
Visual Data Rectangular Memory

Georgi Kuzmanov, Georgi Gaydadjiev, and Stamatis Vassiliadis

Computer Engineering Lab, Microelectronics and Computer Engineering Dept.,
EEMCS, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands

{G.Kuzmanov,G.N.Gaydadjiev,S.Vassiliadis}@EWI.TUDelft.NL
http://ce.et.tudelft.nl/

Abstract. We focus on the parallel access of randomly aligned rectangular blocks
of visual data. As an alternative of traditional linearly addressable memories, we
suggest a memory organization based on an array of memory modules. A highly
scalable data alignment scheme incorporating module assignment functions and
a new generic addressing function are proposed. To enable short critical paths and
to save hardware resources, the addressing function implicitly embeds the mod-
ule assignment functions and it is separable. A corresponding design is evaluated
and compared to existing schemes and is found to be cost-effective1.

1 Introduction

Vector processor designers have been interested in memory systems that are capable of
delivering data at the demanding bandwidths of the increasing number of pipelines, see
for example [1,6,9,12]. Different approaches have been proposed for optimal alignment
of data in multiple memory modules [1, 3, 9–12]. Module assignment and addressing
functions have been utilized in various interleaved memory organizations to improve
the performance. In graphical display systems, researchers have been investigating ef-
ficient accesses of different data patterns: blocks (rectangles), horizontal and vertical
lines, forward and backward diagonals [11]. While all these patterns are of interest in
general purpose vector machines and graphical display systems, rectangular blocks are
the basic data structures in visual data compression (e.g., MPEG standards). There-
fore, to utilize the available bandwidth of a particular machine efficiently, new scalable
memory organizations, capable of accessing rectangular pixel patterns are needed.

In this paper, we propose an addressing function for rectangularly addressable sys-
tems, with the following characteristics: 1.) Highly scalable accesses of rectangular sub-
arrays out of a two-dimensional data storage. 2.) Separable addressing of the memory
modules per rows and columns, which potentially saves hardware. We also introduce
implicit module assignment functions to further improve the designs. In addition, we
propose a memory organization and its interface, which employs conflict free address-
ing and data routing circuitry with minimal critical path penalties.

1 This research is supported by PROGRESS, the embedded systems research program of the
Dutch organization for Scientific Research NWO, the Dutch Ministry of Economic Affairs,
and the Technology Foundation STW (project AES.5021). The authors of this material express
special acknowledgements to Jens Peter Wittenburg for his valuable opinions and expertise.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 760–767, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Visual Data Rectangular Memory 761

The remainder of the paper is organized as follows. Section 2 motivates the pre-
sented research and introduces the particular addressing problem. In Section 3, the ad-
dressing scheme and the corresponding memory organization are described. Related
work is compared to ours in Section 4. Finally, the paper is concluded with Section 5.

2 Motivation

Most of the data processing in MPEG is not performed over separate pixels, but over
certain regions (blocks of pixels) in a frame. Many computationally and data intensive
algorithms access such blocks from an arbitrary position in a virtual two-dimensional
storage where frames are stored. This generates problems with data alignment and ac-
cess in system memory, see [7, 8], described formally in the remainder of the section.

Formal Problem Introduction and Proposed Solution. Consider linearly addressable
memories (LAM). Pixel blocks with their upper-left pixel aligned as a byte at a first
(word addressing) position of a LAM word will be referred to as aligned. All other
pixel blocks will be referred to as non-aligned. Assume a LAM with word length of w
bits (w = 8, 16, 32, 64, 128) and the time for linear memory access to be TLAM . The
time to access a single a × b sub-array of 8-bit pixels, depending on its alignment is:

1.) Aligned sub-array: 8·a·b
w · TLAM ; 2.) Not aligned sub-array: (8·a

w + 1) · b · TLAM .
The time, required to access N a × b blocks with respect to their alignment will be:
1.) All N blocks aligned: N · 8·a·b

w · TLAM ;
2.) None of the blocks aligned: N · (8·a

w + 1) · b · TLAM ;
3.) Mixed: N · [1a · 8·a

w + a−1
a (8·a

w + 1)] · b · TLAM =N · (8·a
w + 1 − 1

a) · b · TLAM .

