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1 Introduction

We present a toolset for design and verification of Globally Asynchronous Lo-
cally Synchronous(GALS) systems. Such systems consist of a network of reactive
nodes which have independent clocks and I/O interfaces, and communicate us-
ing complex synchronisation mechanisms. GALS systems are gaining prevalence
in avionics, embedded systems, and VLSI design. These systems are difficult to
design and verify due to the concurrency and complex interaction involved.

The toolset is based on a visual formal language called Communicating Re-
active State Machines(CRSM)[6], which builds upon Communicating Reactive
Processes|2]. It seamlessly integrates a graphical editor, a simulator and a veri-
fication engine. It has several novel aspects in the areas of language design and
verification. The semantics of CRSM consolidates ideas from the synchronous
languages with classical concurrency constructs. The simulator implements a
distributed protocol to incorporate pre-emption with asynchronous communica-
tion and supports distributed simulation with context switches. Properties are
specified using distributed observers and verified using Spin[4]. The verification
engine includes a non-trivial translation from CRSM, an open system with GALS
semantics, to Promela, a closed system with asynchronous semantics. In addi-
tion, Spin has been modified to generate counter examples that can be viewed
directly in the simulator.

We have used the tools to model and verify standard pedagogical examples,
and for technology transfer in a company. We have found CRSM well suited for
providing cycle accurate descriptions of control dominated architectures with
multiple clock domains. Industrial case studies include a multi-processor System-
on-Chip(SoC) application and a bus protocol. In this paper, we illustrate these
tools using a case study. Section 2 introduces underlying theory, Section 3 dis-
cusses the tools, implementation issues, and our experience, and Section 4 con-
cludes.

2 Communicating Reactive State Machines

A CRSM is a network of nodes built from communicating boolean Mealy-style
automata using constructs for synchronous and asynchronous parallel composi-
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tion, hierarchy, and signal hiding. The nodes are locally synchronous, execute
concurrently, emit signals via synchronous broadcast, and communicate on point-
to-point channels using CSP-style rendezvous. A formal description is provided
n [9]. We illustrate CRSM using Infophone!, a speech enabled Java application
for information retrieval. It uses an ARM processor to control the user interface,
a DSP to process speech commands, and a wireless web interface.

A CRSM description of Infophone is written as ARM//DSP//W EB, where
// is the operator for asynchronous parallel composition. Figure 1 shows sim-
plified versions of ARM and DSP. The rectangles and circles represent passive
and communication states respectively. The dashed arrows from communication
states denote transitions taken when communication succeeds and solid arrows,
transitions taken when their guards are true; guards describe the status of signals
in the environment.

When activated by the signal usrMenu, ARM receives the user’s request, say
f1tReq and forwards it to DSP on the relevant channel, in this case Flight.
DS'P receives speech commands, sends a request to W EB on WReq and notifies
ARM when a response is received on WResp. A session ends in three ways:
successfully, when ARM receives a message on the channel Done from DSP,
times out, when a timeout is issued by DSP if WEB is not responding, and
aborts, when the user issues usrAbort.

The state AwaitDSP in ARM has hierarchy and contains two automata.
The transitions leaving AwaitDSP allow these automata to complete their on-
going reaction before passivating them, a policy of weak pre-emption. The au-
tomata FlightInfo, StockInfo, WeatherInfo and UserAbort in DSP exe-
cute in synchronous parallelism, written F1lightInfo||..|[UserAbort and interact

! Infophone was developed on the Open Multimedia Application Platform(OMAP), a
trademark of Texas Instruments.
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Fig. 2. Distributed Observers: Oarar and Opsp

using local signals such as exit, term and finish. Nodes are required to be
deterministic and constructive[l, 9].

Safety properties of CRSMs are specified using distributed observers. An
observer monitors the status of a node, communicates with other observers,
and enters a special state Bug when a property is violated. Verification involves
checking the system (ARM||Oarn)//(DSP||Opsp)//(WEB|Owgg) for the
reachability of the state Bug. The observers in Figure 2 specify that a session
terminated in ARM should be terminated in DSP within its next cycle. The
conditional in_(state) holds if the state is active at the end of the reaction.
A subtle error occurs when usrAbort is issued in ARM and timeout in DSP.
ARDM transits to the state Abort!, communicates with the automaton UserAbort
in DSP and enters Idle. DSP consequently enters the state T'Mout!. The next
time f1tReq is issued in ARM, the system will deadlock.

3 Experience and Discussion

We have developed a graphical environment which integrates the design and
verification flow described. CRSM models can be built using a graphical editor
or a textual language tCRSM. The execution sequences can be viewed in the
simulator, which performs a must and can analysis to determine the status of
local signals[1] and implements a distributed protocol[7] to address issues due to
pre-emption in the presence of communication]8].

Model checking is performed by translating the system to Promela[5, 10]. The
Promela code for each node includes a reactive kernel and an environment pro-
cess, and ensures that the status of signals and states in the system are evaluated
correctly. Signal hiding requires must and can analysis to be incorporated in the
Promela code. Spin is invoked automatically with the specification O-Bug(always
not Bug) and counter examples generated are translated into traces and displayed
in the simulator. Spin has been modified for this purpose.

The tools described have been implemented in approximately 30,000 lines
of C and Java code. Our case studies include Infophone and a proprietary bus
protocol used by Texas Instruments. The Infophone system with its observers
was translated into 890 lines of Promela code with 107 boolean variables, while
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the bus protocol was translated to 270 lines of Promela code with 31 boolean
variables. Boolean variables are required for state and signal encoding, perform-
ing analysis, providing observer related primitives and implementing rendezvous.
The absence of local signals and asynchronous communication resulted in fewer
booleans in the bus protocol code. We observed that CRSM models provided
Register Transfer Level(RTL) style structure, yet complete and cycle accurate
descriptions of the bus protocol. In addition, the designers find temporal logics
intimidating and prefer state machine based specifications.

4 Conclusion

We have presented a tool set for modelling and verification of GALS applications.
Tools such as SAL/PVS, Polis, Reactive Modules, and SMV capture both mod-
els of concurrency but significant semantic differences exist such as notions of
acceptable programs and pre-emption mechanisms. Our work differs from most
Statecharts based verification engines for similar reasons.

At present, we have developed static analysis[3] and refinement techniques[9]
to ameliorate verification. These techniques are currently being incorporated in
the tool. We are also exploring other techniques that might aid the designers
and are conducting further case studies.
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