
Model-Checking of Safety and Security Aspects
in Web Service Flows

Shin Nakajima

National Institute of Informatics
and

PRESTO, Japan Science and Technology Agency
nkjm@nii.ac.jp

Abstract. Web service flow is essentially a description of a distributed
collaboration system, in which more than one Web service providers
participate. The flow should have safety properties such as deadlock
freedom and application specific progress properties. At the same time,
the flow should satisfy some security properties since it is executed
in an open network environment. This paper introduces an idea of a
lattice-based security label into BPEL, a Web flow description language
being standardized, in order to detect potential insecure information
leakage. It further discusses that both the safety and security aspects can
be analyzed in a single framework using the model-checking verification
techniques.

Keywords: Web Service Flow, Information Flow, Lattice-based Security
Label, Model-Checking

1 Introduction

Web service is widely accepted as a new technology in business network environ-
ment in which each participant acts as a service provider [4]. And as a robust
framework to compose lots of the service, Web service flow description languages
are proposed [3][11][17] to express that Web service providers are combined to
show collaborative behavior. Since the flow is executed in an open network en-
vironment such as the Internet, both safety and security are the two aspects of
particular interest in the Web service framework.

Safety requires that the Web service flow, as a distributed collaboration de-
scription, is logically and functionally correct. The flow should be free from
deadlock and satisfy some application specific progress properties [12]. And the
model-checking verification techniques are shown successful for the automatic
analysis of the safety aspect of Web service flows [8][13][14][15].

Security is one of the major concerns in the Web service framework. It needs
some high-level security policy given as a non-functional property [1] and refers to
various things depending on which layer in the Web service technology stack we
are considering [4]. WS-Security deals with the secure end-to-end communication
of the SOAP messaging, and WS-Authorization is proposed to be a standard

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 488–501, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Model-Checking of Safety and Security Aspects in Web Service Flows 489

Common DB of Service Company

Private DB of the Consultant

Consultant

Login
Business Flow
(in BPEL4WS)

Classified Data

UnClassified Data

Client Compnany A

Classified Data

UnClassified Data

Compnany B

Fig. 1. Out-sourcing Web Service

service for the access control. Another important area regarding to security is
the non-interference, which requires that information having different security
levels does not interfere with each other. It is concerned with a problem of the
information flow control to prevent the potential information leakage.

The problem of the information flow control has been a primary interest in
the computer security. High-level access control policies and their enforcement
have been proposed [1]. Especially, a lattice-based control model [7] provides a
basis for various high-level access control policies including the information flow
control [16].

Since the Web service framework is gaining a wide acceptance as a key in-
frastructure in the networked information systems, high-level security policy of
the non-interference will become an important issue. For example, a Web-based
service company, getting a contract of out-sourcing service from a client, imple-
ments its business logic in terms of Web service flows and accesses to classified
documents in the client company. The business logic description is required to
show that the classified information is never leaked at all. It is desirable to have
a method to formally analyze whether the Web service flow is secure in view of
the non-interference.

This paper proposes to use the model-checking verification technique [5] to
analyze Web service flow descriptions in view of both safety and security. A main
contribution of the paper is to show that BPEL [3] descriptions, with a small
extension using the lattice-based security label [7], can be analyzed in terms of
the non-interference.

2 Security Concerns in Web Service

2.1 Information Leakage in Web Service Flows

Figure 1 shows an example Web service scenario motivating our work. The ser-
vice company gets a kind of out-sourcing contract from the client company A,
and does some tasks previously done in the company A internally. In order that



490 S. Nakajima

the service company works for the client, it should make a free access to classified
documents as well as unclassified ones. When the whole scenario is implemented
in the Web service framework, the security becomes a major concern since the
classified information goes out of the company A via the open network such as
the Internet.

The service company may use Web service flow languages such as BPEL [3]
to implement its service business logic. In order for the BPEL description to
access the information, the client A should establish a Web service server to
provide necessary information for the service company.

In view of the client company A, its classified information, manipulated by
the BPEL business logic, should never be leaked at all to, for example, the
company B. The client company A may require the service company to show a
formal certification that the confidentiality is satisfied. The classified information
never interferes with less confidential data while the BPEL description works on
the information.

