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Abstract. UCLID is a tool for term-level modeling and verification of
infinite-state systems expressible in the logic of counter arithmetic with
lambda expressions and uninterpreted functions (CLU). In this paper,
we describe a key component of the tool, the decision procedure for CLU.
Apart from validity checking, the decision procedure also provides other
useful features such as concrete counterexample generation and proof-
core generation.

1 Introduction

Decision procedures for fragments of first-order logic form the core of many
automatic and semi-automatic verification tools. Applications include micropro-
cessor verification (e.g., [3]) and predicate abstraction-based software verification
(e.g. [1]). Decision procedures also find use as components of higher-order logic
theorem provers, such as PVS [10].

UCLID [4,15] is a tool for modeling and verifying infinite-state systems
expressible in a logic called CLU. The logic is a decidable fragment of first-order
logic with restricted lambda expressions, uninterpreted functions and equality,
counter arithmetic (i.e. addition by constants) and ordering (<). Thus, the only
arithmetic constraints permitted in this logic are of the form T; > T + ¢ where
Ty and T5 are integer expressions and e {<,=}.

One of the key components of the tool is an efficient decision procedure for
CLU. Apart from the logic it handles, there are several distinguishing features
of the decision procedure that set it apart from other decision procedures such
as SVC [2], CVC [14] and ICS [6]:

— Fager translation to SAT: The decision procedure performs a satisfiability-
preserving translation of the first-order formula to a Boolean formula, which
in turn is checked with a Boolean Satisfiability (SAT) solver. This is in con-
trast to other SAT-based procedures (e.g., [5, 14]), which compute a Boolean
abstraction of the first-order formula and lazily refine the abstraction based
on inconsistent SAT assignments. In contrast, UCLID performs an eager
translation.

— Integer interpretation: Most queries in hardware and software verification
require using an integer interpretation of symbols. However, most available
decision procedures are not complete for integers even if one restricts oneself
to CLU logic. UCLID, on the other hand is complete for integers, which,
e.g., makes it extremely useful in reasoning about systems with arrays.
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— Reducing the domain of interpretation: The decision procedure exploits op-
timizations that allow it to interpret symbols over smaller domains by an-
alyzing formula structure. The small model property for CLU permits con-
sidering only a finite but often small set of values for the integer symbols in
the formula. This set is further reduced by exploiting positive equality [3,8].

The tool has been implemented in Moscow ML and contains around 30K lines
of code. It can interface to both SAT solvers and BDD packages. The CLU for-
mulas are internally represented using a directed acyclic graph (DAG) structure
which facilitates effective sharing of common subexpressions. The DAG storage
manager uses heuristics to detect and collapse certain semantically equivalent
but syntactically distinct expressions.

2 CLU Logic via Examples

Consider an example of a valid CLU query which contains uninterpreted func-
tions and lambda expressions for arrays where ITFE stands for the if-then-else con-
struct. Below, the first three lines define temporary names for sub-expressions,
and the decide command is used to invoke the decision procedure.

t1 =  f(a) !'= £(b) ;
m’ = Lambda x. ITE(x = a, 0, m(x)) ; (* m’ <- m[a:=0] *)
t2 = t1 => (m’(b) = m(b)) ;

decide (t2); (* is t2 valid? *)

Here is an example! that cannot be modeled using traditional select-update
arrays, since an arbitrary number of entries in the array m gets updated in a
single step.

tl1 = f(m®)) = fm(a)) ;
m’ = Lambda x. ITE(m(x) < a+l, a, m(x)) ;
t2 = t1 => (m’(b) = m(b)) ;

decide (t2); (* is t2 valid? *)

This is an example of an invalid formula. The tool produces a counterexample
which looks as follows:

+++ Counter-Examples Found : Formula Not Valid +++
a=23, b=32, m(23)=18, m(32)=22, £(22)=3, £(18)=3

This is a partial interpretation to all the function symbols which are relevant
to the counterexample. The concrete counterexamples have been found extremely
useful for debugging and verifying non-trivial systems [9].

The logic also supports very limited quantifiers (at the cost of incompleteness)
at the top-level of a formula. One can assert a universally quantified formula in
the antecedent while deciding a CLU formula as follows:

! The syntax is slightly different for the actual tool.
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decide ((FORALL x,y. f(x) = £(y) => x = y) => f(a) !'= f(a+1));

This limited capability has been found very useful in practice, e.g., in au-
tomating non-trivial proofs for out-of-order processor verification with unboun-
ded resources [9].

3 Decision Procedure

Operation. The decision procedure performs a series of transformations to re-
duce a first-order formula to a Boolean formula. The quantifiers are first elim-
inated using quantifier instantiation techniques [9]. The resulting CLU formula
is translated to an equi-satisfiable Boolean formula using the following sequence
of steps: (i) First, lambda expressions are removed using Beta-reduction; (ii)
Second, function applications are replaced with symbolic constants using opti-
mizations like exploiting positive equality; (iii) Finally, integer-valued symbolic
constants are either instantiated over a finite domain (which is sufficient to pre-
serve satisfiability) or atomic predicates (e.g. < y + 3) over these symbolic
constants are encoded using fresh Boolean variables and transitivity constraints
are imposed [13]. The generated formula is checked using a SAT solver. Since
the nature of encoding greatly affects the SAT solver’s performance, UCLID
employs problem-specific hybrid encoding strategies [12] to improve the quality
of the final encoding.

Counterexample Generation. The assignment produced by the SAT solver
over the Boolean variables to an assignment over the first-order symbols in-
cluding function constants. First, assignments for the integer variables are con-
structed, and then for each function application, the arguments and the result
of the application are evaluated from the integer variables that represent them.
Proof-Core Generation. Many SAT solvers generate an unsatisfiable core of
Boolean variables. This can be used to generate a proof core for the original
CLU formula. These variables can be mapped back to atomic predicates in CLU
logic, since the mappings generated by the translation to SAT are preserved.
The atomic predicates find use in, for instance, predicate discovery for predicate
abstraction-based verifiers.

Benchmarking. We have benchmarked the decision procedure on a diverse set
of verification benchmarks arising in verifying high-level microprocessor designs,
cache coherence protocols, model checking software device drivers, and compiler
validation. UCLID outperforms other decision procedures including SVC and
CVC on these benchmarks; results may be found in a recent paper [12].
Extensions. The decision procedure code has also been used for performing
symbolic predicate abstraction [7]. Ongoing work includes extending UCLID’s
logic to include quantifier-free Presburger arithmetic [11].
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