Globus-Based Grid Computing Simulations of
Action Potential Propagation on Cardiac Tissues

José M. Alonso, Vicente Herndndez, and German Molté*

Departamento de Sistemas Informéticos y Computacion,
Universidad Politécnica de Valencia. Camino de Vera s/n 46022 Valencia, Spain
Tel. +34963877356, Fax +34963877359

{jmalonso,vhernand,gmolto}@dsic.upv.es

Abstract. With the advent of Grid technologies, the study of the elec-
trical activity of the heart, by means of concurrent parametric simu-
lations of the action potential propagation on cardiac tissues, can be
greatly benefited. Studies of the electrical behaviour, such as late is-
chemia require the execution of multiple computational and memory in-
tensive parametric simulations. This paper describes the integration, into
a Grid infrastructure, of a parallel MPI-based system for the simulation
of action potential propagation on a three-dimensional parallelepiped-
modelled cardiac tissue. Developed upon the Globus Toolkit, it features
state-of-the-art capabilities such as data compression, simulation fail-
ure recovery, and the combination of parallel execution on distributed
resources, what has enabled an outstanding increase in research produc-
tivity.

1 Introduction

The simulation of action potential propagation on cardiac tissues represents a
major computational challenge. The fine spatial and time discretization steps re-
quired to solve the equation (1) that governs this phenomenon on a monodomain
cardiac model makes this problem only affordable with High Performance Com-
puting techniques. This is particularly important for three-dimensional execu-
tions, where a simulation of action potential propagation during few milliseconds
on a medium-sized tissue may last for several days on a sequential platform.
V~JVVm:Cm~dZ—tm+Imn+Ist. (1)
The previous equation relates the membrane potential of the cells, Vm, the
ionic currents that traverse the membrane, I;,,, the membrane capacitance, C,,
the anisotropy tensor, o, and the electrical stimulus, Is;. The comprehensive Luo-
Rudy Phase II [1] cellular model has been employed to calculate the I, term.

* The authors wish to thank the financial support received from The Spanish Ministry
of Science and Technology to develop the project GRID-IT (TIC2003-0131). This
work has been partially supported by the Structural Funds of the European Regional
Development Fund (ERDF).

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 444-451, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Globus-Based Grid Computing Simulations 445

In addition to the inherent computational cost of a single simulation, there
are many research studies that require the execution of a huge amount of para-
metric simulations. Studies of vulnerable window in ischemia require to vary the
time interval between two consecutive stimulus in order to detect the range of
values which provokes a reentry, a phenomenon that can derive into heart fib-
rillation. Besides, to study the effects of late ischemia it is necessary to vary the
coupling resistances in all the dimensions of the tissue and analyze the evolution
of the electrical activity for different anisotropy ratios. Moreover, to evaluate
the influence of certain medicines, it is crucial to alter the concentration of these
drugs, over a determined range, to study how it affects to the action potential
propagation.

Even though there have been several parallel approaches to this computa-
tional problem [2], the good efficiency results achieved on a beowulf cluster,
together with appearing to be the first cardiac simulation system to combine
both a parallel and a Grid Computing approach, represent a step forward in the
study of the electrical activity of the heart.

Therefore, both parallel computing techniques, that speedup a single simu-
lation, and Grid Computing technology, that enhances the efficiency of multiple
simulations, will be combined in order to achieve a global simulation system
that increases the productivity for these computational demanding cardiac case
studies.

The article is structured as follows: Section 2 describes the main functionality
of the simulation system. Then, section 3 details the characteristics of the Grid
Computing system designed. Next, in section 4, a case study is presented to
expose the functionality in a production testbed. Finally, section 5 concludes
the paper, exposing the relevant achievements.

2 Characteristics of the Simulation System

A cardiac tissue simulation consists of an iterative process that allows to calculate
the membrane potential of the cells along a time period.

First, a parallel simulation system was developed for two-dimensional tis-
sues [3] in order to reduce the simulation time on beowulf architectures with
outstanding efficiency results (94% of efficiency with 32 processors). Next, the
simulation system has been extended for three-dimensional anisotropic tissues,
achieving good scalability results. For example, Fig. 1 shows the speedup and
efficiency when simulating, on a cluster of PCs, an action potential propagation
during 250 ms in a 100x100x100 cell cardiac tissue, with a timestep of 10 us.
Such a simulation lasts 177.97 hours on a sequential platform, but only 6.45
hours when using 32 processors.

