
Compositional Specification
and Model Checking in GSTE

Jin Yang and Carl-Johan H. Seger

Strategic CAD Labs, Intel Corp.
{jin.yang,carl.seger}@intel.com

Abstract. We propose a compositional specification and verification approach
based on GSTE (Generalized Symbolic Trajectory Evaluation). There are two
main contributions. First, we propose a specification language that allows con-
current properties be described succinctly in a compositional algebraic manner.
Second, we show a precise model checking solution for a compositional specifi-
cation through automata construction, but much more importantly and practically,
we develop an efficient model checking algorithm for directly verifying the com-
positional specification. At the end, we show the result of our approach in the
verification of a micro-instruction scheduler in a state-of-the-art microprocessor.

1 Introduction

GSTE is a symbolic model checking solution that combines the high capacity and ease
of use of STE with the expressive power (Ω-regular languages) of classic symbolic
model checking [7, 22, 23]. It has been successfully applied to the formal verification
of complex Intel designs with tens of thousands of state elements [22, 5, 21].

The specification language in GSTE is called assertion graphs, an operational for-
malism based on a special form of regular automata with assertion letters (antecedent
and consequent pairs) as its input alphabet. Each word in the language of an assertion
graph provides both a sequential stimuli for simulating the system and the expected
sequential responses. The sequential nature of an assertion graph, however, hinders its
ability to succinctly describe the concurrent behavior of a circuit.

In this paper, we present a compositional approach based on GSTE to overcome
the limitation. First, we propose a specification language that allows the concurrent
behavior of a system to be specified succinctly in a compositional manner. Such a com-
position is logical and does not rely on a deep understanding of the implementation
details of the system. The language is an extension of the GSTE specification language
with a new meet operator and is expressed in the form of Process Algebra [13, 19, 10].
Second, although we show that the compositional specification can be precisely model
checked, we develop a much more efficient and practical solution to directly verify the
compositional specification. The solution extends the GSTE model checking algorithm
[22] with the ability to walk through the syntactical structure of the specification and
establish a simulation relation from the language elements of the specification to the
sets of states in the circuit. This avoids the exponentially expensive global assertion
graph construction.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 216–228, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Compositional Specification and Model Checking in GSTE 217

There have been extensive studies on concurrent system specification and verifica-
tion, most notably along the lines of hierarchical state machines (e.g. Statecharts) [9,
14, 4, 3, 2] and Process Algebra [19, 13, 10, 6]. However, most of these approaches have
mainly focused on specification formalisms, correctness of specifications, and modular
refinement strategies. None has provided an efficient and practical model checking so-
lution to verify a concurrent specification against an implementation. Relying on model
checking the global transition system for the specification is prohibitively expensive.

In recent years, the assume-guarantee based compositional approach has been gain-
ing popularity [20, 19, 15, 8, 16–18, 11, 12], driven by the need to deal with the capacity
limitation of symbolic model checking. In this framework, a circuit under verification is
described as a parallel composition of finite state components, and the correctness of the
circuit is described as a collection of local properties, each of which specifies the cor-
rectness of one component assuming that the correctness of the interfacing components.
This approach achieves verification efficiency by model checking each local property
against its component separately, and then establishing the global correctness using
an inductive assume-guarantee reasoning. A main drawback of the approach, however,
is that the specification is heavily implementation-dependent, requiring the deep un-
derstanding of how these components interact with each other. Therefore, it is rather
manual, labor-intensive and sensitive to the changes in the implementation.

We firmly believe that a practical approach must contain two ingredients, a formal
language to support succinct concurrent specifications, and an efficient solution (such
as model checking) to verify such a specification against a complex implementation.
Our GSTE based approach addresses both. The rest of the paper is organized as fol-
lows. In Section 2, we define assertion languages for GSTE and their trace semantics.
In Section 3, we introduce the new binary meet operator � for assertion languages. In
Section 4, we present the compositional specification language for GSTE in a form of
algebraic equations [13, 19, 10], and show that this language is well defined. We also
prove a regularity result for a compositional specification, i.e., the limit of a repeated
application of � to any assertion language in the specification is regular. Since the limit
is trace equivalent to the original language, this gives us a way to precisely model check
the compositional specification using the GSTE model checking algorithm in [22, 23].
However, the construction of the regular automaton for the limit may cause an expo-
nential blow-up in the size of the specification. Therefore in Section 5, we develop a
GSTE model checking algorithm for directly verifying a compositional specification.
In Section 6, we briefly discuss the result of the compositional GSTE approach in the
verification of a micro-instruction scheduler from an Intel microprocessor design.