Since Web service has its basis on the Internet, security is one of the ma-
jor concerns in the technology standardization [4]. WS-Security deals with the
secure end-to-end communication of the SOAP messaging service. It employs
cryptography to make messages encrypted and to provide means for the sender
signature. A. Gordon et al [9] employs the spi calculus for the verification of
the security aspect of combining multiple communication protocols, each being
implemented on top of SOAP. WS-Authorization is proposed to be a standard
service for the access control of the Web service. The proposal includes a method
for describing access control policies. It, however, does not deal with the non-
interference problem arising from multiple accesses. In summary, the problem of
controlling information leakage in the Web service flow has not been discussed
in details so far in the Web service framework.

2.2 BPEL

As a standard language for describing Web service flows that compose more
than one Web services, BPEL4WS (Business Process Execution Language for
Web Service), or BPEL for short, was proposed. BPEL v1.0 was made public
in July 2002 as a new language to supersede both WSFL [11] and XLANG [17].
And BPEL v1.1 [3] is considered in this paper.

BPEL is a behavioral extension of WSDL (Web Service Description Lan-
guage) [2]. WSDL is basically an interface description language for Web service
providers, which contains information enough for the clients to access. The client
invokes a Web service provider using WSDL. The invocation is one-shot, which
means that WSDL does not describe global states of the provider.

On the other hand, BPEL is a language for expressing behavioral compo-
sitions of Web service providers. It can express a causal relationship between
multiple invocations by means of control and data flow links. BPEL employs
a distributed concurrent computation model with variables. This paper mostly
concerns with the distributed concurrent language aspect of BPEL.



Model-Checking of Safety and Security Aspects in Web Service Flows 491

Process

Web Service

Web Service

operation

operation

receive
activity

invoke
activity

reply
activity

PartnerLink

Port

Fig. 2. Example Primary Entities in BPEL

Figure 2 illustrates some of primary language elements in BPEL. A main
construct of the Web service flow is Process, which is a net-based concurrent
description connecting more than one Activity’s with control links. Some of the
primitive Activity’s, in turn, is a place that sends/receives messages to/from
external Web service providers. Each Web service provider can be seen as a Port
instance of a particular Port Type, which has appropriate WSDL description as
its sub-elements. And Partner Link specifies which Activity is linked to a
particular Web service provider of the Port.

BPEL provides a variety of primitive Activity’s. Some of them are shown
in the example in Figure 2. The receive activity waits for invocation requests
from the outside, the invoke activity initiates an execution request on the Web
service provider and receives result values, and the reply returns some value to
the original outside initiator as the result of the computation of the Process.

In addition to the above primitive Activity’s, BPEL provides an assign
activity for accessing variables. It also has other activities concerning to imple-
ment control flows such as sequence (sequential executions), switch (branch on
conditions), while (repetitions), and flow (concurrency). The flow activity cor-
responds to a flow graph that can represent concurrency. The flow graph consists
of the Activity’s as nodes and Link’s as edges representing control links.

Last, BPEL introduces a lexical context with scope activity. The lexical con-
text defines an effective scope of variables and various handlers such as excep-
tion. Further, scope activity can have a serializable attribute, which specifies
multiple concurrent accesses to the variables inside the scope are serialized.

3 Lattice-Based Access Control

3.1 Basic Model

The problem of the information flow control is a primary interest in the com-
puter security. The access control deals with the problem of deciding whether a
particular user (Principal) can have an access to a particular resource (Target).
Namely, each access can be checked in an individual manner. We can say, for
example, that a principal P1 is permitted to have a read access to a target T1
while its write access to T2 is inhibited.



492 S. Nakajima

Top Secret (TS)

Secret (S)

Confidential (C)

Unclassified (U)

TS

U

S1 S2

C1 C2

D

(a) Total Ordering (b) Partial Ordering

Fig. 3. Lattice of Security Labels

The above basic access control alone, however, is not able to exclude invalid
data-flows arising from a series of read and write accesses. In some cases, each
individual access is permitted, but a resultant net data-flow potentially violates
some global requirement. This is a problem of the information flow control [1].

