server. This exception can be sent only if the client
and the server support aggregated exceptions and that all intermediate servers
have declared the exception type. Otherwise, either an unknown exception or a
model specific exception like chain of exception should be raised.

4 Implementation Strategy

This section provides some hints on how to implement our model into PaCO++.
PaCO++ adds a layer between the user code and the Corba code (e.g.,

stubs and the skeletons generated by an Idl compiler). This layer is generated
thanks to the description of the distributed service (Idl) and the parallel de-
scription file specific to PaCO++, which describes the parallel methods and the
distributed arguments of these methods. The main implementation principle is
to extend this file with exception related features. For each exception defined in
the Idl file for a parallel method, the designer indicates the priority of the ex-
ception, whether this exception contains distributed data, etc. For each parallel
method, two new exceptions are added into the generated Idl file: one for the
aggregation case and one for the complex case.

The client and the server usually need to configure the PaCO++ layer. For
example, PaCO++ layers need to obtain a reference to the distribution libraries.
The client and server are configured using their contexts. These contexts need
to be extended with information related to exceptions.

Each parallel method is mapped to two asynchronous methods, one for each
direction. Thus, for the PaCO++ layer, the exception is just an another kind of
result. We only have to generate the code for these methods. The management
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Fig. 4. Exception-related methods to transfer exceptions in a PaCO++ parallel object.

of data distribution is the same as for a regular invocation. Figure 4 shows
these new methods for a parallel method foo that may throw exceptions of
types A and B. The server code contains a barrier to synchronize all the objects
before returning the results to the client. If an object throws an exception, the
information is broadcast so that all objects have the same view of the exception
state. After the barrier, the runtime system first checks if there is an exception;
if not, the runtime system performs the normal code. So, a boolean test is added
to the normal code. Thus, the overhead to supporting parallel exceptions in
PaCO++ should be negligible for normal invocations.

5 Related Work

Several solutions have been proposed to support exceptions in parallel code.
Some works [3, 10, 4] try to handle multiple exceptions within parallel loops.
In [3], Modula-3 is extended so that if one or more exceptions of the same type
are thrown within a parallel loop, the loop throws only one exception. But, if
there are two or more different exception types, the runtime system sends an
error. In [10], it is proposed to extend Java to have parallel loops with exception
support. Each exception is stored into an aggregated exception that is thrown to
the caller. The caller may retrieve some uncomplete data. In [4], when a node of
the parallel loop throws an exception and another node communicates with it,
the first node sends its exception to the other nodes. This exception is called a
global exception. For the caller of the parallel loop, the runtime system generates
a concerted exception from all the exceptions thrown.

In [2], it is proposed to manage exceptions between groups of distributed
objects. Each group has one or more gates that enable to communicate with
other gates. The invocations are asynchronous. The client has to call a method
to get the result of the operation. In the server, if one object throws an exception,
this exception is saved on the gate and the client will be aware of this exception
when the synchronization method is called. Finally, Xu et al. [11] present a
solution to manage exceptions between different processes that take part in the
same action. They describe how to rollback this action when an exception occurs.
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6 Conclusion

Handling exceptions is of prime importance when designing an object or compo-
nent model, especially when it targets Grid infrastructures that combine both
parallel and distributed aspects. The main contribution of this paper is to define
the concept of parallel and Spmd exceptions for parallel objects implemented as
a collection of identical sequential objects. The proposed model is able to manage
all identified scenarios including concurrent uncoordinated exceptions raised by
a parallel object. It also defines aggregated exceptions and complex exceptions
with uncomplete data by integrating previous works on exceptions within par-
allel loops. Moreover, our proposed model gives a solution to hande distributed
data for Spmd exceptions. We are currently implementing the proposed model
in PaCO++. As outlined in this paper, the implementation appears straight-
forward and should exhibit a negligible overhead for normal operation. We are
also working on defining a mathematical model of parallel exceptions.
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