2 Assertion Languages

For the entire scope of the paper, we assume a finite, non-empty alphabet D called the
domain. An ω-trace (or simply trace), denoted by τ = d1d2 . . ., is any ω-word in Dω.
For a circuit under verification, the domain D is the set of all states in the circuit, and a
trace is simply any infinite sequence of states.

We define the assertion alphabet Σ over domain D as the tuple Σ = �(D)×�(D)
where �(D) denotes the power set of D. We call any letter in Σ an assertion letter, any
word in Σ∗ an assertion word, and any language in �(Σ∗) an assertion language.

218 Jin Yang and Carl-Johan H. Seger

Given an assertion letter σ = (A ,B), A and B are called the antecedent and the con-
sequent of the letter, denoted by ant(σ) = A and cons(σ) = B . The antecedent and con-
sequent functions are point-wise generalized to an assertion word w in Σ∗, i.e., ant(w)
and cons(w) as defined by

∀1 ≤ i ≤ |w|,ant(w)[i] = ant(w[i]),cons(w)[i] = cons(w[i]).

Assertion graphs defined in [22, 23] are basically regular automata (or ω-regular
automata if an additional fairness condition is specified) for generating regular assertion
languages. We shall use the following simple voting machine example throughout the
paper to illustrate various concepts in the paper.

Example 1. (Voting Machine) A voting machine (VM) consists of three voting stations
(Figure 1). Each voting station receives a single vote through vin[i] (1 ≤ i ≤ 3). Once
all stations have received their votes, the VM conducts a poll among the three stations
and produces a final voting result vout. It then clears all voting stations to accept a new
round of votes. Output signal av[i] tells if the i-th voting station is available. Signal reset
resets the VM to its initial state. For simplicity, we ignore the content of a vote and that
of the final result, and just care about control/status signals.

av[1]

av[2]

av[3]

vout
vin[1]

vin[2]

vin[3]

VM

reset

Fig. 1. Voting Machine (VM)

The domain D for the VM is the set of values for the external signals. For instance,

[reset = 0,vin[1] = 1,av[1] = 1,vin[2] = 0,av[2] = 0,vin[3] = 0,av[1] = 1,vout = 0]

is a value in D. We use state predicates over D to represent sets of values in D, for
instance, vin[1]∨¬vin[2] represents all values in D where either vin[1] = 1 or vin[2] = 0.
The assertion word for the VM

((reset, true),(vin[1]∧¬vin[2]∧¬vin[3], true),(vin[2]∧ vin[3], true),(true,vout))

says that after reset, if vote vin[1] comes in followed by votes vin[2] and vin[3], then the
VM produces the final result in the next time. ��

Note that the specification in Figure 1 does not address how the system is imple-
mented. As we shall show later in the paper, our compositional approach allows one
to state the correctness of the system succinctly without the worry of implementation
details. It empowers the model checking algorithm to connect the specification with the
implementation of the system.

Compositional Specification and Model Checking in GSTE 219

An assertion language is in some sense an operational specification formalism,
where each assertion word in the language provides both a sequential stimuli for simu-
lating the system and the expected sequential responses. Many or even an infinite num-
ber of words may be needed to cover all possible behaviors of the system. An assertion
graph in [22, 23] is a way to use a labeled finite graph to capture theses words. However,
it can still be quite a cumbersome way to describe a system with inherent concurrency.
For instance, there are 1 + 3×2! + 3! = 13 different orders for the three votes to arrive
to the VM, each of which must be captured by a path in the assertion graph for the VM,
although the specification does not care about in which particular order the votes arrive.
The compositional extension in this paper addresses this issue.

