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Abstract. In this article a parallel application for the 3D structural
analysis of buildings is presented. Taking into account that solving the
system of linear equations is the most time-consuming phase, several
parallel public domain numerical libraries, that reflect the start-of-the-
art, have been tested. A timing result comparison when analyzing two
medium-sized buildings is included. Besides, a Grid-based demonstrator
has been developed, integrating the parallel application and taking ad-
vantage of the different resources remotely distributed in the network.
The Grid demonstrator enables the simulation of a larger number of dif-
ferent structural alternatives, with the purpose of finding the one which
better accomplishes with all the economical limitations, safety require-
ments, aesthetical aspects and other criteria.

1 Introduction

Structural analysis of buildings is the process to determine the response of a
structure to specified external loads or actions. This response is usually measured
by obtaining tensions and displacements that take place at any point of each
structural component.

This structural analysis plays a central role during the preliminary design
stage of a building, when several alternatives must be considered. At this stage,
construction standards obliges the designer to take into account a wide range
of situations and load cases which, with a given probability, could occur during
the lifetime of the structure. For each of these cases and model configurations, a
structural analysis is required. A requirement of speed is imposed by the need of
having comprehensive information in the preliminary design cycle. Usually, these
initial designs have been based on simplified models to minimize the time and
effort spent on this phase. Although, in some cases, all the designs are rejected,
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returning to the initial design stage, a selection among these alternatives has
to be made before proceeding a detailed design phase. Now, a large number of
different structural configurations have to be analysed quickly and in a realistic
way to achieve the most efficient solution (the cheapest and the safest one). An
iterative trial-error process is developed by the structural engineer where, vary-
ing sections or load conditions, the whole structure is analysed and the results
are interpreted. At this final stage, calculations must be performed accurately,
complying criteria of safety, cost limitations or construction constrains.

3D structural models deal with 6N degrees of freedom (dof), where N indi-
cates the number of nodes considered in the structure. Current trend of erecting
more complex and larger buildings is providing structural problems that can
reach dimensions of about several hundreds of thousands of equations.

Therefore, structural analysis is one of the most time consuming stage in
the design cycle of a building. Memory and computing power requirements to
manage efficiently large systems implies the utilization of high performance com-
puting techniques, even when Grid strategies are applicable to enable a decrease
in the simulation time, a realistic analysis of larger buildings, and to test a
greater number of alternatives in the preliminary and detailed design stage.
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Fig. 1. Flow diagram describing the engineering design process.

The paper is structured as follows: Section 2 describes the parallelization of
the structural analysis method applied. Advantages of using parallel numerical
libraries with state-of-the-art capabilities, together with a brief summary of each
of them, are detailed in Sect. 3. Performance of the parallel application developed
is shown in Sect. 4. Section 5 presents a Grid Computing-based approach that
allows performing multiple structural analyses. Finally, conclusions and further
work are described in Sect. 6.

2 Parallelization of the Structural Analysis Method

The matrix methods [1] represent the most powerful design tool in structural
engineering and they are appropriate to be implemented on computers. These
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methods are based on the idea of replacing the actual continuous structure by a
mathematical model made up from structural elements of finite size with known
elastic and inertial properties that can be expressed in matrix form.

This paper introduces a MPI-based parallelization of the stiffness method. It
employs the stiffness properties of the structural elements to form the equations
that represent the relationship between nodal forces acting on the structure and
its displacements. The unknown joint movements are computed by solving the
equilibrium equations at the joints. At each joint, the loading conditions are spec-
ified by six force components, and the response is described by six displacement
components. This method is based on the following five phases:

1. Generation of the force matrix F ∈ � 6N×M , where M is the number of
combinations of actions applied to the structure, and N represents the total
number of joints in the building.

2. Generation of the stiffness matrix K ∈ � 6N×6N of the structure, by assem-
bling the stiffness matrices of the different elements that compose it. The K
and F matrices are generated in parallel, where each processor will assemble
a local part of them. As a result, these matrices will be partitioned among
the processors, following a row-wise block-striped distribution.

