
Pattern/Operator Based Problem
Solving Environments

Cecilia Gomes1, Omer F. Rana2, and Jose C. Cunha1

1 CITI Center, University Nova de Lisboa, Portugal
2 School of Computer Science, Cardiff University, UK

Abstract. Problem Solving Environments (PSEs) provide a collection
of tools for composition of scientific applications. Such environments
are often based on graphical interfaces that enable components to be
combined, and in some cases, subsequently scheduled on computational
resources. A novel approach for extending such environments with De-
sign Patterns and Operators is described – as a way to better manipu-
late the available components – and subsequently manage their execu-
tion. Users make use of these additional abstractions by first deploying
‘Structural Patterns’ and by refining these through ‘Structural Opera-
tors’. ‘Behavioural Patterns’ may then be used to define the control and
data flows between components – subsequent use of ‘Behavioural Oper-
ators’ manage the final configuration for execution control and dynamic
reconfiguration purposes. We demonstrate the implementation of these
Patterns and Operators using Triana [14] and the Distributed Resource
Management Application (DRMAA) API [10].

1 Introduction and Motivation

A Problem Solving Environment (PSE) is a complete, integrated computing
environment for composing, compiling, and running applications in a specific
area [1]. In many ways a PSE is seen as a mechanism to integrate different
software construction and management tools, and application specific libraries,
within a particular problem domain. One can therefore have a PSE for finan-
cial markets [4], for Gas Turbine engines [5], etc. Focus on implementing PSEs is
based on the observation that previously scientists using computational methods
wrote and managed all of their own computer programs – however now compu-
tational scientists must use libraries and packages from a variety of sources, and
those packages might be written in many different programming languages. En-
gineers and scientists now have a wide choice of computational modules and
systems available, enough so that navigating this large design space has become
its own challenge. A survey of 28 different PSEs by Fox, Gannon and Thomas
(as part of the Grid Computing Environments WG) can be found in [6], and
practical considerations in implementing PSEs can be found in Li et al. [2].
Both of these indicate that such environments provide “some backend compu-
tational resources, and convenient access to their capabilities”. Furthermore,

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 964–971, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Pattern/Operator Based Problem Solving Environments 965

workflow features significantly in both of these descriptions. In many cases, ac-
cess to data resources is also provided in a similar way to computational ones.
Often PSE and Grid Computing Environment is used interchangeably – as PSE
research predates the existence of Grid infrastructure. The aim of our work is
to: (1) extend the capabilities of existing PSEs with support for Patterns and
Operators, and (2) to enable the management of such applications subsequently
by mapping “Behavioural” patterns and operators to a resource management
system. Patterns allow the abstraction of common interactions between compo-
nents, thereby enabling reuse of interactions that have proven useful in similar
domains. A user may build an application in a structured fashion by selecting
the most appropriate set of patterns, and by combining them according to op-
erator semantics. Users may also define new patterns found to be useful, and
add these as components for use by others. Patterns and Operators also provide
additional capability that is not easily representable via visual components. Our
approach treats patterns as first class entities but differs from other works [7,
8] in that the user may explicitly define structural constraints between compo-
nents, separately from the behavioural constraints. Our approach is somewhat
similar to that of van der Aalst et al. [17] – although they do not make a dis-
tinction between structural and behavioural patterns. They also focus on Petri
net models of their patterns, whereas our concern is to link patterns with partic-
ular resource managers and composition tools. The approach presented here is
primarily aimed at computational scientists and developers, who have some un-
derstanding of the computational needs of their application domain. A scientist
should be aware about the likely co-ordination and interaction types between
components of the application (such as a database or numeric solver etc). The
structural and behavioural patterns presented here will enable such scientists
and developers to utilise common usage scenarios within a domain (either the
use of particular components, such as database systems, or interactions between
components, such as the use of streaming). Section 2 introduces our concept of
Patterns and Operators, and Section 3 demonstrates how these are implemented
in the Triana (the workflow system for the European GridLab project [9]) – and
describe theme (1) mentioned above. Theme (2) is then explained in Section 4.

2 Structured Composition of Applications in PSEs
Based on Grids

Structural Pattern Templates encode component connectivity, representing
topologies like a ring, a star or a pipeline, or design patterns like Facade, Proxy
or Adapter [15]. The possibility of representing these structural constraints al-
lows, for example, the representation of common software architectures in high-
performance computing applications. For example, the pipeline pattern may be
used in a signal processing application where the first stage may consist of a
signal generator service producing data to a set of intermediate stages for fil-
tering. Frequently, the last stage consists of a visualisation service for observing
results. The proxy pattern, for instance, allows the local presence of an entity’s

966 C. Gomes, O.F. Rana, and J.C. Cunha

surrogate, allowing access to the remote entity. Grid services, for example, are
usually accessed through a proxy (or gatekeeper).