The simulation system periodically generates a set of checkpoint files, using
the MPI-2 parallel I/O routines, what allows a simulation to be restarted from
the point that was stopped, even with a different number of processors. The
checkpoint data consist of a snapshot of the tissue, that is, a double precision
binary dump of all its cells, along with other ones of the membrane potential
and ionic vectors.

446 J.M. Alonso, V. Herndndez, and G. Molté

Speedup of the Simulation System Efficiency of the Simulation System

— Achieved Speedup .
30 | - - Ideal Speedup e o8

Efficiency (%)

0 86/

0 5 10 25 30 35 0 5 10 25 30 35

15 20 15 20
Number of Processors Number of Processors

Fig. 1. Speedup and efficiency of the simulation system. Running on a 20 Pentium
Xeon 2.0 Ghz biprocessor cluster, with 1 GByte of RAM and a interconnected by a
SCI network.

Provided that the checkpoint data for this application can result in a very
large data set, we have analyzed the effectivity of data compression on realistic
checkpoint files, where a 100x100x100 cell cardiac tissue is stimulated to provoke
an action potential that depolarizes all the tissue.

Table 1 shows the compression ratio that is achieved, for the best and the
worst tissue state, using a Lempel-Ziv coding provided by the standard gzip
Unix command. The best case corresponds to a tissue in rest state, i.e. at the
beginning of the simulation, where similar values may be found for all the cells
of the tissue. On the other hand, the worst case corresponds to a propagating
wavefront (once applied the supra-threshold stimulus) on an anisotropic tissue,
where changes between the cells are very frequent.

Table 1. Effectivity of checkpoint data compression for the best and the worst case of
a 100x100x100 cell tissue state. Size is expressed in MBytes.

Uncompressed Data|Compressed Data|Compression Ratio
Best Case 515.2 4.9 105.14
Worst Case 515.2 142.4 3.62

In both cases, data compression required an average 60 seconds, while de-
compression lasted for an average 14 seconds. Therefore, compression offers a
significant reduction of the binary data generated by the simulator, as in the
worst case the result files can be reduced to less than a third part.

3 Grid Computing System Developed

3.1 Portability and Interoperability

Enabling portability requires that all the platform-dependent optimizations,
such as the compiler flags -march or -mcpu, are avoided. Besides, architecture-

Globus-Based Grid Computing Simulations 447

dependent optimized numerical libraries, such as the BLAS [4] and LAPACK
[5] implementation by the Intel Math Kernel Library, should not be used, as
they may result in executing illegal instructions on the remote host if both ar-
chitectures do not match. Fortunately, traditional compiler optimization flags,
i.e. -03, can be used with no risk.

Our application has been statically linked to generate a self-contained sim-
ulation system. Even the MPI communication library has been introduced into
the executable, using a MPICH [6] implementation, configured to disable shared-
memory communication between processes on the same node of a cluster, which
can potentially introduce memory-leak problems because of relying on the Sys-
tem V IPC facilities [7]. This procedure enables to perform a parallel execution
without depending on the MPI implementation of the execution host.

This parallel self-contained simulation system can be executed on a wide
range of Linux machines, thus isolating the application from the runtime envi-
ronment, something that may, a priori, be unknown in a Grid. This has been
ensured by executing parallel simulations in a variety of different architectures
such as Pentium III, Pentium IV, Pentium Xeon and even Intel Itanium 2 run-
ning different Linux flavours such as Red Hat Linux Advanced Server, Red Hat
8.0, Fedora Core 1 and Debian GNU/Linux.

It should be pointed out that such a simulator, compiled on an Intel Pen-
tium Xeon PC (32 bit), runs on compatibility mode on an Intel Itanium 2 (64
bit) platform, but it is up to 8 times slower than on the original architecture.
Therefore, we have natively compiled on the Intel Itanium 2 platform in order
to achieve comparable execution times on both architectures, and to be able to
exploit Itanium Grid execution nodes. This results on two self-contained simu-
lation systems, one for IA-32 and other one for IA-64, an strategy that could be
refined to target more architectures.

3.2 Modules Developed

Figure 2 shows a conceptual view of the Grid Computing system developed based
on the Globus Toolkit [8]. The JobScheduler is the module responsible for the
allocation of simulations to computational resources. This module delegates, for
each simulation, into a JobSubmitter, which is in charge of the proper execution
of the task in the resource.

/ JobScheduler

JobSubmitter 1

JobSubmitter n

Fig. 2. Scheme of the Grid Computing system developed.