In the following, we define the semantics of an assertion language. We say a trace
τ over D satisfies a word π over �(D), denoted by τ|=π, iff ∀1 ≤ i ≤ |π|, τ[i] ∈ π[i].
We say τ satisfies an assertion word w in Σ∗, iff τ|=ant(w) ⇒ τ|=cons(w). The trace
language of an assertion word w, denoted Ω(w), is the set of all traces satisfying w, i.e.,

Ω(w) = {τ ∈ Dω | τ|=w}. (1)

The trace language of an assertion language L , denoted by Ω(L), is the intersection of
the trace languages of the assertion words in L , i.e.,

Ω(L) = ∩w∈L Ω(w). (2)

This is the same as the semantics for assertion graphs in [22, 23]. Because of the
∀-semantics, the union ∪ of two assertion languages becomes stronger and yields fewer
traces, in contrast to the traditional wisdom. The ∀-semantics is the basis for efficient
GSTE model checking. The following theorem shows that a language with fewer asser-
tion words yields more traces.

Theorem 1. L1 ⊆ L2 ⇒ Ω(L1) ⊇ Ω(L2).

3 The Meet Operator

To facilitate compositional specifications, we introduce a meet operator � : Σ×Σ → Σ
that takes two assertion letters σ1,σ2 ∈ Σ and produces another assertion letter such that

ant(σ1�σ2) = ant(σ1)∩ant(σ2), and cons(σ1�σ2) = cons(σ1)∩ cons(σ2). (3)

The meet operator is applied point-wise to two words w1,w2 ∈ Σ∗ of the same length,
denoted by w1�w2, such that

w1�w2 =
{

ε if w1 = w2 = ε
(w′

1�w′
2) · (σ1�σ2) if w1 = w′

1 ·σ1 and w2 = w′
w ·σ2,

(4)

where · is the language concatenation operator. It is not difficult to show that the opera-
tor is associative, commutative and idempotent. Finally, the meet operator is generalized
to two languages L1,L2 ∈ �(Σ∗):

L1�L2 = {w1�w2 |w1 ∈ L1,w2 ∈ L2, |w1| = |w2|}. (5)

220 Jin Yang and Carl-Johan H. Seger

Example 2. Consider the VM specification in Example 1. Language (1 ≤ i ≤ 3)

V [i] = (reset, true) · (¬vin[i], true)∗ · (vin[i], true) · (¬vin[i], true)∗

describes the first vote at the i-th station. The meet V 1�V 2�V 3 succinctly describes all
possible sequences of getting the first three votes without the explicit enumeration. ��

In the following, we define a repeated application of � over a language L , �kL , as

�kL =
{

L if k = 0
(�k−1L)�L if k > 0.

(6)

We can show that although the resulting meet language may produce new words, it is
trace equivalent to the original language.

Lemma 1. For all k ≥ 0,

1. �kL ⊆ �k+1L ,
2. Ω(�kL) = Ω(�k+1L).

Now consider the limit
⋃

m≥0�mL for the ascending chain (�0L ,�1L ,�2L , . . .).

Theorem 2.

1. (Containment) L ⊆ ⋃
m≥0�mL ,

2. (Trace Equivalence) Ω(L) = Ω(
⋃

m≥0�mL).

The proof directly follows Lemma 1 by a transitivity argument. This result is important
in establishing a regularity result for a compositional specification in Section 4.

4 Compositional Specification

We define a compositional specification C(Π) as a set of algebraic equations over a set
of assertion languages

Π = {L0}∪{L1, . . . ,Lh−1}∪{Lh, . . . ,L l−1}∪{Ll , . . . ,Ln−1},

in which each equation is of the form

1. (Initialization)
L0 = ε∪L0 ·σ0, (7)

where σ0 = (D ,D), or
2. (Prefix)

L i = L j ·σ j, (8)

for each 1 ≤ i < h where 0 ≤ j < n and σ j ∈ Σ, or
3. (Summation)

L i = L i1 ∪ . . .∪L iki
, (9)

for each h ≤ i < l where 1 ≤ i j < h for 1 ≤ j ≤ ki, or

Compositional Specification and Model Checking in GSTE 221

4. (Meet)
L i = L i1� . . .�L iki

, (10)

for each l ≤ i < n where q ≤ i j < l for 1 ≤ j ≤ ki,

where ε denotes the singleton language with the empty word {ε} and · denotes the
concatenation of a letter to the end of each word in a language.