3. Calculation of the joint movement. For each joint, six displacements must
be calculated. The relationship between external forces F and displacements
D ∈ � 6N×M is given by

KD = F. (1)

Thus, a system of linear equations must be solved to compute the node move-
ments. K matrix is sparse, symmetric and positive definite. Great precision
is required at this point, as it determines the remaining structural phases.

4. Calculation of the member end forces. Once joint movements are known, the
structural elements are divided into p groups. Each processor computes the
12 internal forces at both ends of its assigned structural elements, and the
reactions at the points attached to the rigid foundation.

5. Computation of the deformations at any point of the structure. Finally,
the bending moments and deformations at the predefined division points
of the members are evaluated in parallel, to check that they do not exceed
the established limits. Once the bending moments of an element have been
worked out, its deformation is computed by means of the differential equation
of an elastic curve, see (2). In this equation, M(x) is the bending moment at
the internal point x of a member, y(x) represents its deflection function, E
is its module of elasticity, and I the moment of inertia of the bending plane.

∂2y(x)
∂x2

=
M(x)
EI(x)

. (2)

3 Parallel Modern Numerical Libraries
to Solve the System of Linear Equations

Solving the large sparse symmetric system of linear equations is the crucial prob-
lem in the 3D static structural analysis, where direct or iterative methods can be
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applied. Different efforts and initiatives have recently appeared encouraging the
adoption and use of software tools that make it easier for programmers to write
high-performance scientific applications and solving major scientific and techni-
cal problems [2]. The use of these mature tools provides important advantages,
such as code portability, reusability, modularity and better performance.

In this way, multiple parallel software packages based on direct methods have
emerged to solve large sparse symmetric systems: SPOOLES [3], MUMPS [4],
PSPASES [5], WSMP [6], etc. WSMP and PSPASES employ the theoretically
most scalable algorithms for Multifrontal Cholesky factorization and they also
perform parallel ordering. Both the subtree-to-subcube mapping of the elimi-
nation tree among the processors and a two-dimensional distribution of frontal
and update matrices among subgroups of processors are crucial to obtaining the
highest scalability. SPOOLES employs subtree-to-subcube mapping but uses a
one-dimensional distribution. MUMPS uses a two-dimensional distribution of
data at only the topmost supernode of the elimination tree. However, PSPASES
and WSMP apply both of them.

In addition, several parallel software packages based on iterative methods
and preconditioners have been implemented: PETSc [7], Aztec [8], P-SPARSLIB
[9], BlockSolve95 [10], HYPRE [11], etc. Even, some packages deal, exclusively,
with parallel preconditioners for iterative methods: BPKIT [12], SPAI [13], etc.
PETSc is nowadays the most popular, comprehensive and widely used.

3.1 Numerical Libraries Employed

In this work, WSMP, MUMPS, PETSc and BlockSolve numerical libraries have
been applied to solve the linear system mentioned before.

Watson Sparse Matrix Package. WSMP is a high-performance, robust soft-
ware package for solving large sparse symmetric and non-symmetric systems of
linear equations. A node, composed of one or more processors of CPUs, commu-
nicates with other ones via message-passing (MPI). However, parallelism within
multiprocessor nodes is exploited by threads or message-passing. The serial or-
dering heuristics used in WSMP is based on the Multilevel Nested Dissection
(MND) algorithm implemented in METIS library [14]. Parallelization imple-
mented in WSMP exploits the natural parallelism of MND ordering. The elimi-
nation tree is performed and adjusted in order to balance the numerical factoriza-
tion work among the processors. The parallel symmetric numerical factorization
is based on Cholesky Multifrontal algorithm. Both this phase and the parallel
solution of triangular systems are guided by the supernodal elimination tree,
following the same factor matrix distribution.

Portable, Extensible Toolkit for Scientific Computation. PETSc includes
an expanding suite of parallel linear, nonlinear equation solvers and time inte-
grators that may be used in application codes. It also provides many of the
mechanisms needed in parallel application codes, such as parallel matrix and
vector assembly routines. The combination of a Krylov subspace method (CG
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and variations, GMRES, etc.) and a preconditioner (Jacobi, Block Jacobi, In-
complete Cholesky/ILU, Additive Schwarz, etc.) is the heart of the parallel it-
erative methods in PETSc. In addition, it allows uniform and efficient access to
external direct solvers (MUMPS, SPOOLES, etc.) and preconditioners (Block-
Solve95, HYPRE, ParPre, SPAI, etc.).