Here is a simple example scenario regarding to the information flow control.
A principal P1 writes to a target T2 the data read from another target T1.
Further, another principal P2 reads from T2 and writes to T3. We assume here
that all the four individual accesses are permitted, and also that we have a high-
level security policy saying that T1 and T3 should be of non-interference with
each other. The policy means, in particular, that the data originally stored in
T1 should not be flowed into T3. However, a series of the accesses results in a
global data-flow from T1 to T3 since each access is allowed.

In order to remedy the situation, a lattice-based approach to the information
flow control has been proposed [7]. The idea is that we assign security labels
to the principal as well as the target, and define a partial ordering between
the labels. The label of the principal is called Security Clearance, and Security
Classification for the case of the target.

The ordering � reflects the intension of how one is more important than the
other in view of the secrecy. We can write as below to represent that a security
label SLi is more secure than SLj .

SLi � SLj

We assume that the set of security labels is finite and the ordering � forms a
finite lattice [6]. Figure 3 illustrates two example lattice of security labels. Figure
3 (a) is a simple case where four labels are arranged in a total order. Top Secret
is more secure than Secret (TS � S). Figure 3 (b) illustrates another example in
which security labels form a lattice with partial orderings. C1 and C2 are more
secure than D (C1 � D ∧ C2 � D), but they are incomparable with each other.
TS is a maximal of C1 and C2.

Further, we introduce a constraint relationship dominates defined as

SLi dominates SLj
∧= SLi

∗� SLj



Model-Checking of Safety and Security Aspects in Web Service Flows 493

For example, a document with a security classification of secret (S) dominates
unclassified (U) documents. A senior member having a secret (S) security clear-
ance can have a right access to both secret (S) and unclassified (U) documents.
But a junior staff member with a unclassified (U) security clearance can only
read unclassified (U) documents.

With the lattice-based approach, we can solve the example problematic sit-
uation mentioned above. Below L(X) refers to the security label attached to
X, where X refers to either a principal or a target. First, we assume that the
high-level security policy requires

not (L(T3) dominates L(T1)) .

If all the four accesses are allowed, we have the following four constraints satis-
fied.

L(P1) dominates L(T1) . . . [A1]
L(T2) dominates L(P1) . . . [A2]
L(P2) dominates L(T2) . . . [A3]
L(T3) dominates L(P2) . . . [A4]

By means of the transitivity of the dominates relationship, the four relations
results in

L(T3) dominates L(T1),

which is in contradiction with the required security policy, and thus the access
violation can be detected.

3.2 Declassification

The lattice-based method is a promising approach for the information flow con-
trol. However, the basic model in Section 3.1 is not practical. Its idea is basically
to allow information flow only from low to high, which can exclude invalid flows
resulting in a leakage of secure information.

This, however, causes a problematic situation. Once a principal with the
highest security clearance reads some data, the data cannot be accessed or writ-
ten to a target resource with a lower security classification. The information is
swallowed into a black-hole. The lattice-based control method can be a basis for
the confidentiality, but not adequate in view of the availability.

As a remedy for the availability problem, the idea of declassification is pro-
posed [1]. In short, the basic lattice-based model employs the static security
label only. On the other hand, the declassification model uses the security labels
determined dynamically at runtime in checking the dominates relationships.

The following example considers a case where a principal P1 reads data from
a target T1 and then writes it to another target T3. We further assume that the
following three constraint relationships are satisfied.



494 S. Nakajima

L(P1) dominates L(T1) . . . [B1]
L(P1) dominates L(T3) . . . [B2]
L(T3) dominates L(T1) . . . [B3]

In particular the third relationship ([B3]) indicates that the security classification
of T3 is higher than that of T1. Although [B3] shows that the flow from T1 to
T3 is possible, the flow is not allowed according to the basic model. The reason
comes in order.

The first relationship ([B1]) allows P1 reading data from T1. When P1 writes
the data to T3, the second one ([B2]) is checked, which specifies that P1 is not
allowed to write data to T3. Therefore, the flow from T1 to T3 is inhibited.