By mixed access scenario we mean accessing both aligned and non-aligned blocks. We
assume that the probability to access an aligned block is 1

a , while for a non-aligned
block it is a−1

a . For simplicity, but without losing generality, assume square blocks of
n × n, (i.e., a=b=n). We can estimate the total number of LAM cycles to access N
square blocks, again with respect to their alignment:

1.) All N blocks aligned: 8·n2

w · N ; 2.) None of the blocks aligned: (8·n2

w + n) · N ;

3.) Mixed: (8·n2

w + n − 1) · N . Obviously, the number of cycles to access an n × n

block in a LAM, regardless of its alignment, is a square function of n, i.e., O(n2).

LAM

2DAM Block
Processing

Unit(s)

W a x b

TLAM T2DA

Fig. 1. Memory hierarchy with 2DAM.

An appropriate memory organi-
zation may speed-up the data ac-
cesses. Consider the memory hier-
archy in Figure 1 and time to ac-
cess an entire n × n block from the
2-dimensionally accessible memory
(2DAM) to be T2DA. In such a case,
the time to access N n×n sub-blocks
in the mixed access scenario will be:

N
n · 8·n2

w · TLAM + N · T2DA, [sec] ⇔ (8·n
w + T2DA

TLAM
) · N, [LAMcycles] .

762 G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis

That is the sum of the time to access the appropriate number of aligned blocks (N
n)

from LAM plus the time to access all N blocks from the 2DAM. It is evident that in
a mixed access scenario, the number of cycles to access an n × n block in the hi-
erarchy from Figure 1 is a linear function of n, i.e., O(n) and depends on the imple-
mentation of the 2D memory array. Table 1 presents access times per single n × n

Table 1. Access time per n × n block in LAM
cycles. t = T2DA

TLAM
.

n w LAM 2DAM
WC Mix. BC Mix./BC WC

8 72 71 64 8+t 64+t
8 16 40 39 32 4+t 32+t

32 24 23 16 2+t 16+t
8 272 271 256 32+t 256+t

16 16 144 143 128 16+t 128+t
32 80 79 64 8+t 64+t

block. Time is reported in LAM cycles
for some typical values of n and w.
There are three cases: 1.) neither of the
N blocks is aligned - worst case (WC);
2.) mixed block alignment (Mix.); and
3.) all blocks are aligned - best case (BC).
The last two columns contain cycle esti-
mations for the organization from Figure
1. In this case, both mixed and best case
scenarios assume that aligned blocks are
loaded from the LAM to the 2DAM first
and then non-aligned blocks are accessed
from the 2DAM. The 2DAM worst case

(contrary to LAM) assumes that all blocks to be accessed are aligned. Even in this
worst case, the 2DAM-enabled hierarchy may perform better than LAM best case if the
same aligned block should be accessed more than once. For example, assume accessing
k times the same aligned block. In LAM, this would take k· 8·n2

w = [8·n
2

w +(k−1)· 8·n2

w],
while with 2DAM, it would cost [8·n

2

w + (k − 1) · T2DA

TLAM
] LAM cycles per block. Obvi-

ously, to have a 2DAM enabled memory hierarchy, faster than pure LAM, it would be
enough if 8·n2

w > T2DA

TLAM
. All estimations above strongly suggest that a 2DAM with cer-

tain organization may dramatically reduce the number of accesses to the (main) LAM,
thus considerably speeding-up related applications.

3 Block Addressable Memory

In this Section, we present the proposed mechanism by describing its addressing scheme,
the corresponding memory organization and a potential implementation.

