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Abstract. Different modelling techniques from different disciplines are needed 
to model complex socio-technical systems and their requirements. This paper 
describes the application of RESCUE, a process that integrates 4 modelling 
techniques to model and analyse stakeholder requirements for DMAN, a system 
for scheduling and managing the departure of aircraft from major European air-
ports. It describes how human activity, use case and i* modelling were applied 
and integrated using synchronisation checks to model requirements on DMAN. 
Synchronisation checks applied at predefined stages in RESCUE revealed 
omissions and potential inconsistencies in the models and stakeholder require-
ments that, in turn, led to improvements to the models and resulting specifica-
tion. The paper ends with implications for requirements model integration, and 
describes future work to extend and apply RESCUE. 

1   Introduction 

Complex socio-technical systems such as air traffic management (ATM) – in which 
people depend on computer systems to do their work – need to be analysed from dif-
ferent perspectives. To do this we need to employ different modelling techniques in 
synchronised ways to analyse a future system and its requirements from all necessary 
perspectives. Research provides us with different system and requirements modelling 
techniques (e.g. Yu & Mylopoulos 1994, De Landtsheer et al. 2003, Hall et al. 2002, 
Rumbaugh et al. 1998). However, further research is needed to synchronise them 
when modelling complex socio-technical systems. 

In particular, research must overcome 2 major challenges. Firstly, we need to be 
scale existing techniques to model and analyse large systems in which people com-
puter systems interact. Whilst some techniques such as the Rational Unified Process 
(RUP) and UML are used to model large systems, more research-based techniques 
such as i* have yet to be used extensively to model large socio-technical systems. The 
RUP was developed to model software systems, and lacks representations for early 
requirements and techniques for reasoning about complex systems boundaries and 
work allocation that i* offers. Secondly, given the divergent purposes for which these 
techniques were originally developed, we need to be able to synchronise them to de-
tect possible requirements omissions, inconsistencies and conflicts. One problem is 
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that established requirements techniques have emerged from single disciplines – use 
cases from software engineering and task analysis from human-computer interaction 
are two obvious examples. Safety-critical socio-technical systems such as ATM de-
mand rigorous analyses of controller work, software systems that support this control-
ler work, and the complex interactions between the controllers, the air traffic and the 
software systems. To do this we need new processes that synchronise and analyse 
models from the relevant disciplines. This paper presents one such process, RESCUE, 
and describes its application to a large and computerised ATM system project. 

Previously, academic researchers worked with Eurocontrol to design and imple-
ment RESCUE, an innovative process to determine stakeholder requirements for 
systems that will provide computerised assistance to air traffic controllers. RESCUE 
was successfully applied to determine the requirements for CORA-2, a complex 
socio-technical system in which controllers work with a computerised system to re-
solve conflicts between aircraft on a collision path (Mavin & Maiden 2003). The first 
half of this paper reports the application of a new version of RESCUE to model the 
requirements for DMAN, a socio-technical system for scheduling and managing the 
departure of aircraft from major European airports such as Heathrow and Charles de 
Gaulle. A requirements team that included engineers from UK and French air traffic 
service providers modelled the DMAN system and requirements using techniques 
including human activity modelling (Vicenze 1999), i* (Yu & Mylopoulos 1994), and 
use cases (Cockburn 2000). The second half of the paper reports the use and effec-
tiveness of RESCUE synchronisation checks for cross-referencing and integrating 
these different model types during the RESCUE process. 

The remainder of this paper is in 5 sections. Section 2 describes related research. 
Sections 3 and 4 outline the RESCUE process and describe its synchronisation 
checks. Section 5 reports the application of RESCUE to DMAN with emphasis on 
data about the effectiveness of the synchronisation checks.  The paper ends with dis-
cussion and future research and applications. 

2   Related Work 

RESCUE draws together and extends work from different sources. Several authors, 
including Cockburn (2000), have extended use case techniques with structured tem-
plates. Our work adopts these best-practice extensions to use cases, but also adds 
several use case attributes that inform scenario generation from use cases reported in 
Mavin & Maiden (2003). 

The i* method for agent-oriented requirements engineering is well documented 
(e.g. Yu & Mylopoulos 1994). More recently, researchers have been reporting exam-
ples that demonstrate i*’s applicability for handling non-functional issues such as 
security and privacy applied to healthcare systems (Liu et al. 2003). Whilst the re-
ported examples demonstrate i*’s potentially scaleability, most models have been 
developed by the research team. In contrast, RESCUE requires other engineers to 
produce i* models for the large socio-technical systems, thus providing additional 
data about the usability and effectiveness of the method on industrial case studies. 