MUltifrontal Massively Parallel Solver. MUMPS is a MPI-based parallel
package for solving linear systems of equations where the coefficient matrix is
sparse and can be either unsymmetric, symmetric positive definite, or general
symmetric. MUMPS uses a Multifrontal technique which is a direct method
based on either the LU or the LDLT factorization of the matrix. A range of or-
derings to preserve sparsity is available: approximate minimum degree ordering
(AMD), approximate minimum degree ordering with automatic quasi dense row
detection (QAMD), an approximate minimum fill-in ordering (AMF) and the
possibility of using an ordering provided by the user. PORD [15] and METIS
packages are also possible choices.

BlockSolve95. It is a scalable parallel software library for solving large, sparse
systems of linear equations. It contains implementations of several well-known
iterative methods (CG, GMRES, SYMMLQ) and different preconditioners (In-
complete LU/Cholesky, SSOR or Block Jacobi). It uses an efficient implemen-
tation of a parallel coloring algorithm that allows for the efficient computation
of matrix orderings and scalable performance of the linear solver. Just ILU and
ICC preconditioners can be invoked from PETSc.

4 Experimental Results

Two medium-sized buildings, presented in Table 1, have been chosen to compare
the results when using different numerical libraries.

Table 1. Features of the buildings used in test.

Degrees of Freedom Actions Applied

Building No. 1 Θ (60,000) 7
Building No. 2 Θ (100,000) 1

Table 2 shows the time, and efficiencies, spent on the whole structural analysis
of these buildings. The linear system has been solved by means of the public
domain numerical libraries WSMP, MUMPS, PETSc and BlockSolve95. WSMP
has demonstrated to be the fastest solver, even more scalable than other direct
solvers such as MUMPS, as expected. MUMPS library has been employed via
PETSc, together with the MND ordering provided by METIS. Other orderings
have also been tested in MUMPS, providing worse parallel performance.

Since coefficient matrices are very ill-conditioned, iterative methods are much
slower than direct methods, although they present better efficiencies. Moreover,
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the whole system need to be solved for every right hand sides (RHS) when using
iterative methods, which is much less efficient than just computing the forward-
backward substitution for each RHS as direct methods do. Regarding PETSc,
the lowest solving times have been found for Conjugate Gradient (CG) solver,
combined with Block Jacobi preconditioning, where Incomplete Cholesky (ICC)
factorization has been applied as subblock preconditioner. The main disadvan-
tage of Block Jacobi is that the number of iterations arises as the number of
processors increases. Finally, the linear system has been solved applying the
CG solver implemented in PETSc, and the ICC preconditioner of BlockSolve95,
through the interface provided by PETSc. In order to achieve good performance,
different coefficient matrix formats must be employed in PETSc, depending on
the external numerical library used. Worse times have been obtained for any
other combination of solver and preconditioner in PETSc.

Table 2. Structural analysis time (in seconds) and efficiencies (%) for the test battery
buildings using up to 16 processors. Simulations have been run on a cluster of 20
Pentium Xeon@2GHz biprocessors with 1 Gbyte RAM, connected by a SCI network.

Building Proc. WSMP MUMPS + PETSc (CG + PETSc +

METIS Block Jacobi + Blocksolve95

ICC) (CG + ICC)