Addressing Scheme. Assume M × N image data stored in k = a × b memory mod-
ules (1 ≤ a ≤ M ; 1 ≤ b ≤ N). Furthermore, assume that each module is linearly
addressable. We are interested in parallel, conflict-free access of a × b blocks (B) at
any (i, j) location, defined as: B(i, j) = {(i + p, j + q)|0 ≤ p < a, 0 ≤ q < b},0 ≤
i ≤ M − a, 0 ≤ j ≤ N − b. To align data in k modules without data replication,
we organize these modules in a two-dimensional a × b matrix. A module assignment
function, which maps a piece of data with 2D coordinates (i,j) in memory module
(p, q) : 0 ≤ p < a, 0 ≤ q < b, is required. We separate the function denoted as
mp,q(i, j), into two mutually orthogonal assignment functions mp(i) and mq(j). We
define the following module assignment functions for each module at position (p,q):

mp(i) = (i − p) mod a, mq(j) = (j − q) mod b . (1)

Visual Data Rectangular Memory 763

The addressing function for module (p,q) with respect to coordinates (i,j) is defined as:

Ap,q(i, j) = (i div a + ci) · N

b
+ j div b + cj , (2)

ci =
{

1, i mod a > p
0, otherwise ; cj =

{
1, j mod b > q
0, otherwise .

Obviously, if p = a− 1 ⇒ ci = 0 for ∀i; if q = b− 1 ⇒ cj = 0 for ∀j, respectively. In
essence, ci and cj are the module assignment functions, implicitly embedded into the
linear address Ap,q(i, j). The proof of all properties of the proposed addressing scheme
can be found in [7].

Memory Organization. The key purpose of the proposed addressing scheme is to
enable performance-effective memory implementations optimized for algorithms re-
quiring the access of rectangular blocks. Designs with shortest critical paths are to
be considered with the highest priority, as they dictate machine performance. Equa-
tions (1)-(2) are generally valid for any natural values of parameters a, b and N (i.e.,
for ∀ a, b, N ∈ N). To implement the proposed addressing and module assignment
functions, however, we will consider practical values of these parameters. Since pixel
blocks processed in MPEG algorithms have dimensions up to 16 × 16, values of prac-
tical significance for parameters a and b are the powers of two up to 16 (i.e., 1, 2, 4, 8,
16). Figure 2 illustrates an example for a block size of a × b = 2 × 4.

Module Addressing. An important property of the proposed module addressing func-
tion is its separability. It means that the function can be represented as a sum of two
functions of a single and unique variable each (i.e., variables i and j). The separability
of Ap,q(i, j) = Aip(i) + Ajq(j) allows the address generators to be implemented per
column and per row (see Figure 2) instead of implemented as individual addressing
circuits for each of the memory modules.

Aj0(j)

shuffle shuffle shuffle shuffle

shuffle

Module
(0,0)

Module
(0,1)

Module
(0,2)

Module
(0,3)

Module
(1,0)

Module
(1,1)

Module
(1,2)

Module
(1,3)

j

i

Aj1(j) Aj2(j) Aj3(j)

Ai0(i)

Ai1(i)

Ri(i)

Rj(j)

i

j

Fig. 2. 2DAM for a=2, b=4 and N = 2n ≥ 16.

j div b j mod b

j-address

LUTqINC

log2(b)

Ajq(j)

cj

log2(N/b)

(a) Generation Circuit of q-addresses
for 1 ≤ q < b

j mod cj i mod ci

b q=0 q=1 q=2 a p=0

0 0 0 0 0 0 0
0 1 1 0 0 1 1
1 0 1 1 0 - -
1 1 1 1 1 - -

(b) LUTs contents for a=2,
b=4

Fig. 3. Module address generation.

764 G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis

The requirements for the frame sizes of all MPEG standards and for Video Object
Planes (VOPs) [2] in MPEG-4 are constituted to be multiples of 16, thus, N is a multiple
of 24. For the assumed values of N and b, further analysis of Equation (2) suggests that
j div b + cj < N

b and (j div b + cj)max = N
b − 1, i.e., no carry can be ever generated

between Aip(i) and Ajq(j). Therefore, we can implement Ap,q(i, j) for every module
(p,q) by simply routing signals to the corresponding address generation blocks without
actually summing Aip(i) + Ajq(j). Figure 3(a) illustrates address generation circuitry
of q-addresses (Ajq(j)) for all modules except the first (1 ≤ q < b). With respect to (2),
if cj is 1 the quotient j div b should be incremented by one, otherwise it should not be
changed. To determine the value of cj , a Look-Up-Table (LUT) with j mod b inputs can
be used. For the assumed practical values of a and b (≤ 16), such a LUT would have at
most 4 inputs, i.e., cj is a binary function of at most 4 binary digits. Row p-addresses are
generated identically. For p=1 or q=3, ci = 0, cj = 0 respectively. Therefore, address
generation in these cases does not require a LUT and an incrementor. Instead, it is just
routing i div a and j div b to the corresponding memory ports, i.e., blocks Ai1(i) and
Aj3(j) in Figure 2 are empty. Figure 3(b) depicts all 4 LUTs for the case a× b = 2×4.
The usage of LUTs to determine ci and cj is not mandatory, fast pure logic can be
utilized instead.