Other researchers have integrated the i* goal modelling approach implemented in 
RESCUE with use case approaches. Santander & Castro (2002) present guidelines for 
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automatically deriving use case models from i* system models, and Liu & Yu (2001) 
integrate goal modelling with the GRL with use case maps to refine scenarios into 
architectural designs with goal-based rationale. Our work in RESCUE is similar to the 
latter work but exploits i* models to scope use case models, specify use cases and 
inform scenario walkthroughs rather than derive architectures per se. 

Detecting and reasoning across models during early requirements work has re-
ceived little attention, especially for socio-technical systems (Nuseibeh et al. 2003). 
Leveson et al. (2000) describe a safety and human-centred approach that integrates 
human factors and systems engineering work. Although similar in spirit to RESCUE, 
their approach includes safety hazard analysis and verification that were outside 
RESCUE’s scope, and covers the full development cycle. 

3   The RESCUE Process 

The RESCUE (Requirements Engineering with Scenarios for User-Centred Engineer-
ing) process was developed by multi-disciplinary researchers (Maiden et al. 2003). It 
supports a concurrent engineering process in which different modelling and analysis 
processes take place in parallel. The concurrent processes are structured into 4 
streams shown in Figure 1. 

 

 

Fig. 1. The RESCUE process structure – activity modeling ends after the synchronization stage 
at stage 2, system modeling after the synchronization stage at stage 3, and scenario-driven 
walkthroughs and modeling requirements after synchronization checks at stage 5. 
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Each stream has a unique and specific purpose in the specification of a socio-
technical system: 

 

1. Human activity modelling provides an understanding of how people work, in order 
to baseline possible changes to it (Vicente 1999); 

2. System modelling enables the team to model the future system boundaries, actor 
dependencies and most important system goals (Yu & Mylopoulos 1994); 

3. Use case modelling and scenario-driven walkthroughs enable the team to commu-
nicate more effectively with stakeholders and acquire complete, precise and test-
able requirements from them (Sutcliffe et al. 1998); 

4. Managing requirements enables the team to handle the outcomes of the other 3 
streams effectively as well as impose quality checks on all aspects of the require-
ments document (Robertson & Robertson 1999). 
 

Sub-processes during these 4 streams are co-ordinated using 5 synchronisation 
stages that provide the project team with different perspectives with which to analyse 
system boundaries, goals and scenarios. These stages are implemented as synchroni-
sation checks described later in the paper that are applied to the models at each stage. 
The next sections describe each of the 4 streams in more detail. 

3.1   Human Activity Modelling 

In this RESCUE stream the project team develops an understanding of the current 
socio-technical system to inform specification of a future system. Activity modelling 
focuses on the human users of the technical system, in line with the principle of hu-
man-centred automation (ICAO 1994). To do this the project team must first under-
stand the controllers’ current work – its individual cognitive and non-cognitive com-
ponents and social and co-operative elements - to specify the technical systems that 
can better support that work. Introducing artefacts, tools or procedures into the work 
domain changes the way in which people work and process information. It also brings 
about changes in the cooperative, and possibly organisational structures that are re-
lated to the new system. The stream consists of two sub-processes – gathering data 
about and modelling the human activity. Figure 2 describes 2 actions that make up 
one human activity description – how runway controllers at Heathrow give line-up 
clearance to aircraft. Different aspects of the model are linked to the scenario as a 
whole or each action, thus providing a structured but flexible description of current 
work practices. 

One key concept in an activity model is goals - the desired states of the system. 
Goals may be: (i) high-level functional goals relating to the system as a whole, or 
local goals relating to particular tasks; (ii) individual goals, relating to single actors, or 
collective goals, relating to teams of actors; (iii) prescribed goals or non-prescribed 
goals. Other aspects to describe in a model include human actors - people involved in 
system; resources – means that are available to actors to achieve their goals, for ex-
ample flight strips and information about a flight; resource management strategies – 
how actors achieve their goals with the resources available, for example writing down 
flight information on the flight strips; constraints - environmental properties that af-
fect decisions, for example the size on the flight strip bay, which limits the number of 
strips to work with; actions - undertaken by actors to solve problems or achieve goals; 
contextual features – situational factors that influence decision-making, for example 
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priorities are given to incoming aircraft. Data describing these concepts is structured 
into the activity descriptions such as the one presented in Figure 2. 

