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Abstract. We study the problem of formally verifying shared memory
multiprocessor executions against memory consistency models — an im-
portant step during post-silicon verification of multiprocessor machines.
We employ our previously reported style of writing formal specifications
for shared memory models in higher order logic (HOL), obtaining in-
tuitive as well as modular specifications. Our specification consists of a
conjunction of rules that constrain the global visibility order. Given an
execution to be checked, our algorithm generates Boolean constraints
that capture the conditions under which the execution is legal under the
visibility order. We initially took the approach of specializing the mem-
ory model HOL axioms into equivalent (for the execution to be checked)
quantified boolean formulae (QBF). As this technique proved inefficient,
we took the alternative approach of converting the HOL axioms into a
program that generates a SAT instance when run on an execution. In
effect, the quantifications in our memory model specification were real-
ized as iterations in the program. The generated Boolean constraints are
satisfiable if and only if the given execution is legal under the memory
model. We evaluate two different approaches to encode the Boolean con-
straints, and also incremental techniques to generate and solve Boolean
constraints. Key results include a demonstration that we can handle exe-
cutions of realistic lengths for the modern Intel Itanium memory model.
Further research into proper selection of Boolean encodings, incremen-
tal SAT checking, efficient handling of transitivity, and the generation of
unsatisfiable cores for locating errors are expected to make our technique
practical.

1 Introduction

In many areas of computer design, formal verification has virtually eliminated
logical bugs escaping into detailed designs (including silicon). However, in ar-
eas where the system complexity is high, and global interactions among large
collections of subsystems govern the overall behavior, formal verification cannot
yet cope with the complex models involved. The verification of multiprocessor
machines for conformance to shared memory consistency models [1] is one such
area. This paper focuses on verifying whether multiprocessor executions violate
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memory ordering rules. These executions may be obtained from multiprocessor
simulators or from real machines. The current practice is to employ well-chosen
test programs to obtain a collection of “interesting” executions from machines
and simulators. These executions are then examined using ad hoc “checker” pro-
grams. Our contribution is to make the second step formal.

It is crucially important that multiprocessor machines and simulators con-
form to their memory models. Future high performance operating systems will
exploit relaxed memory orderings to enhance performance; they will fail if the
multiprocessor deviates from its memory model. However, as far as we know
from the literature, none of the existing methods can verify executions against
formal descriptions of industrial memory models. A tool such as what we propose
can also help designers comprehend a given memory model by executing critical
code fragments. Given that industrial memory models are extremely complex,
an efficient execution verification facility is very important in practice.

In this paper, we show that Boolean satisfiability (SAT) based tools can be
developed for verifying executions of realistic lengths. Our current work is aimed
at the Intel Itanium memory model [2]; the technique is, however, general. Given
a shared memory multiprocessor execution, e, and a formal specification of the
memory model as logical axioms, r, we offer a formal technique to verify whether
e is allowed under r. By the term execution, we mean multiprocessor assembly
programs over loads, stores, fences, and other memory operations, with the loads
annotated with returned values. The actual assembly program run on a machine
may consist of instructions other than loads and stores; it may, for instance,
include branches and arithmetic operations. In those cases, e retains a dynamic
trace of just the load and store group of instructions, with the loads annotated
with their returned values. In this paper, we will depict e in the form of assembly
programs consisting of only load and store instructions, with the loads annotated
with the returned values (such annotated programs are called “litmus tests”).
We do not discuss here how such dynamic traces can be obtained.

Gibbons and Korach [3] have shown that the problem of checking execu-
tions against sequential consistency [4] is NP-complete. Generalizing this result,
Cantin [5] has shown that the problem of checking executions against memory
ordering rules that contain coherence as a sub-rule is NP-hard. Since the Itanium
memory model contains coherence, and since executions serve as polynomial cer-
tificates that can be checked against the rules in polynomial time, we have an
NP-complete problem at hand. Despite these results, we initially found it nat-
ural to employ a quantified boolean formula (QBF) [6] satisfiability checker.
This is because of two facts: (i) the Itanium memory model is quite complex,
and to write a formal specification in a declarative and intuitive style, we em-
ployed higher order logic (HOL) [7-9]; (ii) since we wanted to have a trustworthy
checking algorithm, we took the approach of specializing the HOL description
to a QBF description so as to check e. This specialization is natural, given that
r captures the memory model in terms of quantifiers that range over program
counters, addresses, and data values that have arbitrary ranges, whereas e has
these quantities occurring in it over a finite range. However, the direct use of a
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PO: st a,1; 1d rl,a <1>; st b,rl1 <1>;
P1: 1ld.acq r2,b <1>; 1d r3,a <0>;