Data Routing Circuitry. In Figure 2, the shuffle blocks, together with blocks Rp(i)
and Rq(j), illustrate the data routing circuitry. The shuffle blocks are in essence circular
barrel shifters, i.e. having the complexity of a network of multiplexors. An n×n shuffle
is actually an n → 1 n-way multiplexor. In the example from Figure 2, the i-level
shuffle blocks are four (2 → 1) 16-bit multiplexors and the j-level one is (4 → 1)
64-bit. To control the shuffle blocks, we can use the module assignment functions for
p = q = 0, i.e., Ri(i) = i mod a and Rj(j) = j mod b. These functions calculate the
(p,q)-coordinates of the ”upper-left” pixel of the desired block, i.e., pixel (i,j). For the
assumed practical values of a and b being powers of two, the implementation of Ri(i)
and Rj(j) is simple routing of the least-significant log2(a) -bits (resp. log2(b)) to the
corresponding shuffle level.

LAM Interface. Figure 4 depicts the organization of the interface between LAM and
2DAM (recall Figure 1) for the modules considered in Figure 2. The data bus width
of the LAM is denoted by W (in number of bytes). In this particular example, W is
assumed to be 2, therefore modules have coupled data busses. For each (i,j) address, the
AGEN block sequentially generates addresses to the LAM and distributes write enable
(WE) signals to a corresponding module couple. Two module WE signals (WEi, WEj)
are assumed for easier row and column selection. In the general case, the AGEN block
should sequentially generate a·b

W LAM addresses for each (i,j) address. Provided that
pixel data is stored into LAM in scan-line manner and assuming that only aligned blocks
will be accessed from the LAM (i.e., (i,j) are aligned), the set of LAM addresses to be
generated is defined as follows:

ALAM (i, j) = (i + k) · N + j + l · W , k = 0, 1, ..., a− 1; l = 0, 1, ..., b
W − 1 .

In the 2DAM, the data words should be simultaneously written in modules:

(p, q) = (k, l · W), (k, l · W + 1), ..., (k, l · W + W − 1) at local module address:
ALAM

p,q (i, j) = (i div a) · N
b + j div b .

Visual Data Rectangular Memory 765

Module
(0,0)

Module
(0,1)

j

i

AGEN

Module
(0,2)

Module
(0,3)

Module
(1,0)

Module
(1,1)

Module
(1,2)

Module
(1,3)

LAM
memory

Data (W=2)

Address
(ALAM)

WEj

WEi

Fig. 4. LAM interface for W=2, a=2, b=4.

Note, that accessing only
aligned blocks from the LAM
enables thorough bandwidth uti-
lization. When only aligned
blocks are addressed, all address
generators issue the same ad-
dress, due to (2). Therefore, dur-
ing write operations into 2DAM,
the same addressing circuitry
can be used as for reading. If the
modules are true dual port, the

write port addressing can be simplified to just proper wiring of both i and j address
lines because the incrementor and the LUTs from Figure 3(a) are not required. There-
fore, module addressing circuitry is not depicted in Figure 4.

Critical Paths. Regarding the performance of the proposed design, we should consider
the created critical path penalty. Assuming generic synchronous memories where ad-
dresses are generated in one cycle and data are available in another, we separate the
critical paths into two: address generation and data routing. For the proposed circuit
implementation, the address generation critical paths are the critical path of either a
log2(M

a)-bit or a log2(N
b)-bit adder, whichever is longer, and the critical path of one

(max. 4-input) LUT. The data routing critical path is the sum of the critical paths of one
a → 1 multiplexor and one b → 1 multiplexor. More details regarding the implementa-
tion of the memory organization and a case study design can be found in [7].