3.2   System Modelling 

In this RESCUE stream the project team models the future system’s actors (humans 
and otherwise), dependencies between these actors and how these actors achieve their 
goals, in order to explore the boundaries, architecture and most important goals of the 
socio-technical system. RESCUE adopts the established i* approach (Yu & Mylopou-
los 1994) but extends it to model complex technical and social systems, establish 
different types of system boundaries, and derive requirements. i* is an approach 
originally developed to model information systems composed of heterogeneous actors 
with different, often-competing goals that nonetheless depend on each other to under-
take their tasks and achieve these goals – like the complex socio-technical systems 
found in ATM. 

The systems modelling stream requires 3 analyses to produce 3 models. The first is 
a context diagram, similar to the REVEAL process (Praxis 2001) but extended to 
show different candidate boundaries based on different types of adjacent actors 
(Robertson & Robertson 1999). The result is an extended context model with typed 
actors that provides a starting point for i* system modelling.  

The second model is the i* Strategic Dependency (SD) model, which describes a 
network of dependency relationships among actors identified in the context model 
(Yu & Mylopoulos 1994). Figure 3 shows a draft SD model for the DMAN system. It 
specifies other systems that either depend on or are depended on by DMAN (e.g. 
TACT and A-SMGCS), and human roles that depend on DMAN to do their work (e.g. 
Runway ATCO and Departure Clearance ATCO). For example, the SD model speci-
fies that DMAN depends on TACT to achieve the goal CTOT and slot messages up-
dated, and A-SMGCS depends on DMAN to undertake the task update taxi time esti-
mates. Likewise, DMAN depends on the Tower Departure Sequencer ATCo to have 
the departure sequence manual update, and the Departure Clearance ATCo depends 
on DMAN to achieve the soft goal workload not increased. 
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Fig. 2. Part of the DMAN Human Activity Model. 
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Fig. 3. Part of the SD Model for DMAN. 

RESCUE provokes the team to ask important questions about systems boundaries 
by re-expressing them in terms of the goal dependencies between actors on either side 
of a boundary. Actors with goals that the team will seek to test for compliance are, by 
definition, part of the new system. Such re-expression also leads to more effective 
requirements specification by referring to named actors that will be tested for compli-
ance (e.g. “The controller using DMAN shall have access to the departure se-
quence”). It also suggests a first-cut architecture and functional allocation for the 
socio-technical system by defining which actors undertake which tasks. 

The second type of i* model is the Strategic Rationale (SR) model, which provides 
an intentional description of how each actor achieves its goals and soft goals. In the 
SR model for DMAN’s human Runway ATCO actor, this actor undertakes one major 
task – control flight around the runway – that is decomposed into other tasks such as 
issue line-up clearance and issue take-off clearance. The former task can be further 
decomposed into sub-tasks and sub-goals which, if undertaken and achieved, contrib-
ute negatively to the achievement of an important soft goal – that workload should not 
be increased. Furthermore, to do the issue line-up clearance task, the Runway ATCO 
depends on the resource flight information from the electronic flight strip. 

This stream provides key inputs to the managing requirements and scenario-driven 
walkthroughs. Goals and soft goals in i* SR models become requirements in the man-
aging requirements stream. Context and i* models define the system boundaries es-
sential for use case modelling and authoring. The i* SR models define goal and task 
structures that suggest skeletal use case descriptions to refine the scenario-driven 
walkthroughs stream. 
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3.3   Scenario-Driven Walkthroughs 

In this RESCUE stream the team writes use cases then generates and walks through 
rich scenarios to discover and acquire stakeholder requirements that are complete, 
precise and testable. It uses the research-based ART-SCENE environment, which 
supports the automatic generation of scenarios from use case descriptions and system-
atic scenario walkthroughs to discover, acquire and describe requirements. The ART-
SCENE environment was successfully to discover requirements for the CORA-2 
system (Mavin & Maiden 2003). In this paper we focus on 2 out of the 5 sub-
processes. 

The first sub-process is use case modelling (Jacobson et al. 2000) that we have ex-
tended to model and investigate different system boundaries identified in the context 
model. The outcome is a use case model with use cases and short descriptions that are 
inputs into use case authoring. The DMAN use case diagram specifies human actor 
roles and their associations with 13 use cases and one abstract use case. 