448 J.M. Alonso, V. Herndndez, and G. Molté

The JobScheduler Module. This module reads an input file with a paramet-
ric description of the multiple simulations that form the case study. For each
simulation, it computes the best available resource, from a predefined list of
machines, by consulting its number of available nodes, via the Monitoring and
Discovery Service (MDS). Clusters with the Globus Resource Allocation Man-
ager (GRAM) Reporter installed, report the number of free computing nodes,
delegating in the local queue manager (LoadLeveler, PBS, etc). For workstations,
an estimation of the CPU usage during the last minute serves as an indicator
of the availability of the resource. This strategy allows to customize a parallel
execution to the number of available nodes in the host. Then, this module selects
an appropiate executable based on the architecture of the remote machine.

The JobScheduler is also responsible for submitting the unassigned simula-
tions and restarting the failed executions, delegating, for each of them, on an
instance of the JobSubmitter module. If no available resources exist, it periodi-
cally checks their availability to continue submitting pending tasks.

The JobSubmitter Module. This module is in charge of the proper execution
of a single simulation. First of all, the input files that the simulation system needs
are staged in, via the GridFTP service, to the execution host. Through the
Globus native interface, the remote machine is queried about its availability to
run MPT jobs, so the parallel or serial execution can be selected. The execution
of the simulation is integrated, if configured, with the queue manager of the
remote node (PBS, LoadLeveler, etc), thus respecting the execution policies of
that organization.

While the simulation is running on the remote resource, a checkpoint job is
periodically submitted by this module, which transfers, if not already done, a
compressed image of the generated checkpoint data to the local machine. Thus,
the latest checkpoint data always resides at the submission machine and a failed
simulation can be automatically resumed on a new computational resource. A
message digest mechanism ensures that no old checkpoint data is transferred
twice, wasting bandwidth.

Once the execution has finished, all the result data are compressed, trans-
ferred back to the submission node and saved on the appropriate local folder
created for this simulation. All the temporary created files in the execution
node are deleted, and finally, the JobSubmitter module anotates whether the
simulation has finished correctly or not. This information will be used by the
JobScheduler module to be able to restart the failed simulations.

4 Case Study

4.1 Description

Myochardial ischemia is a condition caused by oxygen deprivation to the heart
that can result in an angina. It is known that ischemia increases the extracellular
potassium concentration in the affected area, what shortens the action poten-
tial duration. Therefore, it is possible to study the effects of several degrees of

Globus-Based Grid Computing Simulations 449

ischemia, by means of multiple parametric simulations, varying the extracellular
potassium concentration for a group of cells in the tissue.

For a 50x50x50 cells cardiac tissue, a range from 5 to 12.9 milliMolar (mM.)
potassium extracellular concentration will be studied, with an increment of 0.2
mM. between each simulation. Only 2 ms will be simulated with a timestep
of 0.01 ms. This results in 40 independent parametric simulations that can be
executed in the computational resources that a Grid testbed offers.

4.2 Testbed

The available testbed is composed of local resources, belonging to our research
group, the High Performance Networking and Computing Group (GRyCAP-
UPYV), and remote resources from the Distributed Systems Architecture & Secu-
rity group (ASDS-UCM), at Madrid Complutense University. Table 2 summa-
rizes the main features of the machines.

The Globus Toolkit version 2.4 [9] has been installed on the testbed. Ramses
cluster is the Certication Authority of GRyCAP-UPV and its credentials have
been installed on ASDS-UCM machines to allow remote job submission.

Table 2. Detailed machine characteristics of the testbed.

Machine Processors Memory
Kefren (grycap) 20 (2 x Intel Xeon 2.0 Ghz) 1 GByte
Ramses (grycap) |12 (2 x Intel Pentium IIT 866 Mhz)|512 MBytes
Bastet (grycap) 2 x Itanium 2 900 Mhz 4 GBytes

Hydrus,Cygnus (asds) 1 x Pentium IV 2.53 Ghz 512 MBytes
Aquila (asds) 1 x Pentium IIT 666 Mhz 128 MBytes
Cepheus (asds) 1 x Pentium III 666 Mhz 256 MBytes

4.3 Execution Results

Table 3 summarizes the tasks distribution in the Grid. The maximum number of
processors in a parallel execution has been limited to eight, a polite policy with
the rest of the users that allows multiple concurrent simulations. In the table,
an entry like 7 (8 p.) indicates that seven simulations were performed with eight
processors each one. Machine Bastet does not appear on the table because it
was heavily loaded and the scheduler never chose it for job submission. Each
simulation generates 64 MBytes of data, that can be compressed to 1.7 MBytes.