The declassification model relaxes the strict application of the static security
labels in checking constraints. The model introduces a notion of DCL (DeClassi-
fied Label). We assume here that a trusted principal writes data to a target with
a security classification that the principal dominates. The basic model disallows
the write because the principal is more secure than the target. In the new model,
we choose an appropriate DCL value from the underlying lattice, and use it in
place of the label of the principal so that the write access is allowed. The value
of DCL is the one dominating the target that the principal has a read access,
and at the same time the one that the written target dominates.

For example, in the above case, we introduce the following three relationships
in order to decide the value of DCL.

L(P1) dominates DCL . . . [C1]
DCL dominates L(T1) . . . [C2]
L(T3) dominates DCL . . . [C3]

The first relationship ([C1]) ensures that DCL is lower than P1, which is a basic
global constraint on DCL. The second one ([C2]) shows that the flow from T1 to
DCL is allowed, which is in accordance with the condition on P1 and T1 ([B1]).
And the last one ([C3]) allows the flow from DCL to T3, which together with
[C2], results in a global flow from T1 to T3 as requested. If the appropriate DCL
does exist, then we can use the value in place of the security clearance of the
principal for the checking process.

3.3 Global Analysis

According to the lattice-based access control model, each constraint rule is ob-
tained at each execution point. In the first example in Section 3.1, the rule ([B1])
is obtained at the point where the principal P1 has a read access to the target
T1. However, in order to check whether the information flow is possible or not,
all the rules along (potential) execution paths should be collected. It is because
the net information flow is possible only if all the rules along the execution path
are satisfied. Therefore, a global flow analysis is needed for collecting rules.

The global flow analysis method is basically a data-flow analysis algorithm.
For the case of the basic lattice-based model in Section 3.1, the label value of the



Model-Checking of Safety and Security Aspects in Web Service Flows 495

security clearance of a principal moves downward as a data token in execution
paths. And when an execution path reaches a point where the principal has
either a read or write access to a target, the label value is checked against the
dominates relationship at the point. The analysis should be done not for a single
execution path, but for all the potential execution paths.

The analysis method becomes complicated when we employ the declassifica-
tion model. As seen in Section 3.2, we have to show that an appropriate DCL
value exists in the underlying lattice structure, which requires to solve a set of
dominates constraint relationships. It, however, the method can be simplified.

Our simplified method is a minor variant of the above analysis for the basic
model. As the label value flowing downward, we use an initial guess of DCL
instead of the value of the principal. And at each execution point accessing a
target TA, the value is updated as a maximal of its security label and the old
DCL value. The initial value of DCL is set to be L(T0) which is the security
classification label of the target T0, while T0 is what the principal has a read
access firstly in the execution path.

For an illustration of the method, we use here a simple example. The scenario
consists of a series of accesses, a read to T1, a read to T2, and a write to T3.
We have three relationships [D1] to [D3] for the accesses. And we assume [D4]
between the two targets, T1 and T2, that accept read accesses from the principal.

DCL1 dominates L(T1) . . . [D1]
DCL2 dominates L(T2) . . . [D2]
L(T3) dominates DCL2 . . . [D3]
L(T1) dominates L(T2) . . . [D4]

At the first read access ([D1]), DCL1 is set to L(T1). At the second, our method
sets DCL2 to be a maximal of DCL1 and L(T2), actually a maximal of L(T1)
and L(T2). And in this example DCL2 becomes L(T1) because of the rule [D4].

On the contrary, if we override DCL2 at [D2] to be L(T2), we cannot detect
a potential security violation in a case where the following relationships are also
assumed.

L(T3) dominates L(T2) . . . [D5]
L(T1) dominates L(T3) . . . [D6]

Because of the rule [D6], the net flow is not secure. However, the rule [D3] allows
such a flow because of the rule [D5] in the case where DCL2 is L(T2).

In concluding this section, we have to point out that devising a precise analy-
sis method needs the semantics of the language we are considering. In this paper,
we have to consider BPEL semantics in details.