This style of compositional definition is similar to Milner’s CCS (Calculus of Com-
municating Systems) [19] with three differences: a special initialization equation, the
meet operator in place of the parallel composition operator |, and (3) the trace semantics
of assertion languages. Note also that this style is a generalization of assertion graphs
in [22, 23]. In fact, without any meet composition, it corresponds to an assertion graph
where (1) the initial language corresponds to the initial vertex with a self-loop, (2) a
prefix language corresponds to an edge, and (3) a summation language corresponds to
a vertex in the graph.

Example 3. The specification of the VM in Figure 1 is captured by the following set of
algebraic equations, shortened by use a mixture of language and regular expressions.

1. (Ready) Station i (1 ≤ i ≤ 3) is in its Ready[i] state after being reset or polled.

Ready[i] = ((true, true)∗ · (reset,av[i])∪Poll · (reset ∨¬vin[i],av[i]))
· (reset ∨¬vin[i],av[i])∗.

2. (Voting) Station i (1 ≤ i ≤ 3) is accepting a vote.

Voting[i] = Ready[i] · (¬reset ∧ vin[i],av[i]).

3. (Vote) Station i (1 ≤ i ≤ 3) has got a vote.

Voted[i] = Voting[i] ∪ (Voted[i]�Wait) · (¬reset,¬av[i]).

4. (Wait) At least one voting station is in its Ready state.

Wait = ∪3
i=1Ready[i].

5. (Poll) Every station is in its Voted state and one station is accepting a vote.

Poll = (�3
i=1Voted[i]) � (∪3

i=1Voting[i]).

6. (Output) The VM outputs the polling result.

Out put = Wait · (true,¬vout) ∪ Poll · (true,vout).
��

Note that this specification is not a conjunction of simple independent properties.
Rather it is a network of semantically inter-dependent “communicating” properties. The
following theorem shows that this set of equations is well defined in the algebraic sense.

Theorem 3. The set of equations C(Π) has a unique language solution.

222 Jin Yang and Carl-Johan H. Seger

The proof is based on Tarski’s fix-point theorem and an induction on the length of the
words in the languages in the equations. We omit the proof due to the page limitation. In
the following, we show that the limit of �mL i to each language L i in the compositional
specification is regular. This is significant based on Theorem 2, as it gives us a way
to precisely model check the specification by constructing an assertion graph for the
language and verifying the graph using the GSTE model checking algorithm in [22,
23]. To make the argument simple, we break each ∪ and � composition into a series of
pairwise compositions by introducing intermediate languages.

Lemma 2.

1.
⋃

m≥0�m(L ·σ) = (
⋃

m≥0 �mL) ·σ.
2.

⋃
m≥0�m(L1�L2) = (

⋃
m≥0�mL1)�(

⋃
m≥0�mL2).

3.
⋃

m≥0�m(L1 ∪L2) = (
⋃

m≥0�mL1)∪ (
⋃

m≥0 �mL2)∪ (
⋃

m≥0�mL1)
�(

⋃
m≥0�mL2).

The proof of the lemma is done by distributing � over · and ∪, and then using the
language containment argument. We omit the proof due to the page limitation.

Theorem 4.
⋃

m≥0�mL i is regular for every language L i (0 ≤ i < n) in Π.

Proof. Consider the power set of the limit languages �(
⋃

m≥0�mL i |L i ∈ Π). Based
on Lemma 2, each language in the power set can be expanded algebraically into either
a prefix composition of another language, or a summation composition of some other
languages in the set. Without the meet, the construction of a regular automaton for each
language in the set is straight forward. Since

⋃
m≥0�mL i is in the set, the claim holds.