Behavioural Pattern Templates capture recurring themes in component
interactions, and define the temporal and the (control and data) flow depen-
dencies between the components. Generally, these applications involve distribu-
tion of code from a master, the replication of a code segment (such as within
a loop), or parameter sweeps over one or more indices. We provide several
behavioural patterns such as Master-Slave, Client-Server, Streaming, Peer-to-
Peer, Mobile Agents/Itinerary, Remote Evaluation, Code-on-Demand, Contract,
Observer/Publish-Subscriber, Parameter sweep, Service Adapter, and so on. For
example, the Service Adapter pattern “attaches additional properties or be-
haviours to an existing application to enable it to be invoked as a service” [16].
The Master-Slave pattern, in turn, can be mapped to many parallel programming
libraries, and represents the division of a task into multiple (usually indepen-
dent) sub-units – and shares some similarities with the Client-Server pattern –
although the control flow in the latter is more complex.

Proxy
Proxy

Proxy
Real

Subject

Result pattern

Real
Subject

Proxy

Pattern

Real
Subject

Proxy a Proxy b

Result pattern

Increase(proxyPT, 2) Extend(proxyPT, element)

Fig. 1. The increase and extend structural operators.

Structural Operators support the composition of structural patterns, without
modifying the structural constraints imposed on the pattern. This provides a user
with a simple and flexible way to refine structural patterns. There are several
structural operators such as increase, decrease, extend, reduce, rename, replace,
replicate, embed, etc. For example in figure 1 it is possible to observe the result
of applying the increase and extend operators to the Proxy pattern.

Behavioural Operators are applied over the structural operator templates
combined with the behavioural patterns after instantiating the templates with
specific runnable components. Behavioural operators act upon pattern instances
for execution control and reconfiguration purposes. Behavioural operators in-
clude: Start (starts the execution of a specific pattern instance), Stop (stops the
execution of a pattern instance saving its current state), Resume (resumes the
execution of a pattern instance from the point where it was stopped), Termi-
nate (terminates the execution of a specific pattern instance), Restart (allows
the periodic execution of a pattern instance), Limit (limits the execution of a
specific pattern instance to a certain amount of time; when the time expires
the execution is terminated), Repeat (allows the repetition of the execution of a
specific pattern a certain number of times), etc. Both structural operators and
behavioural operators can be combined into scripts which may be later reused
in similar applications.

Pattern/Operator Based Problem Solving Environments 967

3 Implementation over the Triana GCE

A prototype has been implemented by extending Triana [14], and allows devel-
opers to utilise a collection of pre-defined patterns from a library. Triana comes
with components (called units) for signal processing, mathematical calculations,
audio and image processing, etc, and provides a wizard for the creation of new
components, which can then be added to the toolbox. Structural Patterns appear
as standard components that can be combined with other patterns or executable
units. Triana provides both a composition editor, and a deployment mechanism
to support this. The Pattern library provided within Triana treats patterns as
“group units” (i.e. units made up of others). Each element within such group
units is a “dummy” component (or a place holder) and can subsequently be in-
stantiated with executables from the Triana toolbox. Hence, structural pattern
templates are collections of dummy components that can be instantiated with
other structural pattern templates or with executables.

Fig. 2. A possible final configuration for the image processing of the “Galaxy Formation
example”.

A Galaxy simulation application with Triana is illustrated in figure 2. The
Galaxy formation example may be represented by a star pattern template, where
the nucleus contains the actions necessary to generate and control the animation
execution, and the satellites represent image processing and analysis actions.
Both the actions at the nucleus and at the satellites are supported by pipeline
templates. As such, the Pipeline pattern instance shown in the figure, represents
the actions at the nucleus, and consists of three stages. Pipeline is connected to
the two satellites, namely, Pipeline1 and Pipeline2, and produce data to these

968 C. Gomes, O.F. Rana, and J.C. Cunha

two pattern instances. Pipeline1 is embedded in one of the satellites and connects
two units for image processing. Pipeline2 binds two units that together support
analysis of the data produced at the nucleus. See [12] for details.

4 Mapping to the DRMAA API

Behavioural patterns are implemented over the run-time system used to execute
the components. There is no visual representation of these, as they are provided
as a collection of scripts that need to be configured by a user prior to execu-
tion. We map behavioural patterns over DRMAA [10]. Pattern execution essen-
tially involves coordination between modules. Execution is therefore delegated
via DRMAA to third party resource management systems (DRMAA provides
a generalised API to execute jobs over Distributed Resource Management Sys-
tems (DRMSs)). DRMAA includes common operations on jobs like termination
or suspension. A job is a running application on a DRMS and it is identified
by a job id attribute that is passed back by the DRMS upon job submission.
This attribute is used by the functions that support job control and monitoring.
DRMAA API uses an IDL-like definition (with IN defining an input parameter,
OUT defining an output parameter, and INOUT defining a parameter that may
be changed), and also provides support for handling errors (via error codes).