[{id=0;proc=0; pc=0; op=St; var=0; data=1; wrID=0;
wrType=Local; wrProc=0; reg=-1; useReg=false};
{id=1; proc=0; pc=0; op=St; var=0; data=1; wrID=0;
wrType=Remote; wrProc=0; reg=-1; useReg=false};
{id=2; proc=0; pc=0; op=St; var=0; data=1; wrID=0;
wr'Type=Remote; wrProc=1; reg=-1; useReg=false};
{id=3; proc=0; pc=1; op=Ld; var=0; data=1; wrlD=-1;
wrType=-1; wrProc=-1; reg=0; useReg=true};
{id=4; proc=0; pc=2; op=St; var=1; data=1; wrID=4;
wrType=Local; wrProc=0; reg=0; useReg=true};
{id=5; proc=0; pc=2; op=St; var=1; data=1; wrID=4;
wr'Type=Remote; wrProc=0; reg=0; useReg=true};
{id=6; proc=0; pc=2; op=St; var=1; data=1; wrID=4;
wrType=Remote; wrProc=1; reg=0; useReg=true};
{id=7; proc=1; pc=0; op=LdAcq; var=1; data=1; wrID=-1;
wrType=-1; wrProc=-1; reg=1; useReg=true};
{id=8; proc=1; pc=1; op=Ld; var=0; data=0; wrID=-1;
wr'Type=-1; wrProc=-1; reg=2; useReg=true} |

Fig. 1. The execution of a multiprocessor assembly program, and the tuples it gener-
ates.

QBEF solver[10] proved to be of impractical complexity. Therefore, we pursue the
following alternative approach. We first derive a mostly'applicative functional
program p from r . Program p captures the quantifications present in r via iter-
ative loops (tail-recursive calls). It also stages the evaluation of the conditionals
in an efficient manner. Such a program p, when run on execution e, evaluates all
the ground constraints (constraints without free variables) efficiently by direct
execution, and generates non-ground constraints in the form of a SAT instance
b which is satisfiable if and only if e is allowed under r. Further we demonstrate
that the derivation of p can be automated in a straightforward manner.

Related Work: Park et.al. [11] wrote an operational description of the Sparc
V9 [12] memory models in Murphi [13] and used it to check assembly language
executions. It is our experience is that this approach does not scale beyond a
dozen or so instructions; it is also our experience that specifications for memory
models as intricate as the Itanium are very difficult to develop using the oper-
ational approach [14]. Since our HOL specification follows the axiomatic style
used in Intel’s description [2], it can be more easily trusted. It also can be for-
mally examined using theorem provers to enhance our confidence in it. In [15],

! The only imperative operations are file 1/0.
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we show that a whole range of memory models can be described in the same
HOL style as we use here.

Yu [16] captured memory ordering rules for the Alpha microprocessor [12] as
first-order axioms. Given an execution to be checked, they generated verification
conditions for the decision procedure Simplify [17]. We believe that the use of
SAT for this application will scale better.

In previous work [18], we presented the higher order logic specification of
the Itanium memory model and its realization as a constraint logic program. We
also sketched an approach to generate Boolean satisfiability constraints. Three
major problems remained: (i) the constraint logic program version was unable
to handle more than about 20 tuples (a dozen or so instructions); (ii) the SAT
version was extremely difficult to debug owing to it being retrofitted into a logic
program; (iii) since the logic program did not exploit the nature of the higher
order logic axioms, it took far more time to generate SAT instances than to
solve them — often with a ratio of 200:1. The present work is an improvement
in all these regards and also offers several new directions. In particular, it offers
a reliable formal derivation scheme to obtain the SAT instance generation pro-
gram. This program can handle much longer executions — about 300 tuples. The
SAT instances generated from such executions can be solved using SAT tools in
reasonable time, thanks to the care exercised in selecting the Boolean encoding
method. We have also identified many avenues to scale the capacity of our tool
further.