��
5 Direct Model Checking of Compositional Specification

Although model checking any language in the compositional specification can be done
through the construction of the regular automaton for the meet limit of the language,
such a construction is likely to cause an exponential blow-up in the specification size.
To avoid the problem, we develop a GSTE model checking algorithm that directly walks
through the syntactical structure of the specification and establishes a simulation rela-
tion from the language elements in the specification to the sets of states in the circuit.

We first define a model over D as a triple M = (S ,R ,L) where

1. S is a finite set of states,
2. R ⊆ S ×S is a state transition relation over S such that for every state s ∈ S , there

is a state s′ ∈ S satisfying (s,s′) ∈ R ,
3. L : S → D is a labeling function that labels each state s ∈ S with a value d ∈ D.

M induces a monotonic post-image transformation function postM : �(S) → �(S):

postM(S ′) = {s′ | ∃s ∈ S ′,(s,s′) ∈ R }, (11)

for all S ′ ∈ �(S). We drop the subscript M when it is understood. A model is a Kripke
structure without the initial state. To follow the STE convention, we assume that every
state in M is an initial state. We extend L to state sets and define its inverse function L−

Compositional Specification and Model Checking in GSTE 223

L(S′) = {L(s) | s ∈ S′}, and L−(D′) = {s ∈ S |L(s) ∈ D′} (12)

for all S′ ∈ �(S) and D′ ∈ �(D).
A run of the model is any mapping function γ : � → S such that for all i ≥ 0,

(γ(i), γ(i+ 1)) ∈ R . The trace generated by γ, denoted by L(γ), is the point-wise ap-
plication of L over γ, i.e., L(γ)(i) = L(γ(i)) for all i ≥ 0. The trace language of the
model, denoted by Ω(M), is the set of all traces generated by the runs of the model,
i.e., Ω(M) = {L(γ) | γ is a run of M}.

We say that the model M satisfies an assertion language L , denoted by M|=L , if

Ω(M) ⊆ Ω(L). (13)

M satisfies the set of equations C(Π), denoted by M|=C(Π), if M|=L i for all L i ∈ Π.
The key idea of the model checking algorithm is to compute a simulation relation

for each language in Π on M. A simulation relation is a mapping from each language
L i (0 ≤ i < n) to a state set T i ∈ �(S), such that for every state s ∈ S, s ∈ T i if there is
a word w ∈ L i and a run γ in M such that

(1) L(γ)|=ant(w), and (2) s = γ(|w|). (14)

The simulation relation captures, for each language, the end of any run in the model
satisfying the antecedent sequence of a word in the language. It has nothing to do with
consequents. The importance of the simulation relation is stated in the following lemma.

Lemma 3. M|=C(Π), if for every prefix language L i = L j ·σ j, T i ⊆ cons(σ j).

Proof. First we prove that M|=L i for every prefix language. Assume M � |=L i. Then by
(13) and (1), there is run γ of M and a word w = w′ ·σ j in L i such that (1) L(γ)|=ant(w),
but (2) L(γ(|w|) �∈ cons(σ j). By (14), γ(|w|) is in T i, and thus L(T i) �⊆ cons(σ j). Fur-
ther, M|=L0 since L0 = (D ,D)∗. Based on this result, It also becomes obvious that
M|=L i for every ∪-composition L i (h≤ i < l) by (2). Finally, consider a �-composition
L i = L i1� . . .�L iki

. Consider a trace τ in Ω(M). Let w = w1� . . .�wki be a word in L i.
By (13), we have τ|=ant(wj) ⇒ τ|=cons(wj) for all 1 ≤ j ≤ ki. Now let us assume
τ|=ant(w). Then by (4), τ|=ant(wj) and therefore τ|=cons(wj) for 1 ≤ j ≤ ki. Thus,
τ|=cons(w). Therefore, τ ∈ Ω(L i) by (5) and thus M|=L i. ��

We now show how to iteratively compute a simulation relation for the specification
based on its structure. Let S n to denote the n-ary state set tuple (S 0,S 1, . . . ,S n−1). We
define a partial order relation �: S n � S ′

n, iff ∀0≤ i < n,S i ⊆ S ′
i. (�(S)× . . .×�(S),�)

forms a finite c.p.o. with the bottom element being /0n = (/0, . . . , /0).
We define an update function for n-ary state set tuples on model M