To configure and execute an application using the patterns library, a user
(developer) needs to undertake the following:

– A structural pattern – such as a “pipeline” – is selected from the patterns
library. This appears as a standard Triana (group) unit. Figure 2 illustrates
a number of different pipeline instances.

– A user may add or remove elements from the structural pattern chosen. This
is achieved by using structural operators such as “increase” or “decrease”
respectively.

– A user may now select a behavioural pattern – such as “dataflow” – to
indicate how interaction between the units/elements is to take place.

– An entity at the pattern level is defined, the pattern executor, responsible
for enforcing the selected behavioural pattern at each element.

– All component place-holders are instantiated with components (Applica-
tions) that may represent a unit in Triana or a group of units organized
in a workflow.

– A user may now wish to use a behavioural operator – such as “start” or
“stop” – on the behavioural pattern. These operators are supported by func-
tions in the DRMAA API that manage the execution of the Applications by
a resource manager. The execution of each Application is supported by a job
(running executable) in the resource manager.

A user therefore may select structural patterns/operators followed by behavioural
patterns/operators – all of which are implemented in Java. It is important to
note that behavioural patterns/operators can only be applied to structural pat-
terns – and not to arbitrary Triana units. A user does not need to know the

Pattern/Operator Based Problem Solving Environments 969

actual implementation of any of these patterns/operators to make use of them –
as they are primarily pre-defined group units in Triana or scripts. We therefore
do not expect the user to be familiar with any particular programming language
or scripting tool. Experienced developers, however, may add their own operators
or patterns to our library.

Application execution using DRMAA requires the definition of attributes like
the application’s name, its initial input parameters, the necessary remote envi-
ronment that has to be set up for the application to run, and so forth. These
attributes are used to explicitly configure the task to be run via a particular
resource manager. Although DRMAA has the notion of sessions, only one ses-
sion can be active at a time. A single DRMAA session for all the operators is
assumed. Hence drmaa init and drmaa exit routines are called, respectively,
after the pattern instance is created and in the end of the script program. As
an example, we show how a pipeline pattern can be mapped to DRMAA: El-
ement pattern elements[MAX ELEMS] – contains the Elements that compose
a specific pattern instance. Similarly, job identifiers[MAX ELEMS] represents
the identifiers returned by the drmaa run job routine for jobs created to sup-
port pattern elements. The order of the activities is preserved. DRMAA vari-
ables frequently used: INOUT jt is a job template (opaque handle), and INOUT
drmaa context error buf contains a context-sensitive error upon failed return.
The examples are illustrated in a Java-like notation.

Start Operator – to initiate execution of Pipeline Elements.

/* launch all activities in the pipeline */

for(int index = Pipeline.pattern_elements.length -1 ; index >= 0;

index --) {

int ret = drmaa_allocate_job_template(jt, drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

define_attributes(jt, Pipeline.pattern_elements[index]);

/* Pipeline.startTime defines the time at which all

elements in the pipeline instance should start running. */

ret = drmaa_set_attribute(jt, drmaa_start_time,

Pipeline.startTime,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

/* run one job at the specified time */

ret = drmaa_run_job(job_id, jt, drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf); }

Repeat Operator – in this instance a single operator is used to re-execute an
entire pattern instance a certain number of times (“n” in the code).

for(int count = 0; count < n; count++) {

Start(Pipeline);

/* wait for all the jobs that compose the pipeline to terminate */

drmaa_synchronize(Pipeline.job_identifiers, timeout, 0,

drmaa_context_error_buf);

/* timeout is bigger than all jobs’ execution times */ }

970 C. Gomes, O.F. Rana, and J.C. Cunha

5 Conclusions and Future Work

The extension of a Problem Solving Environment (Triana) with Patterns and
Operators is described. Composition is achieved using a pattern extended graph-
ical interface provided with Triana – whereas execution is managed by mapping
Operators to the DRMAA API. We believe a Pattern based approach is partic-
ularly useful for reuse of component libraries in PSEs, and for mapping applica-
tions constructed in PSEs to a range of different execution environments. The
DRMAA API was selected because of the significant focus it initially received
within the Grid community – and the availability of commercial resource man-
agement systems (such as Grid Engine from Sun Microsystems) that make use
of it. We are also investigating alternatives to DRMAA (such as Java CoG) [11]
– primarily as current versions of DRMAA are aimed at executing batch jobs.
With the emerging focus on Web Services in the Grid community, the DRMAA
API has also lagged behind other equivalent developments (such as the Java
CoG kit).