4 BPEL with Security Label

This section discusses how we introduce the notion of the security label into
BPEL. Our information flow control method uses the lattice-based approach
with the declassification.



496 S. Nakajima

Process

Web Service

Web Service

operation

operation

receive
activity

invoke
activity

reply
activity

PartnerLink

Port

Login

Principal with
Security Label

Target with
Security Label

Fig. 4. BPEL with Security Label

We consider here an extension to BPEL. The extension includes (a) intro-
ducing the principal with security clearance, and (b) identifying Port with the
target having security classification. Figure 4 schematically shows how we attach
the security label information to the BPEL language elements.

First, we consider how to introduce the idea of principal to BPEL descrip-
tions. Generally a principal represents a client user of the system, and its security
clearance level is assigned in the authentication process of login. However, since
more than one ways to implement the login process are possible, we cannot a
priori decide how the security clearance is obtained. Therefore, we only intro-
duce a new reserved variable Principal, and use the assign activity to set the
value.

<assign>
<copy>
<from variable=’...’ part=’...’ />
<to variable=’Principal’ property=’Security Clearance’ />

</copy>
</assign>

Principal is a single-assignment variable, and read-only throughout the process
execution afterward.

Second, we identify a Web service provider with a target having security
classification. The Web service provider can be considered as a persistent data
storage. BPEL allows to exchange information with the outside by means of
messages through the Link to/from the Port (see Figure 4). And thus we identify
Port with the target.

An alternative approach is to regard variables appeared in assign activity
as the target because a variable is a place-holder for values. However, since
the variables in assign activity are confined in the enclosing scope, the value
is forgotten once the execution control is exited from the scope without any
significant side-effects. We have not taken this approach.

Next, we need some XML representation for expressing the high-level security
policy requirements using the dominates relationship. Each requirement would



Model-Checking of Safety and Security Aspects in Web Service Flows 497

be either positive or negative. The whole security policy is a collection of such
constraint relationships.

<securityPolicy name=’orderingServicePolicy’>
<admit>

<dominates high=’T2’ low=’T1’ />
</admit>
<inhibit>

<dominates high=’T3’ low=’T1’ />
</inhibit>

</securityPolicy>

Last, the security lattice is defined in terms of a collection of successor (�)
relationships. Below is a partial definition of the example lattice in Figure 3 (b).

<lattice name=’systemB’>
<succ high=’TS’ low=’S1’ />
<succ high=’TS’ low=’S2’ />
<succ high=’S1’ low=’C1’ />
...

</lattice>

5 Model-Checking of Extended BPEL

5.1 Overview

We propose to use the model-checking verification technique [5] to analyze our
extended BPEL descriptions from the viewpoint of the lattice-based information
flow control. It extends the work on model-checking WSFL descriptions for the
analysis of the safety aspect [13] to include the security labels.

As seen in Section 3.3, the analysis basically needs to explore all the potential
execution paths of a given extended BPEL description. We have to devise an
analysis method that is faithful to the operational semantics of BPEL, which
has concurrency as its core language primitives. Since global flow analysis of
concurrent systems becomes complicated, we will not implement an algorithm
from scratch, but devise a way of using an off-the-shelf model-checker for the
analysis. It is because the model-checking technique has been successful for the
verification and analysis of concurrent systems.

We use SPIN model-checker [10] for the analysis engine. It is because SPIN
is a quite engineered tool that can handle a large state space efficiently. SPIN
also provides various language primitives that are useful for the verification and
analysis of practical software. In Section 5.2 we will consider how we encode
BPEL language primitives in Promela, the input specification language of SPIN.
At the same time, we will discuss why SPIN is useful for our purpose, namely
as a prototyping engine for the analysis of the information flow control.

Roughly a BPEL process description is translated into a Promela process.
However, it is not enough just to have a Promela process for the BPEL to be



498 S. Nakajima

BPEL Process
to be Analyzed Environment

Promela Process Promela Process

Promela Channels

Fig. 5. Closed System

analyzed. The environment that communicate with the current BPEL, namely all
the service providers that have interaction with the BPEL, should be explicitly
represented. Figure 5 illustrates the situation where the environment is also
modeled as a Promela process to have a closed system. And the communication
is done by sending and receiving messages via Promela channels.