Y (S n) = (Y0(S n),Y1(S n), . . . ,Yn−1(S n)) (15)

where

1. (Initialization) L0 = ε∪L0 ·σ0:

Y0(S n) = S, (16)

224 Jin Yang and Carl-Johan H. Seger

2. (Prefix) L i = L j ·σ j for 1 ≤ i < h:

Yi(S n) =
{

L−(ant(σ j)) if Lj = L0

post(S j)∩L−(ant(σ j)) otherwise,
(17)

3. (Summation) L i = L i1 ∪ . . .∪L iki
for h ≤ i < l:

Yi(S n) = ∪ki
j=1S i j , (18)

4. (Meet) L i = L i1� . . .�L iki
for l ≤ i < n:

Yi(S n) = ∩ki
j=1S i j . (19)

It can be shown that Y is monotonic, and the sequence (Y 0(/0n),Y 1(/0n),Y 2(/0n), . . .) is
an ascending chain with a least fixpoint, i.e., ∃M ≥ 0,∀k ≥ M,Y k(/0n) = Y M(/0n).

Lemma 4. Y M(/0n) is a simulation relation for C(Π) on M.

The proof is based on an induction on the length of words leading to a state in the
simulation relation, and is omitted due to the page limitation. Based on this result,
we develop a GSTE model checking algorithm for the compositional specification in
Figure 2. The following correctness result holds.

Algorithm: cGST E(C(Π),post)
1. T 0 := S , T i := /0 for all 1 ≤ i < n;
2. active := {L i |L i = L0 ·σ j};
3. while active �= /0
4. L i := pickOne(active);
5. case L i = L0 ·σ j: new := L−(ant(σ j));
6. L i = L j ·σ j: new := post(T j)∩L−(ant(σ j));
7. T i = L i1 ∪ . . .∪L iki

: new := ∪ki
j=1T i j ;

8. else: new := ∩ki
j=1T i j ;

9. endcase
10. if new �= T i
11. add to active every Lk having L i in its definition;
12. T i := new;
13. endwhile
14. if T i �⊆ cons(σ j) for some L i = L j ·σ j
15. return(f alse);
16. return(true);
end.

Fig. 2. cGSTE

Theorem 5. M|=C(Π), if cGSTE(C(Π),M) returns true.

The algorithm initially sets the simulation relation to the empty set for every lan-
guage except for L0, which is set to S . It then iteratively updates the simulation relation

Compositional Specification and Model Checking in GSTE 225

for a language by locally propagating the simulation relations for the languages in its
definition. It does so until no change can be made to any simulation relation. By avoid-
ing the construction of a “global” automaton which may cause an exponential blow-up
in the specification size, it becomes conservative but gains great efficiency.

To show the advantage of our approach over the assume-guarantee based compo-
sitional approach, we continue on the VM in Example 1. Figure 3 shows two different
implementations of the VM. Implementation (1) is partitioned into four modules, one
for each station and one for the final polling. Each station i tracks its own voting status
in v[i]. Implementation (2) bundles all the signals from and to the three stations into 3-
bit vectors, and the vector av[1:3] tracks the availability status of each station. Assume
that clr (set) sets the register to 0 (1) for the current and next steps.

Fig. 3. Two VM Implementations

The assume-guarantee based approach is heavily implementation dependent and
requires a clear understanding of the implementation details of the VM. For instance,
given implementation (1), the overall specification may be decomposed into four local
properties for the four modules, linking together through the interface behaviors of the
voting status signals v[1], v[2] and v[3]. The property for the polling module may say,
among other things, that if v[i] is high for all 1 ≤ i ≤ 3, then out = 1. The correctness of
the decomposition also needs to be justified. Further, the change of the implementation
could require an entirely different decomposition. For instance, the decomposition for
implementation (2) would be bit-slicing based and relies on behaviors of the availability
signals av[3:1] to glue local properties together. It is conceivable that such a manual
approach will be labor-intensive and difficult to get it right for complex designs.