In the second sub-process the team writes detailed use case descriptions using the 
structured templates derived from use case best practice (e.g. Cockburn 2000). To 
write each description the team draw on outputs from the other streams – activity 
models, i* strategic rationale models, stakeholder requirements, and innovative design 
ideas from the creativity workshops. Once each use case description is complete and 
agreed with the relevant stakeholders, the team produce a use case specification from 
it, and parameterise it to generate scenarios automatically from each description. Part 
of a use case description is shown in Figure 4. 
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Fig. 4. Part of a draft DMAN use case description for UC9: Change the runway spacing strat-
egy. 

3.4   Managing Requirements 

In this fourth RESCUE stream the project team documents, manages and analyses 
requirements generated from the other 3 streams – automation and process require-
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ments emerging from human activity modelling, system actor goals and soft goals 
from i* system modelling, and requirements arising from scenario walkthroughs.  

Each requirement is documented using the VOLERE shell (Robertson & Robertson 
1999), a requirement-attribute structure that guides the team to make each require-
ment testable according to its type. Use cases and scenarios are essential to making 
requirements testable. Each new requirement is specified either for the whole system, 
one or more use cases of that system, or one or more actions in a use case. This 
RESCUE requirement structure links requirements to and places them in use cases 
and use case actions “in context”, thus making it much easier to a write a measurable 
fit criterion for each requirement. RESCUE requirements are documented using IBM 
Rational’s Requisite Pro. Outputs from other streams, such as use case, context and i* 
models, are also included in the document. 

4   Synchronisation Checking 

Work and deliverables from RESCUE’s 4 streams are coordinated at 5 key synchroni-
sation points at the end of RESCUE’s 5 stages, implemented as one or more work-
shops with deliverables to be signed off by stakeholder representatives: 

 

1. The boundaries point, where the team establishes first-cut system boundaries and 
undertakes creative thinking to investigate these boundaries; 

2. The work allocation point, where the team allocate functions between actors ac-
cording to boundaries, and describe interaction and dependencies between these 
actors; 

3. The generation point, where required actor goals, tasks and resources are elabo-
rated and modelled, and scenarios are generated; 

4. The coverage point, where stakeholders have walked through scenarios discover 
and express all requirements so that they are testable; 

5. The consequences point, where stakeholders undertake walkthroughs of the sce-
narios and system models to explore impacts of implementing the system as speci-
fied on its environment. 
 

The synchronisation checks applied at these 5 points are designed using a 
RESCUE meta-model of human activity, use case and i* modelling concepts con-
structed specifically to design the synchronisation checks. It is shown in simplified 
form in Figure 5 – the thicker horizontal lines define the baseline concept mappings 
across the different models used in RESCUE. 

In simple terms, the meta-model maps actor goals in human activity models to re-
quirements in use case descriptions and i* goals and soft goals. Likewise, human 
activities map to use cases, and human actions to use case actions that involve human 
actors in use cases and tasks undertaken by human actors in i* models. Human activ-
ity resources map to i* resources and objects manipulated in use case actions, and 
actors in all 3 types of model are mapped. The complete meta-model is more refined. 
Types and attributes are applied to constrain possible mappings, for example use case 
descriptions and i* models describe system actors, however only human actors in 
these models can be mapped to actors in human activity models. 
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Fig. 5. RESCUE concept meta-model as a UML class diagram showing mappings between 
constructs in the 3 model types. 

This paper reports the application of synchronisation checks at the first 2 stages. At 
Stage 1, data about human activities and the extended context model are used to check 
the completeness and correctness of the use case model. Use case summaries are used 
to check system-level requirements. Checks are: 

 
Check 1.1 Every major human activity (e.g. applying resolutions) should correspond to one or 

more use cases in the use case model. 
Check 1.2 Every actor identified in human activity modelling is a candidate actor for the con-

text model. 
Check 1.3 Every adjacent actor (at levels 2, 3 or 4 of the context model) that communicates 

directly with the technical system (level 1 in the context model) should appear as an 
actor in the use case diagram. 

Check 1.4 The system boundary in the use case diagram should be the same as the boundary 
between levels 1 and 2 in the context model. 