5.2 Encoding BPEL in Promela

As explained in Section 2.2, BPEL has a variety of language constructs to rep-
resent various activities. What to do is to give semantics to each activity in view
of the security label analysis.

First we consider how to encode the control aspect of BPEL descriptions
since the control flow becomes a basis for constructing the state space to be
explored. Since each activity has different semantics in regard to establishing
control flows, the control activity should be considered individually.

The sequence activity (sequential execution) is implemented by a Promela
sequencing separator (;), and the switch (branch on conditions) turns out to
be a Promela conditional statement (if ... fi). The while (repetition) is en-
coded with a Promela repetition statement (do ... od) with an appropriate
loop condition checking as below.

do
:: (<condition>) -> ...
:: else -> break

od

Second, the assign activity is used for dealing with variable accesses. It
establishes the flow from to to variables, and becomes a basis for constructing
data-flows. The translation to Promela is mostly straight forward because we
can use Promela variables.

Third, the flow activity, among others, provides concurrency in the activity
execution in a single process description. The idea comes from the net-oriented
concurrent language of WSFL [11]. Figure 6 illustrates an example flow ac-
tivity. The example flow activity itself is enclosed in the top level sequence,
which specifies a sequencing of three activities, receive, flow, and reply. The
dotted line is meant to represent sequential execution in the diagram. The flow
has three concurrently executing sequence’s, each having multiple primitive ac-
tivities. The diagram also shows two solid curves, one from invoke to invoke



Model-Checking of Safety and Security Aspects in Web Service Flows 499

flow

receive
sequence

reply

assign

invoke

receive

invoke

invoke

receive

invoke

invoke

Fig. 6. Flow Activity Example

and another from receive to invoke. The curves add further control flows to
synchronize execution of concurrently executing activities.

As discussed elsewhere on the model-checking of WSFL [13][14], we use
Promela process to represent activities executing concurrently. In the exam-
ple shown in Figure 6, we have three Promela processes as a translation of the
flow activity with three enclosing sequence’s. Further, we use Promela variable
to implement the synchronization in accordance with the semantics of the su-
perimposed control flow shown as the solid curves in the diagram. We also deal
with the DPE (dead-path elimination) feature relating to the concurrent flow
activity. How we encode the DPE in Promela is reported in the previous work
[14].

Last, the primitive activity (invoke, receive, or reply) is the point of the
interaction with the target. In which direction the information is flowing, namely
read or write, is our main concern.

For example, an invoke activity establishes an out-going information flow
(write) to an external Web service whose PortType is shippingService.

<invoke partnerLink=’customer’
portType=’shippingServicePT’
operation=’shippingNotice’
inputVariable=’shipNotice’>

And, in view of the security labels, a dominates relationship should satisfy in
order to make the flow possible:

L(shippingServicePT/shippingNotice) dominates L(Principal).

Since the above invoke activity allows a flow from the current BPEL process,
the channel send communication carries the security label of Principal.

cout!ShippingNotice(Principal);

Then the environment Promela process, playing a role of shippingService,
receives the message and checks if the dominates relationships hold.



500 S. Nakajima

do
:: cin?ShippingNotice(X) -> assert(dominates(self,X))
...

od

where the variable X carries the security label of Principal, and self refers to
that of the shippingService.

It should be paid a special attention to how we implement the function
dominates in Promela. The function uses the information equivalent to the
given lattice. And it decides whether the dominates relationship holds between
two input parameters, which will require a search in the lattice structure. Note
that the function dominates is purely functional, having no-side effects.

If, in a simple-minded, we encode the function dominates in Promela directly,
it will involve a lot of data-centric computation leading to a large state-space
exploration, which is less efficient. Our approach is to implement the function
dominates in C language by making use of the SPIN feature of the embedded
C code [10]. From Promela descriptions, dominates is treated as a primitive
function not increasing the size of the state space to be explored in the model-
checking process.