On the contrary, our compositional specification is implementation independent.
The languages in the specification can be viewed as a logical decomposition of the
specification with no mentioning of the internal signal behaviors. Our model checking
algorithm automatically computes the mapping from the end behavior specified by each
language to the set of corresponding circuit states for any given implementation. Table 1
summarises the final simulation relations for Ready[i], Voting[i] and Voted[i] computed

226 Jin Yang and Carl-Johan H. Seger

by the algorithm on the two implementations. Based on this, the simulation relation for
Poll on implementation (1) is ¬clr∧ (∧3

i=1(vin[i]∨v[i]))∧ (∨3
i=1(vin[i]∧¬v[i])), which

allows one to conclude that the implmentation will indeed satisfy out = 1 at the next
step. Finally, we point out that the quaternary simulation aspect of GSTE allows our
algorithm to focus only the relevant part of the model at each iteration step and store
the simulation relations efficiently in an abstract form. We will not talk about it in the
paper due to the page limitation.

Table 1. Final Simulation Relations for the VM

Language Implementation (1) Implementation (2)
Ready[i] (clr∨¬vin[i])∧¬v[i] (set ∨¬vin[i])∧av[i]
Voting[i] ¬clr∧ vin[i]∧¬v[i] ¬set ∧ vin[i]∧av[i]
Voted[i] ¬clr∧ (vin[i]∨ v[i]) ¬set ∧ (vin[i]∨¬av[i])

6 Verification of Micro-instruction Scheduler

The compositional GSTE has been implemented as a part of the GSTE verification sys-
tem inside the Intel Forte environment ([1]). In this section, we discuss the verification
of a micro-instruction (uop) scheduler in the original Intel R©Pentium R© 4 Microproces-
sor Scheduler/Scoreboard unit (SSU) (see Figure 4) as described in [5, 21]. The sched-
uler can hold and schedule up to 10 micro-instructions. The correctness property for the
scheduler is that “when the resource is available, the oldest ready uop in the scheduler
will be sent out.” Even a much weaker version of the property, on the priority matrix
module only stating “a uop would be scheduled if there are ready uops”, had been quite
difficult to prove previously using a state-of-the-art in-house symbolic model checker
based on an assume-guarantee based approach. The logic involved created significant
tool capacity problems, and required that the high level property be decomposed into
literally hundreds of small local properties. Creating and proving this decomposition
was done manually, and required a significant amount of time. Its maintenance and
regression has been costly as the design changed.

Using the compositional GSTE approach, we were able to specify the entire cor-
rectness property succinctly in a compositional manner at the unit level, and verify it
very efficiently using the compositional model checking algorithm. The compositional
specification was developed in a top-down fashion. The top level property is

Prop = OldestReadyUop[i] · (¬stop,sched[i])

which simply says that if uop[i] (0 ≤ i < 10) is the oldest ready uop, then schedule
it at the next step if the resource is available. We then expand the property
OldestReadyUop[i]:

OldestReadyUop[i] = Ready[i]�(� j �=i(NotReady[j]∪EnqueuedEarlier[i, j]))

which simply defines the oldest ready uop as the uop that is ready and was enqueued to
the scheduler earlier than any other ready uop. We keep expanding the properties until
they are described in terms of input/output signal behaviors.

Compositional Specification and Model Checking in GSTE 227

ready logic
priority matrix

receiving logic

scheduling logic

delivering logic

staging and
C

A
M

 m
atch

uop

alloc

ready

init

stop

sched

out

Fig. 4. Intel R© Pentium R© 4 Microprocessor SSU Scheduler

A recent rerun of the verification was done on a computer with 1.5 GHz Intel R©
Pentium R© 4 processor with 1 GB memory. It was done on the original SSU circuit
with no prior abstraction, which contains 718 latches, 361 inputs, and 17367 gates. The
verification was done in 122 seconds using only 36MB memory. Most of the memory
was used for storing the circuit. The tremendous verification efficiency benefits from
the specification driven state space exploration strategy of the GSTE algorithm and the
extended quaternary circuit abstraction technique [22]. Because of these, the verifica-
tion complexity largely depends on the complexity of the specification to be verified
rather than that of the circuit under verification, and is very scalable when the number
of uops handled by the scheduler increases.