No. 1 1 10.5 100.0 % 10.4 100.0 % 308.9 100.0 % 620.9 100.0 %

No. 1 2 5.6 93.0 % 6.8 76.8 % 164.4 94.0 % 311.1 99.8 %

No. 1 4 3.8 69.2 % 5.3 48.9 % 99.3 77.8 % 155.4 99.2 %

No. 1 8 2.9 45.0 % 4.8 27.3 % 64.7 59.7 % 88.1 88.1 %

No. 1 16 3.5 18.6 % 10.4 6.3 % 88.7 21.8 % 56.5 68.7 %

No. 2 1 10.7 100.0 % 16.5 100.0 % 60.8 100.0 % 115.0 100.0 %

No. 2 2 6.4 83.5 % 10.8 76.3 % 34.9 87.0 % 60.3 95.3 %

No. 2 4 4.7 57.5 % 8.7 47.2 % 19.3 78.7 % 32.4 88.9 %

No. 2 8 4.1 32.3 % 7.6 26.9 % 10.8 70.1 % 16.9 84.8 %

No. 2 16 3.9 16.9 % 7.1 14.6 % 6.8 56.2 % 11.1 64.4 %

5 Grid Computing-Based Structural Analysis

Grid Technologies main objective is to ease and coordinate resource sharing for
collaborative problem solving in a dynamic multi institutional Virtual Organiza-
tion [16] [17]. This technology aims at sharing further elements than information,
by allowing direct, coordinated and secure access to different kind of computing
resources, applications, communication, data, special devices, etc. In order to
create the Grid infrastructure, some kind of middleware is needed. There are
some well-known projects in Grid middleware, such as the open source Globus
Toolkit (GT) [18] or Unicore [19]. Some private companies have developed their
own middlewares, such as InnerGRID [20] or Avaki Data Grid [21]. In our case,
a Grid Computing-based system, employing GT 2.4, have been implemented to
analyze concurrently a group of different structural solutions at the preliminary
and final design stages, making use of the parallel application developed.
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5.1 Grid Structural Analyser Architecture

Figure 2 shows a conceptual view of the Grid Structural Analyser developed.
Starting from a set of different structural alternatives and a group of machines
distributed throughout internet, the Grid Structural Analyser performs the nec-
essary work to analyse all of them by running the parallel application on the
available resources.

Structural 
Repository Schedule

Results

Resource 
Selector

Retrieval 
Process

Retrieval 
Process

Fig. 2. Grid Structural Analyser architecture. The system consists in three main parts:
the scheduler, which obtains designs from a structural repository; the resource selector,
which selects an appropiate resource to run the parallel application; and the retrieval
processes, which retrieve results files.

Scheduler. This module considers a pool of different structural configurations
to be analysed and a warehouse where results will be stored. A structure is
composed by a set of files which defines its geometry, properties and loads ap-
plied. All these input archives are needed by the executing host to be processed.
Applying the well-known tar utility, all these files are compressed to lower the
network usage time. The scheduler starts a Global Access to Secondary Storage
(GASS) server which is used, by the executing hosts, to ask for the needed files.

Once the GASS server is launched, the scheduler gets a structure from the
repository and asks the resource selector for a machine to run the parallel appli-
cation. Then, the input files are staged in, via the GASS server, to the execution
host. Next, the parallel application will be queued in the remote machine. Fi-
nally, the scheduler module starts a retrieval process which will recover results
once the task has finished. If any part of the process fails, the scheduler will try
to analyze it later. The scheduler finishes when all the structural alternatives
have been analysed and the result files have been stored on the local host.

Resource Selector. This module uses the Monitoring and Discovery Service
(MDS) utilities, provided by GT 2.4, to query the number of free processors
of a computational resource in the Grid. This component handles with a list
of ordered machines according to memory, computational power, workload, etc.
These resources run the MDS daemon and they are enquired for their available
processors. The system deals with a desirable minimum and a maximum num-
ber of processors to execute the parallel application. These numbers are thought
both to increase productivity and to ensure executions with some minimum re-
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quirements. The maximum number provided should make it possible parallel
application to run optimally, according to structure size and library used. The
minimum number will allow maintaining more resources working concurrently.
The first host with enough number of free processors is chosen. The system will
try to launch parallel simulations using the optimal number of processors.

With the purpose of enabling portability, all the platform-dependent opti-
mizations should not be used. In addition, versions of numerical libraries, such
as BLAS and LAPACK, tuned for a determined architecture must be avoided.
Numerical software packages employed, such as PETSc, MUMPS, etc., have to
be linked statically. Moreover, the parallel application should not depend on the
MPI implementation on the executing host and the standard MPICH imple-
mentation should be included in a self-contained executable. As a result, two
executable archives have been created, one for IA32 and the other one for IA64.
Thus, the resource selector is also responsible to provide a suitable executable
for each machine.