2 Overview of Our Approach

As a simple example, consider the litmus test shown in Figure 1. Processor PO
issues a store (st) instruction to location a with data value 1. It then issues a
load (1d) to location a, which fetches the value 1 into register r1 (shown via
the annotation <1>). It then stores the contents of register r1 into location b
(we show the value annotation <1> here also, as we can compute the value in r1
at this point). Processor P1 issues a load acquire (1d.acq) instruction to begin
with. This fetches value 1 from location b into register r2. It then performs
an ordinary 1d instruction, obtaining O from location a that is stored into r3.
The only strongly ordered operation in this whole program is 1d.acq. Itanium
rules require that the visibility of 1d.acq must be before the visibility of all
the instructions following it in program order (i.e., 1d.acq acts as a “one-way
barrier”). The question now is: “is this execution legal?”

Modeling Executions Using Tuples: Following earlier approaches [2,19], we
employ a set of tuples to model executions. One tuple is employed to capture
the attributes of each 1d instruction, and p + 1 tuples are employed to model
the attributes of each st or st.rel instruction, where there are p processors in
the multiprocessor (Figure 1). In our example, each store generates three tuples,
giving us a total of nine tuples?. Of the p + 1 tuples modeling a store (st), one

2 We have written an assembler to generate tuples from annotated assembly programs.
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legal(ops) =

Jorder.

StrictTotalOrder ops order N WriteOperationOrder ops order A
ItProgramOrder ops order AN MemoryDataDependence ops order A
DataFlowDependence ops order N\ Coherence ops order A
ReadValue ops order A\ AtomicWBRelease ops order N\
SequentialUC ops order A NoUCBypass ops order

StrictTotalOrder ops order IrreflexiveOrder ops order

A TransitiveOrder ops order
A TotallyOrdered ops order
Irreflexive ops order = V(i€ ops).Y(j €ops). (i.id =j.id) = —orderij
Transitive ops order = V(i € ops).V(j € ops). V(k € ops).
(order i j A order j k = order i k)
TotallyOrdered ops order = V(i € ops). V(j € ops). (i € ops) A (j € ops). A —(i.id = j.id)
= orderij V order ji
ItProgramOrder ops order = V(i € ops).V(j € ops).
ordByAcquire i j V ordByReleaseij V ordByFence i j
= orderij
ordByAcquire ¢ j = ordByProgram i j A (i.op = LdAcq)
ordByProgram i j = (i.proc = j.proc) A i.pc < j.pc
ReadValue ops order = VY(j € ops).
(isRd j =

validLocalWr ops order j
V validRemoteWr ops order j
V validDefaultWr ops order j)
A (isWr j A j.useReg = validRd ops order j)
validRd ops order j =
3(i € ops). isRd i A (i.reg = jreg) A ordByProgram i j
A(i.data = j.data)
A =(3(k € ops). isRd k A (k.reg = jreg)
A ordByProgram i k A ordByProgram k j)
atomicWBRelease ops order =
V(i € ops). V(j € ops). V(k € ops).
(i.op = StRel) A (i.wrType = Remote)
A (k.op = StRel) A (k.wrType = Remote)
A (i.wrID = k.wrID) A (attr_of i.var = WB)
A order i j N\ order j k
= (j.op = StRel) A (j.wrType = Remote)
A (j.wrID = i.wrID)

Fig. 2. Excerpts from the Itanium Ordering Rules (For the full spec, see [18]).

t0 t1 t2 t3

t0 [ordo1, ordoo] t0 0 1
t1 [O’I‘dll7 OTdm] t1 0

t2 [O’I‘dgl7 Oszo] t2 0
t3 [ords1, ordso] t3 0

Fig. 3. Illustration of the nlogn (left) and nn (right) methods.

is a local store and the remaining p are global stores, one for each processor.
For example, consider the tuples with id=0, id=1, and id=2. These are tuples
coming from the store instruction of PO (proc=0), have program counter pc=0,
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employ variable var=0, and have data=1. The wrID=0 says that these store tuples
come from the store instruction with id=0. To distinguish where these stores are
observed, we employ the wrProc attribute, the values of which are 0, 0, and 1
respectively. Notice that the tuple with id=0 has wrType=Local, and the one
with id=1 has wrType=Remote. (“Remote” means “global” in the parlance of
[2]). Notice that we employ two tuples, namely the ones with id=0 and id=1,
both for the local processor proc=0 (P0). This is to facilitate modeling the the
semantics of load bypassing — the ability of a processor to read its own store
early. For details, please see [2,18].