Check 1.5 Services and functions related to use cases in the use case model should map to 
system level requirements, i.e. high-level functional and non-functional require-
ments, in the requirement database. 

 
At Stage 2, most cross checking is done in order to bring the human activity and 

first-cut i* models to bear on the development of correct and complete use case de-
scriptions. Checks are: 

 
Check 2.1 Actors, resources, goals, actions and resource management strategies identified in 

activity modelling should be represented in the i* SD and SR models as appropri-
ate. 

Check 2.2 Actors, resources, goals, actions, differences due to variations, and differences 
due to contextual features in the activity models should appear in relevant use 
case descriptions. 

Check 2.3 Goals identified in the activity models should be reflected in the system and use 
case-level requirements in the requirement database 

Check 2.4 All external actors in the i* SD model should correspond to actors in the use case 
descriptions. 

Check 2.5.1 Each low level task (i.e. each task that is not decomposed into further lower-level 
tasks) undertaken by an actor in the i* SR model, should correspond to one or 
more actions in a use case description. 
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Check 2.5.2 Each resource used in, or produced from, a task in the i* SR model should be 
described in a use case description. 

Check 2.5.3 Ensure that dependencies modelled in the i* models are respected in the use case 
descriptions, in particular: 
• For goal and soft goal dependencies, the dependee must first produce what-

ever is needed for the depender to achieve the goal or soft goal; 
• For resource dependencies, the dependee must first produce the resource that 

the depender needs in order for the depender to be able to use it; 
• For task dependencies, the dependee must first make available whatever the 

depender needs in order for the depender to be able to do the task, perhaps via 
communication. 

Check 2.6 All goals and soft-goals to be achieved by the future system according to the i* 
SR model should be specified in the system requirements specification and stored 
in the requirements database. 

Check 2.7 All requirements associated with a use case in the use case template should be 
expressed in the system requirements specification and stored in the requirements 
database. 

 
These synchronisation checks were applied in first 2 stages of DMAN, as de-

scribed in the remainder of this paper. 

5   DMAN Case Study 

The RESCUE process was applied to specify the operational requirements for 
DMAN, Eurocontrol’s new system for scheduling and managing departures from 
major European airports. DMAN is a complex socio-technical system involving a 
range of human actors including tower controllers and aircraft pilots, interacting with 
other computer-based systems related to both airport and air movements, and support-
ing aircraft movement from push back from the gate to take off from the runway. The 
project was led by the UK’s National Air Traffic Services (NATS) and involved par-
ticipants from Centre d'Etudes de la Navigation Aerienne (CENA) and City Univer-
sity’s RESCUE experts. The DMAN team was composed of 2 systems engineers 
employed by NATS and CENA and one RESCUE team member from City. It also 
worked with 4 UK and 4 French air traffic controllers who were seconded to the pro-
ject, other NATS and CENA engineers, and software engineering academics. At the 
beginning of the project the City experts trained 5 NATS and CENA engineers, in-
cluding the 2 in the DMAN team, in the RESCUE process using presentations and 
exercises. There were two days training on i* system modelling, two days on use 
cases, scenarios and requirements management, and one day on human activity mod-
elling. 

The project started in February 2003 and was timetabled to take 9 months to pro-
duce DMAN’s operational requirements document. Stages 2 and 3 were completed in 
September 2003, with stage 4 scenario walkthroughs taking place in October and 
November 2003. Stage 2 deliverables included a human activity model describing 
how UK controllers at Heathrow currently manage the departure of aircraft, a DMAN 
use case model and use case descriptions, system-level requirements, and some i* SD 
and SR models for DMAN. The human activity model was divided into 15 scenarios 
describing controller work, reported in a 50-page deliverable. The use case model 
contained 8 actors and 15 use cases. Each use case contained, on average, 13 normal 
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course actions and 3 variations to the normal course behaviour. The majority of these 
use case actions were human actions or actions involving interaction with DMAN and 
other computer-based systems, rather than system actions. The i* SD model specified 
15 actors with 46 dependencies between these 15 actors.  The SR model was more 
complex, with a total of 103 model elements describing 7 of the 15 actors defined in 
the SD model. 

Stage 2 RESCUE deliverables were developed in parallel based on signed off de-
liverables from stage 1 of the RESCUE process by staff with the relevant available 
resources and expertise. The human activity model was developed primarily by City 
staff, the use case model and descriptions by NATS staff, and the i* models by CENA 
staff. Throughout stage 2 all staff had access to intermediate versions of the models 
under development elsewhere in the project. Therefore, synchronisation checks were 
needed at the end of stage 2 to detect omissions, ambiguities and inconsistencies in 
the requirements models that arose in spite of regular communication between part-
ners. 