The Grid execution of this short case study lasted for 1232 seconds (20.53
minutes). On the other hand, a traditional sequential execution in only one node
of cluster Kefren required 154.05 minutes, what represents a speedup of 7.5 in the
cardiac case study execution in the Grid. A parallel computing approach, per-
forming 8-processors parallel executions sequentially in cluster Kefren, required
32.74 minutes.

450 J.M. Alonso, V. Herndndez, and G. Molté

Table 3. Distribution of the simulations in the testbed, for each machine. The number
in parentheses indicates the number of processors involved in the execution.

Machine Simulations Machine|Simulations
Kefren (7 (8 p.),5 (5 p.),3 (1 p.),2 (4p.),2(7p.)|| Hydrus 3(1p.)
Ramses 7 (8p.), 3 (Lp) Cygnus 3(1p.)
Cepheus 2 (1p.) Aquila 3(1p.)

It can be seen that the scheduler has distributed the tasks proportional to
the computational power of each machine, what represents a proper balance
loading scheme. Had the machine Bastet been available, it would have received
a task load adequate to its computational power. Besides, as the state of the
Grid is investigated before each task submission, the job allocation is dynami-
cally adjusted to the computational load of the resources during the scheduling
process.

It is important to point out that a Grid execution is ideal for resource-starved
cardiac case studies, as it broadens the computing resources available, no longer
confined to those belonging to a single organization.

5 Conclusions

This paper has presented the integration of a system for the simulation of ac-
tion potential propagation on three-dimensional monodomain modelled cardiac
tissues, into a Globus-based Grid infrastructure.

The Grid Computing system developed features state-of-the-art capabilities
such as data compression, self-contained executable and dependencies migration,
cross-linux portability and parallel execution of simulations on cluster nodes of
the Grid.

With the execution of cardiac case studies in a Grid environment, produc-
tivity has been largely enhanced compared to traditional sequential execution
approaches. It is clear that the advent of new Grid technologies is getting pos-
sible to increase the research productivity by performing multiple concurrent,
geographically distributed, parallel or sequential simulations of action potential
propagation on cardiac tissues.

Therefore, having available a parallel simulation system that can be inte-
grated with a Grid infrastructure enables to focus both on speedup, running on
a cluster of PCs, and productivity, taking full advantage of the computational
power of a Grid.

Acknowledgements

We would like to thank the Distributed Systems Architecture & Security group,
belonging to Madrid Complutense University (Spain), for sharing both its com-
putational resources, enlarging our testbed, and its knowledge through the results
of the GridWay project [10].

Globus-Based Grid Computing Simulations 451

References

10.

. Luo, C.H., Rudy, Y.: A Dynamic Model of the Cardiac Ventricular Action Po-

tential. I Simulations of Ionic Currents and Concentration Changes. Circulation
Research 74 (1994) 1071-1096

Vigmond, E.J., Aguel, F., Trayanova, N.A.: Computational Techniques for Solving
the Bidomain Equations in Three Dimensions. IEEE Transactions on Biomedical
Engineering 49 (2002) 1260-1269

Alonso, J.M., Ferrero (Jr.), J.M., Herndndez, V., Molté, G., Monserrat, M., Saiz,
J.: High Performance Cardiac Tissue Electrical Activity Simulation on a Parallel
Environment. Proceedings of the First European HealthGrid Conference (2003)
84-91

Lawson, C.L., Hanson, R.J., Kincaid, D., Krogh, F.T.: Basic Linear Algebra Sub-
programs for FORTRAN Usage. ACM Trans. Math. Soft. 5 (1979) 308-323
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-
PACK Users’ Guide. Third edn. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1999)

Gropp, W., Lusk, E.; Doss, N., Skjellum, A.: A High-Performance, Portable, Im-
plementation of the MPI Message Passing Interface Standard. Parallel Computing
22 (1996) 789-828

Gropp, W.D., Lusk, E.: User’s Guide for MPICH, a Portable Implementation of
MPI. Mathematics and Computer Science Division, Argonne National Laboratory.
(1996)

Foster, 1., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for the Distributed Systems Integration. Infrastructure
WG, Global Grid Forum (2002)

Foster, 1., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl.
J. Supercomputer Applications 11 (1997) 115-128

Huedo, E., Montero, R.S., Llorente, .LM.: A Framework for Adaptive Execution
on Grids. Software Practice and Experience (2004) To appear.

	1 Introduction
	2 Characteristics of the Simulation System
	3 Grid Computing System Developed
	3.1 Portability and Interoperability
	3.2 Modules Developed

	4 Case Study
	4.1 Description
	4.2 Testbed
	4.3 Execution Results

	5 Conclusions
	Acknowledgements
	References