The modeling details associated with load instructions are much simpler.
We simply employ one tuple per 1d or 1d.acq instruction. The useReg field
captures whether a register is involved, and the reg field indicates which register
is involved. All fields with -1 are don’t-cares.

Overview of the Itanium Ordering Rules: Figure 2 provides roughly a
fourth of the Itanium ordering rules from our full specification. The legality
of an execution is checked by legal ops, where ops is the collection of tuples
obtained from an execution, such as in Figure 1. Note how order, a binary
relation, is passed around and constrained by all the ordering rules. Basically,
the definition consists of four distinct parts: (i) StrictTotalOrder, which seeks
one arrangement of the tuples into a strict total order, (ii) ReadValue, which
checks that all reads in this strict total order either return the value associated
with the most recent (in the strict total order) write to the same location, or the
initial store values, if there is no write to that location, (iii) ItProgramOrder,
which is weakened program order that orders instructions only if one of them
is an acquire, a release or a fence, and (iv) all the remaining rules which try to
recover some modicum of program order. For instance, an instruction ¢ is ordered
before an instruction j if 7 is of type ld.acq, as captured by the ordByAcquire
rule.

This style of specification, adopted by [2], makes it easier to contrast it with
sequential consistency. For instance, if we change ItProgramOrder into a reg-
ular program order relation, and retain ReadValue and StrictTotalOrder, we
obtain sequential consistency. Since the combination of ItProgramOrder and
the rules mentioned in (iv) above is weaker than the regular program order rela-
tion, the Itanium memory model allows more solutions under Strict TotalOrder
than with regular sequential consistency. Hence the Ttanium memory model is
weaker than sequential consistency. However, the variety of instructions allowed
under Itanium is more than just load and store. Hence, we can only hope to
make qualitative comparisons between these models.

Overview of Boolean Encoding: As far as the relation legal goes, ops of
Figure 1 is to be viewed as a set of tuples. Notice that StrictTotalOrder seeks
to arrange the elements of ops into a strict total order such that the remain-
ing constraints are met (the arrangement of the elements of ops is captured in
the order relation). Total ordering among n tuples can be encoded using auxil-
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iary Boolean variables in two obvious ways (Figure 3, also see [20] where these
are called the small domain and the e;; approaches): (i) the nlogn approach,
in which a bit-vector of log(n) Boolean variables of the form [ord; j_1 ...ord; o
are augmented to the ith tuple (example tuples are shown as t0 through t3 in
the figure). Here, n is the number of tuples, assumed to be a power of 2, and
j = logy(n); (ii) the nn approach, in which n? Boolean variables (denoted by
matriz;;, with 0 <4, j < n) are introduced to represent how tuples are ordered.
In the nlogn approach, StrictTotalOrder is implemented by the constraint
[0rd; 1og, (n)—15 - - -, 0rdi 0] # [07dj10g,(n)=1,---,0rdjo] for all @ # j. In the nn
approach, StrictTotalOrder is implemented via its constituents: irreflexive,
transitive, and totallyOrdered. Constraint irreflexive is encoded by set-
ting the diagonal elements of the matrix to 0. Constraint transitive is en-
coded by generating the formula (matriz;; Amatriz;i,) = matriz,. Constraint
totallyOrdered is encoded by generating the formula matriz;; V matriz;;.

The size of the formula which encodes StrictTotalOrder for the nn method
is far greater than for the nlogn method. This is largely because of the transitivity
axiom where we go through every triple of tuples and generate the transitivity
clause. We plan to investigate other methods discussed in [20]. One key difference
between our work and that of [20] is that in their setting, a collection of first-
order equational formulae (or more generally speaking, formulae in separation
logic involving =, >, and <) are to be checked for validity. In doing so, transitivity
is applied over the given set of equations. In our case, we are solving for an order
over the tuples. The number of these tuples is expected to be far higher. In a
sense, our method searches for the few permutations of the given sequence of
tuples that are consistent with the memory ordering rules. We hope to investigate
lazy approaches to handling transitivity as discussed in Section 5.