The RESCUE stage 2 synchronisation checks were described in the previous sec-
tion. In DMAN, the checks were applied by the RESCUE quality gatekeeper, one 
member of City staff responsible for maintaining the DMAN requirements repository 
and validating inputs to it. The synchronisation checks took the gatekeeper approxi-
mately 8 days of full-time work to apply. Results were documented using pre-
designed tables with issues and action lists that were reported to DMAN team mem-
bers to resolve. 

5.1   Results from the Synchronisation Checks 

Table 1 summarises the number of checks applied, issues arising, and actions result-
ing from the checks. Furthermore check 2.0, which verifies that the i* SR model is 
consistent with its originating SD model, led to 19 additional issues to be resolved – 
mostly SD elements and dependency links that were missing from the SR model. 
Likewise, other within-stream checks, such as verifying all use case descriptions 
against the originating use case model were undertaken. In the remainder of this paper 
we focus on the more interesting results arising from the model synchronisation 
checks across the streams. 

Table 1 shows that the synchronisation checks generated very different numbers 
and types of issue and actions for the team to resolve. Three checks – 1.3, 2.4 and 
2.5.3 -  generated nearly 92% of all identified issues. In contrast, Checks 1.5, 2.3 2.6 
and 2.7 were not applied due to the model-driven approach adopted by the DMAN 
team – rather than establish VOLERE requirements at the same time as the models, 
the team chose to derive such requirements from the models at the end of stage 3, 
hence there were no requirements in the data base to check against. Check 2.1 was 
also not applied in Stage 2 due to lack of resources. The check verifies the human 
activity and i* models – given the importance of scenarios in RESCUE, resources 
were focused on verifying the use case descriptions against other models. 

Synchronisation with the human activity model was verified using checks 1.1, 1.2 
and 2.2. Check 1.1 revealed 3 current human activities that were not included in a 
DMAN use case – subsequent analysis revealed that these activities were not part of 
the DMAN socio-technical system, and no model changes were needed, and the ra-
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tionale for this was documented. Likewise, check 1.3 revealed that 4 human actor 
roles missing from the context model were no longer roles in the new DMAN system, 
and no changes were made to the model. Check 2.2 verified whether contextual fea-
tures in the human activity model had been included in the use case descriptions, and 
one issue arose. The activity model revealed the importance of removing flights com-
pletely from the departure sequence – activities without responding use cases and 
actions in the use case description. The issue led to a pending change to the use case 
model. 

Check 1.3, verifying that actors in the context model are also specified in the use 
case model, revealed 21 issues to synchronise. Of these 21 issues, 2 were discrepan-
cies in actor names, 13 were missing links between the actor and the use case, and 6 
actors were missing from the use case diagram. A pattern emerged. All but one of the 
missing actors were external software systems (e.g. FDPS and A-SMGCS) while the 
missing links were with human actors such as Ground ATCO. This was because of a 
decision to simplify the stage 1 use case model to only show primary rather than sec-
ondary actors on the use case diagram. One consequence from this decision is the 
result of check 2.4, which identified 37 actors that were missing from the use case 
descriptions. During the retrospective interview, the NATS systems engineer reported 
that use case descriptions provided effective mechanisms for describing detailed in-
teraction, but at the expense of structure (“it’s always hard to see both the wood and 
the trees”). New mechanisms to show the overall structure of an individual use case 
were needed. 

Checks 2.5.1 to 2.5.3 verified the use case descriptions against the i* models. 
Check 2.5.2 revealed no missing resources from the use case descriptions. Check 
2.5.1 identified 5 SR model tasks undertaken by actors that are not described in any 
use case description. The tasks Departure Clearance ATCO, Ground ATCO and 
Runway all respect the CTOT, the Runway ATCO issues takeoff clearance, and Tower 
Departure Sequencer ATCO gets discrepancy between capacity and departure de-

Table 1. Quantitative summary of synchronisation checks applied to RESCUE models arising 
from stages 1 and 2. 