6 Discussion and Conclusion

We have proposed to use the model-checking verification technique to analyze
BPEL descriptions in view of both safety and security. In particular, our main
interest in the security aspect is non-interference. Our proposal includes a small
extension to the current BPEL language specification as well as the introduction
of the lattice-based security label.

Although the security label used in the examples in this paper is simple, it
is possible to encode other security policy for a variety of purposes. Actually R.
Sandhu [16] discusses that various high-level security policies can be represented
by means of the lattice-based control model.

Some literatures mention to use model-checkers in the analysis of the Web
service flows. H.Foster et al [8] uses the LTSA model checker for the analysis of
safety property of BPEL. S.Nakajima [13][14] uses the SPIN model-checker for
the safety analysis of WSFL. S.Narayanan et al [15] uses a Petri Net formalism to
provide decision procedures for the analysis of the Web service written in DAML.
All these work concerns with the safety properties only. Using the model-checker
in the analysis of the security property in the Web service flow is new.

Although the idea of the lattice-based approach to the information flow con-
trol is not new [1][7][16], the integration with the Web service technology, BPEL
in particular, is new. Since it needs a fine-grained control and data flow analysis
of BPEL descriptions, the analysis of the non-interference is a problem quite de-
pendent on the BPEL semantics. It is tightly coupled with the Web service flow
language specification. We cannot have a separate service component for such
a purpose although the Web service framework currently seeks for independent
components for various domains such as WS-Authorization or WS-Security [4].



Model-Checking of Safety and Security Aspects in Web Service Flows 501

Last, up to the time of writing this paper, we cover a core part of BPEL
language only. BPEL is a large language that has many interesting features such
as compensation, fault, and event handlers. To cover these features is left for
future work.

References

1. M.A. Bishop. Computer Security: Art and Science. Addison-Wesley 2003.
2. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service De-

scription Language (WSDL). W3C Web Site, 2001.
3. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-

awarana. Business Process Execution Language for Web Services. Version 1.1, May
2003.

4. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in
Web Services. Comm. ACM, Vol. 46, No. 10, pages 29–34, October 2003.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
6. B. Davey and H. Priestley. Introduction to Lattices and Order (2ed.). Cambridge,

2002.
7. D.E. Denning. A Lattice Model of Secure Information Flow. Comm. ACM, Vol.19,

No.5, pages 236–243, May 1976.
8. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web

Service Compositions. In Proc. ASE 2003, September 2003.
9. A. Gordon, K. Bhargavan, and C. Fournet. A Semantics for Web Services Authen-

tication. In Proc. POPL 2004, pages 198–209, January 2004.
10. G.J. Holzmann. The SPIN Model Checker. Addison-Wesley 2004.
11. F. Leymann. Web Services Flow Language (WSFL 1.0). IBM Corporation, May

2001.
12. S. Nakajima. On Verifying Web Service Flows. In Proc. SAINT 2002 Workshop,

pages 223–224, January 2002.
13. S. Nakajima. Verification of Web Service Flows with Model-Checking Techniques.

In Proc. Cyber World 2002, pages 378–385, IEEE, November 2002.
14. S. Nakajima. Model-Checking of Web Service Flow (in Japanese). In Trans. IPS

Japan, Vol.44, No.3, pages 942–952, March 2003. A concise version presented at
OOPSLA 2002 Workshop on Object-Oriented Web Service, November 2002.

15. S. Narayanan and S.A. Mcllraith. Simulation, Verification and Automated Com-
position of Web Services. In Proc. WWW-11, 2002.

16. R. Sandhu. Lattice-Based Access Control Models. IEEE Computer, Vol.26, No.11,
pages 9–19, November 1993.

17. S. Thatte. XLANG – Web Services for Business Process Design. Microsoft Cor-
poration, May 2001.


	Introduction
	Security Concerns in Web Service
	Information Leakage in Web Service Flows
	BPEL

	Lattice-Based Access Control
	Basic Model
	Declassification
	Global Analysis

	BPEL with Security Label
	Model-Checking of Extended BPEL
	Overview
	Encoding BPEL in Promela

	Discussion and Conclusion