A significant advantage of the nn method over the nlogn method in our con-
text is that it generates much smaller formulae for the rest of the constraints
other than transitivity. For example, suppose while processing a memory or-
dering rule we have to specify that some tuple, say tO, appears before an-
other tuple, say t3, in any allowed total order. This encoding is achieved by
[ordoiordog] < [ordsiordsp] in the nlogn method, while simply achieved by as-
serting matrizos in the nn method (see Figure 3 for a ‘1’ in the matrix). These
trade-offs are studied in Section 4. In effect, we found that despite the use of
n? variables as opposed to nlog(n), the nn method is more efficient during SAT
checking. Similar results are obtained in [20] where SAT-checking is often faster
under their e;; method (similar to our nn method) than their small domain
method (similar to our nlogn method).

In post-silicon verification, tests on multiprocessor machines are run multiple
times in the hope of obtaining different load values due to non-deterministic
interleavings. This naturally fits with the use of incremental SAT methods for
execution verification.
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3 Program Derivation from Memory Ordering Rules

We provide an example of how one rule of Itanium, namely atomicWBRelease,
is transformed into a program; all other rules are handled similarly. The initial
specification is in Figure 2. Recall from Section 1 that for every store instruc-
tion, we generate p + 1 stores, of which p are considered ‘remote stores.” Rule
atomicWBRelease says that all these remote stores form an ‘atomic packet’ in
the sense that any other event e is strictly before or strictly after all the events
in this packet. Notice how it is specified by the following axiom which says: if j is
an event ‘trapped’ between ¢ and k, then j also belongs to the atomic packet of
all remote stores. (A note about our notation: we use the generic order relation
to denote a total order over the set of tuple operations ops. When it comes to
specifically generating the Boolean constraints, we choose ord or matriz depend-
ing on the encoding method used. This difference shows up in Table 1(e) in part
by of the results.)

We now pre-process this specification by applying the contrapositive rule.
The general idea is to bring ground constraints to the antecedent so that we
can evaluate them through direct execution. The SAT instances can then be
generated from the consequent part. The result of this step is a formula with
three outermost quantifiers (Figure 4, before Quantifier Scope Reduction). If
we translate this directly into loops, we will obtain a very inefficient program.
The Quantifier Scope Reduction step takes advantage of the limited scope of
various sub-formulae and rewrites the quantified expression into a series of staged
quantifications. This will allow many iterations of outer loops to be cut-off early,
thus not suffering from the full brunt of the O(n3) complexity. This dramatically
reduced our SAT-generation time. For example, i.op = StRel depends only on
i, and so the inner loops are not called for all those instructions that do not pass
this test.

The last stage of our translation (SAT-generation program sketch) obtains
a series of tail-recursive functions capturing the semantics of the quantified ex-
pression. Here, foldr reduces a given list of arguments (generated by map) using
conjunction; this is because conjunction is the explicitly provided second oper-
ation ‘&’ for foldr. The list that is reduced is obtained by mapping the function
(fn i — e(i)) (a Lambda abstraction) on the given list. Forms such as f(¢)(j)
are employed as opposed to f(i, ) to signify currying [21]. The main difference
between the sketch we provide and the actual Ocaml [22] code we employ is that
the latter emits constraints on-the-fly to a file instead of building an expression
tree using foldr as shown in our sketch.

4 Results

Our program handles all the 17 litmus tests given in [2] except a few that involve
partial word writes that are currently omitted. These tests ran considerably
faster than those in [18].

Next, we considered executions with 32, 64, and 128 tuples in our experi-
ments. The complexity of our algorithm depends primarily on the number of
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‘ Applying contrapositive ‘

atomicWBRelease(ops, order) =

V(i € ops). ¥(j € ops). V(k € ops).