Check ID Total issues 
arising 

Issues and actions for RESCUE models 

Check 1.1 3 Activities without use cases, no action required. 
Check 1.2 4 Actors missing from context model, no action required. 
Check 1.3 21 Missing actors and actor links in use case model, incorrect actor 

naming, needs changes. 
Check 1.4 0 No issues arising between context and use case model. 
Check 1.5 0 No system-level requirements. 
Check 2.1 - Not applied yet – reason explained in text. 
Check 2.2 1 Ambiguity detected, needs changes. 
Check 2.3 0 No use case-level requirements. 
Check 2.4 37 Omitted actors from use case descriptions, needs changes. 
Check 2.5.1 5 Omissions from use case descriptions, needs changes. 
Check 2.5.2 0 All resources included. 
Check 2.5.3 55 Ambiguities needing clarification, missing use case elements, de-

pendencies between use cases discovered, use case decomposition 
needed, action ordering wrong, missing non-functional requirements, 
needs changes. 

Check 2.6 0 No use case-level requirements. 
Check 2.7 0 No use case-level requirements. 
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mand lacked corresponding actions in the use cases, suggesting omissions and further 
actions to synchronise the use case descriptions and i* models.  

Check 2.5.3, which investigates whether use case descriptions respect i* model de-
pendencies, revealed 55 important issues to resolve in the RESCUE models. Further-
more, only 14 of the total of 69 checks did not raise an issue, suggesting that check 
2.5.3 is more useful to apply than other checks. Table 2 describes the different types 
of issues and their frequency of occurrence that arose from applying check 2.5.3. 

Table 2. Total instance of different types of result arising from applying Check 2.5.3. 

Types of issues arising from application of Check 2.5.3 Total instances of 
occurrence 

Checks resulting in no issue or change 14 
Potential ambiguities requiring clarification and resolution 18 
Actors and/or actors missing from use case description 17 
Important dependencies between use cases discovered 6 
Other elements missing from use case description 5 
Error or inconsistent data in the use case description 2 
Use case and use case description missing 2 
Soft goals or non-functional requirements missing from use case 2 
General ambiguity identified in the use case 1 
Potential decomposition of a use case and its description needed 1 
Actions in use case description in the wrong order 1 

 
Most of the 18 potential ambiguities arose from i* dependencies that require a spe-

cific ordering of actions both within and across use cases. Each ambiguity gave rise to 
a potential inconsistency that might arise due to un-stated assumption about the 
DMAN system. For example, the i* models specified that the Ground ATCo depends 
on DMAN to undertake the task Check MOBT (measured off-block time), and DMAN 
must update the MOBT. Use case UC3 specifies 2 actions: (2) The Ground ATCO 
looks for the flight information on the DMAN display: (3) The Ground ATCO checks 
that the status of the flight in DMAN is ‘OK to Push’. The two dependencies are true 
if we assume that MOBT information is provided by DMAN and is included in the 
check undertake by the ATCO. The resulting action was to establish and document 
the underlying domain assumption and, where necessary, change one or more of the 
models. 

The check also revealed 17 cases of actor actions missing from the use case de-
scriptions. For example, the i* models specified that the Runway ATCO (an actor in 
many use cases) depends on the Tower Departure Sequencer (TDS) ATCO to have the 
departure sequence followed and updated, which in turn depends on the TDS ATCO 
planning the departure sequence. However, no actions in which the TDS ATCO plans 
the departure sequence are specified in the use case descriptions. Other use case ele-
ments were also missing, for example, the i* models specified that DMAN depends on 
the Ground ATCO to achieve the goal of ready status updated, which in turn depends 
on the Ground ATCO doing the task forward ready status, but no actions correspond-
ing to the task were specified in the use case descriptions. In 2 cases, these dependen-
cies revealed a possible missing use case – an actor uses DMAN to evaluate capacity 
and demand. 
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Finally, the check revealed potentially important dependencies between use cases 
that were not explicitly identified beforehand. Again, consider one of the simpler 
examples. The i* models specified that the TMA Departure ATCO depends on the 
Runway ATCO to do the task control flight after takeoff (referred to here as task T1), 
which in turn depends on the Runway ATCO doing the task transfer flight to TMA 
Departure ATCO (referred to as task T2). Task T1 maps to action-7 in UC7, and task 
T2 maps to action-6 in UC13. This reveals an implied dependency between UC7 and 
UC13, and that action-6 in UC13 shall happen before action-7 in UC7. From this and 
5 other similar dependencies, we have produced a simple model showing previously 
un-stated dependencies between DMAN use cases that have important implications 
for the timing and order of actor behaviour in the future DMAN system. 