4 Related Work and Comparisons

Two major groups of memory organizations for parallel data access have been reported
in literature - organizations with and without data replication (redundancy). We are in-
terested only in those without data replication. Another division is made with respect
to the number of memory modules - equal to the number of accessed data points and
exceeding this number. Organizations with a prime number of memory modules can be
considered as a subset of the latter. An essential implementation drawback of such orga-
nizations is that their addressing functions are non-separable and complex, thus slower
and costly to implement. We have organized our comparison with respect to block ac-
cesses, discarding other data patterns, due to the specific requirements of visual data
compression. To compare designs, two basic criteria have been established: scalability
and implementation drawbacks in terms of speed and/or complexity. Comparison re-
sults are reported in Table 2. Budnik and Kuck [1] described a scheme for conflict free
access of

√
N×√

N square blocks out of N×N arrays, utilizing m > N = 2n memory
modules, where m is a prime number. Their scheme allows the complicated full crossbar
switch as the only possibility for data alignment circuitry and many costly modulo(m)
operations with m not a power of two. In a publication, related to the development of
the Burroughs Scientific Processor, Lawrie [9] proposes an alignment scheme with data
switching, simpler than a crossbar switch, but still capable to handle only

√
N × √

N
square blocks out of m=2N modules, where N = 22n+1. Both schemes in [1] and [9] re-

766 G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis

quire a larger number of modules than the number of simultaneously accessed (image)
points (N). Voorhis and Morin [12] suggest various addressing functions considering
p × q subarray accesses and different number of memory modules m: both m = p × q
and m > p × q. Neither of the functions proposed in [12] is separable, which leads to
an extensive number of address generation and module assignment logic blocks. In [3]
the authors propose a module assignment scheme based on Latin squares, which is ca-
pable of accessing

√
N ×√

N square blocks out of N ×N arrays, but not from random
positions. Similar drawbacks has the scheme proposed in [10]. A display system mem-
ory, capable of simultaneous access of p× q rectangular subarrays is described in [11].
The design, proposed there, utilizes a prime number of memory modules, which en-
ables accesses to numerous data patterns, but disallows separable addressing functions.
Therefore, regarding block accesses, it is slower and requires more memory modules
than our proposal. Large LUTs (in size and number) and a yet longer critical path with
consecutive additions can be considered as other drawbacks of [11]. A memory orga-
nization, capable of accessing N × N square blocks, aligned into (1 + N)2 memory
modules was described in [5]. The same scheme was used for the implementation of
the matrix memory of the first version of HiPAR-DSP [13]. Besides the restriction to
square accesses only, that memory system uses a redundant number of modules, due to
additional DSP-specific access patterns considered. A definition of a rectangular p × q
block random addressing scheme from the architectural point of view dedicated for
multimedia systems was introduced in [8], but no particular organization was presented
there. In the latest version of HiPAR16 [4], the matrix memory was improved so that
a restricted number of rectangular patterns could also be accessed. This design, how-
ever, still utilizes an excessive number of memory modules as p and M respectively q
and N should not have common divisors. E.g., to access a 2 × 4 pattern, the HiPAR16
memory requires 3× 5 = 15 memory modules, instead of only 8 for ours. The memory
of [4] requires a complicated circuitry. Both [4] and [13] assume separability, however,
the number of utilized modules is even higher than the closest prime number to p × q.
Compared to [1, 3–5, 9–11, 13], our scheme enables a higher scalability and a lower
number of memory modules. This reflects to the design complexity, which has been
proven to be very low in our case. Address function separability reduces the number
of address generation logic and critical path penalties, thus enables faster implementa-
tions. Regarding address separability, we differentiate from [1, 3, 9–12], where address
separability is not supported. As a result, our memory organization is envisioned to have
the shortest critical path penalties among all referenced works.

Table 2. Comparison to other proposed schemes.