Finally, we would like to point out that compositional GSTE has been in active use
in Intel and been successfully applied to the verification of several large-scale complex
circuits in microprocessor designs.

7 Conclusion

In this paper, we presented a practical compositional extension to GSTE. For future
work, we would like to extend the terminal condition and the fairness condition [23] to
compositional GSTE, and apply the abstraction/refinement methodology in [22] to the
compositional framework.

Acknowledgment

We would like to thank Ching-Tsun Chou, John O’Leary, Andreas Tiemeyer, Roope
Kaivola, Ed Smith and reviewers for valuable feedbacks.

228 Jin Yang and Carl-Johan H. Seger

References

1. M. Aagaard, R. Jones, T. Melham, J. O’Leary, and C.-J. Seger. A methodology for large-
scale hardware verification. In FMCAD’2000, November 2000.

2. R. Alur and R. Grosu. Modular refinement of hierarchical state machines. In Proc. of the
27th ACM Symposium on Principles of Programming Languages, pages 390–402, 2000.

3. R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of hierarchic reactive
machines. In Computer-Aided Verification (LNCS1855, pages 280–295, 2000.

4. R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines. In
Proc. of the 26th International Colloquium on Automata, Languages, and Programming
(LNCS1644), pages 169–178, 1999.

5. B. Bentley. High level validation of next generation micro-processors. In IEEE International
High-Level Design, Validation, and Test Workshop, 2002.

6. J. Bergstra, A. Ponse, and S. Smolka. Handbook of Process Algebra. Elsevier, 2001.
7. C.-T. Chou. The mathematical foundation of symbolic trajectory evaluation. In Computer

Aided Verification, July 1999.
8. E. Clarke, D. Long, and K. McMillan. A language for compositional specification and veri-

fication of finite state hardware controllers. Proc. of the IEEE, 79(9):1283–92, Sept. 1991.
9. D. Harel. A visual formalism for complex systems. Science of Computer Programming,

8(3):231–274, June 1987.
10. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
11. T. Henzinger, S. Qadeer, and K. Rajamani. You assume, we guaranee: Methodology and

case studies. In Computer Aided Verification (LNCS 1427), pages 440–451, 1998.
12. T. Henzinger, S. Qadeer, K. Rajamani, and S. Tasiran. An assume-guarantee rule for check-

ing simulation. ACM Trans. on Programming Languages and Systems, 24:51–64, 2002.
13. C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
14. F. Jahanian and A. Mok. Modechart: A specification language for real-time systems. IEEE

Trans. on Software Engineering, 20(2):933–947, Dec. 1994.
15. B. Josko. Verifying the correctness of aadl-modules using model checking. In Proc. of

the REX Workshop on Stepwise Refinement of Distributed Systems, Models, Formalisms,
Correctness (LNCS430). Springer, 1989.

16. D. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD thesis, Com-
puter Science Department, Carnegie Mellon University, 1993.

17. K. McMillan. A compositional rule for hardware design refinement. In Computer Aided
Verification, June 1997.

18. K. McMillan. Verification of an implementation of tomasulo’s algorithm by compositional
model checking. In Computer Aided Verification, June 1998.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. A. Pnueli. In transition from global to modular temporal reasoning about programs. In

Logics and Models of Concurrent Systems, volume NATO ASI 13. Springer, 1997.
21. T. Schubert. High-level formal verification of next generation micro-processors. In 40th

ACM/IEEE Design Automation Conference, 2003.
22. J. Yang and C.-J. Seger. Generalized symbolic trajectory evaluation – abstraction in action.

In FMCAD’2002, pages 70–87, November 2002.
23. J. Yang and C.-J. Seger. Introduction to generalized symbolic trajectory evaluation. IEEE

Trans. on VLSI Systems, 11(3):345–353, June 2003.

	1 Introduction
	2 Assertion Languages
	3 The Meet Operator
	4 Compositional Specification
	5 Direct Model Checking of Compositional Specification
	6 Verification of Micro-instruction Scheduler
	7 Conclusion
	References