(i.op = StRel) A (i.wrType = Remote)

A (k.op = StRel) A (k.wrType = Remote)

A (t.wrID = k.wrID) A (attr_of i.var = WB)

A =((j.op = StRel) A (j.wrType = Remote) A (j.wrID = i.wrID))
= —(order(i,j) A order(j, k))

‘ Quantifier Scope Reduction‘

atomicWBRelease(ops, order) =
V(i € ops).
(i.op = StRel) A (i.wrType = Remote)
A(attr_of i.var = WB)
= V(k € ops).
(k.op = StRel) A (k.wrType = Remote) A (i.wrID = k.wrID)
= V(j € ops).
—((j.op = StRel)
A (j.wrType = Remote)
A(j.wrID = i.wrID))
= —(order(i, j) N order(j, k)

‘ SAT-generation program sketch‘

atomicWBRelease(ops) = forall(i, ops, wb(i));

wb(i) = if (=((attr_of i.var = WB) & (i.op = StRel) & (i.wrType = Remote)))
then true else forall(k,ops, wb1(i)(k));

wb1l(i)(k) = if (=((k.op = StRel) & (k.wrType = Remote) & (i.wrID = k.wrID)))
then true else forall(j, ops, wb2(i)(k)(j));

wb2(i)(k)(j) = if ((j.op = StRel) & (j.wrType = Remote) & (j.wrID = i.wrID))
then true else —(order(i,j) & order(j,k));

forall(i, S, e(i)) = foldr(map(fn i — e(i))(S), &, true)

Fig. 4. Sketch of SAT-generation Program Derivation.

tuples, and far less on the remaining attributes of the tuples. Thus, checking
8 tuples over 2 processors has nearly the same complexity as checking 2 tuples
over 8 processors. We selected the instruction mix heavily skewed towards stores
to reflect a worst-case behavior (more rules pertain to stores than loads). All
runs were on an AMD Athlon XP2100+ CPU (1.733 GHz, 1GB memory, Red
Hat Linux V.9). We used the Satzoo incremental solver [23].

We evaluated two approaches, one generating and solving the constraints
monolithically, and the other using partial evaluation. To motivate the latter
approach, note that the constraints generated from TotallyOrdered depends
on the number of tuples — and not on the contents of the tuples. Capitalizing
on this fact, we pre-generated the constraints pertaining to TotallyOrdered
for various lengths; call these constraints by, where n represents the number of
tuples anticipated in a test program to be given in future. We then loaded these
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Table 1. Result Tables.

(a). SAT generation times for nlogn encoding (parts b1 and b2).

F#tuples Part b1 Part bo
time (secs)| #vars| #clauses|time (secs) #vars| #clauses
32 0.219] 20,992 68,448 1.635 92,316 258,632
64 1.213|101,184| 330,624 17.178| 852,632| 2,387,664
128 5.748(472,320(1,544,320 179.026|7,777,200(21,775,520

(b). SAT generation times for nn encoding

#tuples Part by Part bo
time (secs) #vars| #clauses|time (secs)| #vars| #clauses
32 0.509| 67,552| 233,376 0.100| 8,044| 22,760
64 4.311| 532,416| 1,851,200 0.967| 63,832| 179,792
128 34.255|4,226,944|14,745,216 9.095[509,104] 1,431,200

(c). ‘Monolithic’ gives the SAT solver execution time for the full SAT instance.
Column Part by gives the SAT time for part by. Part b2 gives the time for SAT after
resuming from the checkpoint and adding the new constraints.

#tuples nlogn encoding nn encoding
monolithic| Part b1| Part bs|monolithic|Part b1 |Part bo
32 9.61 0.6 4.3 0.33 0.69 0.05
64 247.17|  29.53 37.6 2.73 6.17 0.5
128 aborted|1341.85|aborted 164.8| 145.64| 351.1

(d). nlogn encoding: 1-Cl, 2-Cl, and 3-Cl give the percentage of clauses with one, two
and three literals.

#tuples Part 1 Part bs
1-Cl (%)[2-Cl (%) |3-Cl1 (%)|1-C1 (%)|2-C1 (%)|3-Cl (%)
32 1.449| 46.376| 52.173 0.064| 71.387| 28.547
64 1.219| 46.341| 52.439 0.024| 71.419| 28.555
128 1.052| 46.315| 52.631 0.010f 71.430| 28.559

(e). nn encoding: 1-Cl, 2-Cl, and 3-Cl give the percentage of clauses with one, two and
three literals.