Further application of synchronisation check 2.5.3 was restricted because 23 de-
pendencies between i* SR actor models could not be checked due to incomplete 
elaboration of i* SR models for all actors. 

5.2   Case Study Conclusions 

The DMAN requirements process enabled us to investigate and report the effective-
ness of RESCUE and some of its model synchronisation checks on a real and com-
plex project. Several key findings emerge. Systems engineers with the pre-requisite 
training are able to apply advanced modelling techniques such as i* to model complex 
socio-technical systems, and these models do provide new and useful insights. In spite 
of this success, further method engineering work is needed to support the develop-
ment of scaleable i* models. For example, constructing a single SR models specifying 
all actors and their dependencies is very difficult due to number and nature of these 
dependencies. 

In the use case descriptions, the systems engineers provided more specification of 
human actor behaviour rather than system actor behaviour, perhaps due to the focus 
of socio-technical systems in RESCUE. Furthermore, to our surprise, very few sys-
tem-level requirement statements were specified in the first 2 stages – instead the 
engineers were satisfied to develop and agree requirements models in the form of use 
case descriptions and i* models from which approximately 220 requirement state-
ments have subsequently been derived. 

The RESCUE synchronisation checks required resources to apply, due primarily to 
the degree of human interpretation of the models needed. Furthermore, some syn-
chronisation checks were more effective than others at revealing insights into the 
DMAN specification. Synchronisation checks often resulted in further knowledge 
elicitation and document (specification of the ‘world’ in REVEAL terms) to resolve 
potential model ambiguities. Finally, synchronisation checks appeared to fall into 2 
basic types: (i) synchronisation of models based on their first-order properties often 
related to naming conventions (e.g. check 1.3), and: (ii) synchronisation of models 
based on their derived properties, such as in check 2.5.3, which leads to in-depth veri-
fication of the use case descriptions using i* actor and element dependencies. These 
latter types of checks appear to be more useful to the engineers. 



382      Neil A.M. Maiden et al. 

6   Discussions and Future Work 

This paper describes intermediate results from an industrial case study that applied 
and integrated established and research requirements modelling techniques to a com-
plex socio-technical system in air traffic management. It reports 2 major innovations: 

 

1. New requirements modelling techniques namely i*, with simple process exten-
sions, can be applied effectively to model socio-technical systems; 

2. The analysis of these models combined in the RESCUE stream and synchronisa-
tion structure shown in Figure 1 revealed important insights that are unlikely to 
have been obtained using other modelling techniques. 

 

Most research-based requirements engineering techniques have been developed in 
isolation. Our results, although preliminary, suggest that there are benefits from ex-
tending current and designing future techniques to integrate with established ones. 
Conceptual meta-models, such as the RESCUE meta-model in Figure 8, provide one 
foundation for model synchronisation, but more research in method engineering is 
needed to design integrated techniques for process guidance (which models to de-
velop in what order), model synchronisation (which checks to do when) and model 
integration (when is one integrated model preferable to several different models). A 
good example of method integration emerging from the DMAN experience is the use 
case dependency model generated as a result of applying check 2.5.3. 

This DMAN case study also has implications for the multi-disciplinary require-
ments and design teams advocated by other authors (e.g. Viller & Sommerville 1999 
for the ATM domain). The DMAN team was composed of engineers with systems 
and software rather than human factors backgrounds, and yet adequate training and 
methodology enabled the production of human activity models that effectively under-
pinned the development and analysis of the system models and were praised by the 
client. 

Future research will refine and formalise the specification of the synchronisation 
checks, with a view towards introducing software tool support for model synchronisa-
tion. Given the need for human interpretation, we believe that software tools will be 
limited to detecting and ranking candidate issues in pairs of models – issues that engi-
neers with considerable domain expertise will still have to resolve. In this sense, we 
view our work as different to ongoing research of viewpoints (e.g. Nuseibeh et al. 
2003) and inconsistency management (e.g. Nentwich et al. 2003)., that is increasing 
formal specification of system requirements and automation of development proc-
esses. The advantage of RESCUE here is that it implements existing and tried-and-
tested modelling techniques, limited between-model synchronisation based on simple 
concept meta-models and types, and guided synchronisation strategies for engineers 
to adopt. 
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