Related Work scalability # modules (m) implementation drawbacks or limitations

Budnik, Kuck [1]
√

N × √
N from N × N prime m > N = 2n mod(m), crossbar, no addressing

Lawrie [9]
√

N × √
N m = 2.N ; N = 22n+1 mod(m), no addressing

Voorhis, Morin [12] p × q from M × N m ≥ p × q not separable,mod(pq),mod(pq+1),
Kim, Prasanna [3]

√
N × √

N from N × N m = N certain blocks are inaccessible
De-lei Lee [10]

√
N × √

N from N × N m = N many modules for higher N
Park [11] p × q from M × N prime m > p × q not separable, many adders, big LUTs

HiPAR-DSP [5, 13] N × N m = (1 + N)2 2 × N + 1 additional modules, mod(m)
HiPAR-DSP16 [4] p × q from M × N m >> p × q big number of modules, mod(m)

This proposal p × q from M × N m = p × q none of the above, rectangular patterns only

Visual Data Rectangular Memory 767

5 Conclusions

We presented a scalable memory organization capable of addressing randomly aligned
rectangular data patterns in a 2D data storage. High performance is achieved by a re-
duced number of data transfers between memory hierarchy levels, efficient bandwidth
utilization, and short hardware critical paths. In the proposed design, data are located
in an array of byte addressable memory modules by an addressing function, implicitly
containing module assignment functions. An interface to a linearly addressable memory
has been provided to load the array of modules. Theoretical analysis proving the effi-
ciency of the linear and the two-dimensional addressing schemes was also presented.
The design is envisioned to be more cost-effective compared to related works reported
in the literature. The proposed organization is intended for specific data intensive al-
gorithms in visual data processing, but can also be adopted by other general purpose
applications with high data throughput requirements including vector processing.

References

1. P. Budnik and D. J. Kuck. The organization and use of parallel memories. IEEE Transactions
on Computers, 20(12):1566–1569, December 1971.

2. ISO/IEC JTC11/SC29/WG11, N3312. MPEG-4 video verification model version 16.0.
3. K. Kim and V. K. Prasanna. Latin squares for parallel array access. IEEE Transactions on

Parallel and Distributed Systems, 4(4):361–370, 1993.
4. H. Kloos, J. Wittenburg, W. Hinrichs, H. Lieske, L. Friebe, C. Klar, and P. Pirsch. HiPAR-

DSP 16, a scalable highly parallel DSP core for system on a chip: video and image processing
applications. In IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 3, pages 3112–3115, Orlando, Florida, USA, May 2002. IEEE.

5. J. Kneip, K. Ronner, and P. Pirsch. A data path array with shared memory as core of a high
performance DSP. In Proceedings of the International Conference on Application Specific
Array Processors, pages 271–282, San Francisco, CA, USA, August 1994.

6. P. M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill, 1981.
7. G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis. Multimedia rectangularly and separably

addressable memory. Technical Report CE-TR-2004-01, TU Delft, Delft, January 2004.
http://ce.et.tudelft.nl/publications.php.

8. G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven. A 2D Addressing Mode for Multimedia
Applications. In Workshop on System Architecture Modeling and Simulation (SAMOS 2001),
volume 2268 of Lecture Notes in Computer Science, pages 291–306. Springer-Verlag, 2001.

9. D. H. Lawrie. Access and alignment of data in an array processor. IEEE Transactions on
Computers, C-24(12):1145–1155, December 1975.

10. D. Lee. Scrambled Storage for Parallel Memory Systems. In Proc.IEEE International Sym-
posium on Computer Architecture, pages 232–239, Honolulu, HI, USA, May 1988.

11. J. W. Park. An efficient buffer memory system for subarray access. IEEE Transactions on
Parallel and Distributed Systems, 12(3):316–335, March 2001.

12. D. C. van Voorhis and T. H. Morrin. Memory systems for image processing. IEEE Transac-
tions on Computers, C-27(2):113–125, February 1978.

13. J. P. Wittenburg, M. Ohmacht, J. Kneip, W. Hinrichs, and P. Pirsh. HiPAR-DSP: a parallel
VLIW RISC processor for real time image processing applications. In 3rd International
Conference on Algorithms and Architectures for Parallel Processing, 1997. ICAPP 97., pages
155–162, Melbourne, Vic. , Australia, December 1997.

	1 Introduction
	2 Motivation
	3 Block Addressable Memory
	4 RelatedWork and Comparisons
	5 Conclusions
	References