F#tuples Part b1 Part bo

1-Cl (%)[2-Cl (%) |3-Cl1 (%)|1-C1 (%)|2-C1 (%)|3-Cl (%)
32 14.479| 57.013| 28.506 0.738| 70.685| 28.576
64 14.382| 57.078| 28.539 0.329| 71.006| 28.664
128 14.333| 57.110f 28.555 0.154| 71.143| 28.702
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constraints into the SAT solver, and created the checkpoint of a runnable image
of the SAT solver using the ckpt tool [24]%to obtain ckpt,, . Later, when presented
with a litmus test of length n, we only generated the remaining constraints
(other than TotallyOrdered) for it; call the resulting constraints be,,. We then
ran ckpty,, on by,. Table 1(a) provides the time to generate SAT instances for the
nlogn encoding method for formula parts b; and by. Table 1(b) provides these for
the nn encoding method. Table 1(c) gives the SAT solving time for the nn and
nlogn methods for a monolithic run, and for running parts b; and by separately.

The results show that under the nn encoding, it takes longer to generate SAT
instances for part by, but considerably shorter for part bs. The main reason is
that in our implementation, the number of clauses nc grows as 7n3+ ... and the
number of variables as 2n® + ... (later code improvements have brought down
nc to n® 4+ ...). The SAT solving times are uniformly lower for the nn method.
This is because of the preponderance of clauses with smaller numbers of literals,
as shown in Tables 1(d) and 1(e). In particular, part bs of nn encoding has both
lower number of clauses and a higher proportion of clauses with 1 or 2 literals
than the nlogn encoding. To summarize: (i) The nn encoding is better in terms
of SAT solving time. The SAT generation time is acceptably small till about 128
tuples. (ii) Verifying in two parts by and bs can be advantageous for problems
of reasonable sizes. The advantage is far more for the nn approach. (iii) Since
the same test is re-run multiple times, partial evaluation and other incremental
SAT techniques can play a crucial role in overall efficiency.

Recently we have run a more realistic test of 130 assembly language instruc-
tions*. These expanded into 239 tuples. Initially, since the constraint generation
program could not handle the transitivity rule, we suppressed it, obtaining a SAT
instance of 115,637 variables and 164,848 clauses. This SAT instance proved to
be unsatisfiable. Upon deeper examination using the Zcore program (distributed
with the latest Zchaff [25]), we discovered an unsatisfiable core of 9 clauses. By
analyzing these clauses, it was discovered that the error we detected resulted
from us forgetting to initialize the memory state prior to the test. Further ex-
periments with these and other realistic tests are underway, and our latest results
will be presented on our webpage [26].

To sum up, proper handling of transitivity is crucial to scale our tool further.
Recent code optimizations have allowed us to handle this realistic example with-
outl suppressing transitivity. However, the complexity of transitivity still lurks
— in the 400 tuples and above range as of now. Also, the use of unsatisfiability
core generation tools can be of considerable help in finding the root cause of
violations.

5 Concluding Remarks

We proposed a method for verifying shared memory multiprocessor executions
where the reference semantics is that of shared memory consistency. We propose

3 We resorted to binary checkpoints — as opposed to clause checkpoints — because the
source code of Satzoo was not available.
* We are deeply indebted to Intel for providing us this test.
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a method by which executions can be analyzed using programs that embody the
shared memory consistency rules. The ground part of the constraints in these
rules are evaluated by the program, and the non-ground parts are emitted as
Boolean constraints to check.

Semaphores are currently omitted to retain focus on the overall scalability
and usability of our tool. Partial-word writes are also not handled. These ex-
tensions are planned for the future. A rudimentary assembler has been written
to generate tuples from value-annotated assembly programs. This assembler can
model data and address dependencies. The Itanium memory model rules in HOL
were hand-translated into a series of tail-recursive programs; this process is best
automated to ensure correctness, using the transformation rules illustrated ear-
lier.

If the generated SAT instance is satisfiable, the space of satisfying assign-
ments will reveal the set of allowed executions. Future work will annotate the
Boolean constraints (clauses) with the instructions as well as memory ordering
rules that generate them. This way, if the SAT instance is unsatisfiable, the
unsatisfiability core will reveal which instructions and which memory ordering
rules are causing the execution to be invalid. Incremental SAT techniques will be
of great importance to develop, as are hierarchical analysis methods that treat
groups of instructions atomically.

Better methods for handling transitivity are needed. One approach would
be to see if SAT returns a satisfying instance when transitivity is suppressed,
and if so to selectively introduce transitivity on those elements corresponding to
the SAT instance. The ability to analyze symbolic executions (where not all the
execution results are ground) would also enhance the usability of our tool.
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