Patterns provide a useful extension to existing PSEs, as they enable the cap-
ture of common software usage styles across different application communities.
The pipeline and star structural patterns, for instance, are commonly found in
scientific applications (such as integrating a data source with a mesh generator,
followed by a visualiser). Describing such compositions in a more formal way
(as we have attempted to do here), will enable practitioners in the community
identify common software libraries and tools. This is particularly important as
software that performs similar functionality is available from a variety of dif-
ferent vendors. Providing the right balance between tools that require users to
possess programming skills, and those that are based on a visual interface is
difficult to achieve. By combining the visual interface of Triana with more ad-
vanced patterns and operators, we are attempting to enhance the functionality
offered through (a variety of) existing workflow tools. Full usage of these ideas
by the applications community is still a future aim for us.

References

1. E. Gallopoulos, E. Houstis and J. Rice, “Computer as Thinker/Doer:Problem-
Solving Environments for Computational Science”, IEEE Computational Science
and Engineering, 1(2), 1994.

2. M. Li and M. A. Baker, “A Review of Grid Portal Technology”, to appear in
Book, “Grid Computing: Software Environment and Tools” (ed: Jose Cunha and
O.F.Rana), Springer Verlag, 2004

3. J. Novotny, M. Russell and O. Wehrens “GridSphere: A Portal Framework for
Building Collaborations”, 1st International Workshop on Middleware for Grid
Computing (at ACM/IFIP/USENIX Middleware 2003), Rio de Janeiro, Brazil,
June 2003. See Web site at: http://www.gridsphere.org/. Last visited: January
2004.

4. O. Bunin, Y. Guo, and J. Darlington, “Design of Problem-Solving Environment
for Contingent Claim Valuation”, Proceedings of EuroPar, LNCS 2150, Springer
Verlag, 2001.

Pattern/Operator Based Problem Solving Environments 971

5. S. Fleeter, E. Houstis, J. Rice, C. Zhou, and A. Catlin, “GasTurbnLab: A Problem
Solving Environment for Simulating Gas Turbines”, Proceedings of 16th IMACS
World Congress, 104-5, 2000.

6. G. Fox, D. Gannon and M. Thomas, “A Summary of Grid Computing Environ-
ments”, Concurrency and Computation: Practice and Experience (Special Issue),
2003. Available at:http://communitygrids.iu.edu/cglpubs.htm

7. B. Wydaeghe, W. Vanderperren, “Visual Composition Using Composition Pat-
terns”, Proc. Tools 2001, Santa Barbara, USA, July 2001.

8. ObjectVenture, The ObjectAssembler Visual Development Environment. See Web
site at: http://www.objectventure.com/objectassembler.html. Last visited:
March 2003.

9. The GridLab project. See Web site at: http://www.gridlab.org/. Last visited:
January 2004.

10. Habri Rajic, Roger Brobst et al., “Distributed Resource Management Application
API Specification 1.0”. Global Grid Forum DRMAA Working Group. See Web site
at: http://www.drmaa.org/. Last visited: September 2003.

11. Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane, ”A Java Com-
modity Grid Kit,” Concurrency and Computation: Practice and Experience, vol.
13, no. 8-9, pp. 643-662, 2001, http:/www.cogkits.org/.

12. M.C.Gomes, O.F.Rana, J.C.Cunha “Pattern Operators for Grid Environments”,
Scientific Programming Journal, Volume 11, Number 3, 2003, IOS Press, Editors:
R. Perrot and B. Szymanski.

13. M.C.Gomes, J.C.Cunha, O.F.Rana, “A Pattern-based Software Engineering Tool
for Grid Environments”, Concurrent Information Processing and Computing pro-
ceedings, NATO Advanced Research Workshop, Sinaia, Romenia, June 2003, IOS
Press.

14. I. Taylor et al., “Triana” (http://www.trianacode.org/). Triana is the workflow
engine for the EU GridLab project (http://www.gridlab.org/). Last Visited: Jan-
uary 2004.

15. E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison-Wesley, 1994.

16. O. F. Rana, D. W. Walker, “Service Design Patterns for Computational Grids”, in
“Patterns and Skeletons for Parallel and Distributed Computing”, F. Rabhi and
S. Gorlatch(Eds), Springer, 2002.

17. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3), pages 5-51, July
2003

	1 Introduction and Motivation
	2 Structured Composition of Applications in PSEs Based on Grids
	3 Implementation over the Triana GCE
	4 Mapping to the DRMAA API
	5 Conclusions and Future Work
	References