Retrieval Processes. Since the parallel application is not aware of Grid, it
uses neither GT 2.4 utilities nor API to send the result files to the scheduler.
A retrieval process is started for each Grid task. This process will be in charge
of waiting for the Grid job to be finished and recovering the result files. Once
the task has concluded, the results are compressed and sent back to the local
host, where they will be saved on the appropriate directories created. All the
temporary files on the executing host will be deleted. The waiting time for a
job termination query must be tuned according to the resources in the Grid and
their average workload. In case of the job finishes and it produces no results or
any of the files expected is missed, the retrieval process will inform the scheduler
and the structure will be analysed later.

5.2 Case Study

To check the performance of the Grid demonstrator, a case study of a hotel is
presented. Hotels are singular buildings with a high cost of construction. The
designer must be extremely careful in the design stage because in countries, like
Spain, where the tourism is one of the biggest industry, an adequate design can
be the differential factor for economical profitability. The design of hotel facilities
requires taking into account a great number of relevant factors leading to a high
number of structural solutions for the same problem.

Four different layouts were presented: two of these designs presented a retic-
ular (bi-directional) slab solution, with large spanning of the beams, leading to
geometric models with more than 600.000 dof, and two more designs with one-
directional slab with approximately 330.000 dof. Three alternatives were consid-
ered for the construction material: steel, reinforced concrete and steel-concrete
composite frame. In each case (layout design plus material type) eight combina-
tions of different structural member dimensions were provided. Therefore, in the
preliminary design stage, a total of 96 possible combinations should be analysed
before selecting the most suitable option.
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Table 3 summarizes the task distribution in the Grid. As maximum, paral-
lel executions were limited to four proccesors, a polite policy with rest of the
remote users that allows multiple concurrent simulations. Due to the memory
requirements, the minimum number of processors was set to two. In the ta-
ble, an entry like 9 (2 p.) indicates that nine simulations were performed with
two processors each one. As table shows, the scheduler assignes dinamically the
number of tasks to the resources according to their free processors and com-
putational power. The available testbed was composed of 3 machines belonging
to our research group: one cluster of 8 Pentium Xeon@2Ghz biprocessors (Ke-
fren); another cluster of 11 Pentium III@866Mhz biprocessors (Ramses); and an
Itanium II@900Mhz biprocessor workstation (Bastet).

Table 3. Distribution of the task in the testbed. The number in parentheses indicates
the number of processors involved in the execution.

Machine Simulations

Kefren 40 (4 p.)
Ramses 27 (4 p.), 20 (3 p.)
Bastet 9 (2 p.)

The execution of the whole structural study lasted for 108.3 minutes by using
just one node of cluster Kefren (traditional sequential alternative). Following a
high performance computing approach, 20.26 minutes were needed. Each simu-
lation were launched with four processors in Kefren cluster, allowing two con-
current executions. Finally, the Grid Structural Analyser required 16.31 minutes
for the whole case study. MUMPS library was used in all these executions.

6 Conclusions and Further Work

Firstly, a parallel application for the 3D structural analysis of buildings has been
described in this paper. In order to compute the joint displacements, several par-
allel numerical libraries, with state-of-the-art capabilities, have been tested to
solve a large sparse symmetric linear system. Direct methods, and more con-
cretely WSMP library, have demonstrated to be the fastest solver. Besides, this
parallel application has been integrated into a Globus-based Grid infrastructure.
The Grid Structural Analyser developed gives the possibility to analyse in detail,
concurrently, a high number of different alternatives in the preliminary and final
design stages, saving time and effort, providing the designer with a powerful tool
to select the best option based on quantitative measures. Small and medium-
sized enterprises can now easily increase its productivity and business volume
by subcontracting resource usage or employing their own office computers. Since
Grid Computing enables efficient resource usage when a high coordinated com-
putational power is demanded, the system developed can be very useful for very
large and singular buildings, and moreover in a time-consuming 3D dynamic
structural analysis where a building must be simulated under the influence of
multiple earthquakes.
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