
A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 338–352, 2004.
 Springer-Verlag Berlin Heidelberg 2004

A Systematic Approach to Express IS Evolution
Requirements Using Gap Modelling

and Similarity Modelling Techniques

Camille Salinesi, Anne Etien, and Iyad Zoukar

CRI - Université Paris 1, 90, rue de Tolbiac, 75013 Paris, France
camille@univ-paris1.fr

{anne.etien,iyad.zoukar}@malix.univ-paris1.fr

Abstract. Gaps and similarities are two important concepts used in Information
System (IS) projects that deal with the evolution issue. The idea in using these
concepts is to analyse what changes or what remains similar between two situa-
tions, typically the changed situation and the new one, rather than just describ-
ing the new situation. Although in the industry, the daily practice consists in
expressing evolution requirements with gaps and similarities, little attention has
been paid in research to better systematically define these two kinds of concepts
so as to better support the expression of evolution requirements. This paper
proposes an approach that combines meta-modelling with generic typologies of
gap operators and similarity predicates. Our purpose is not to define yet another
requirement modelling language. On the contrary, the two generic typologies
can be adapted to existing modelling language such as Use Cases, I* and KAOS
goal models, Goal/Strategy maps, Entity-Relationship diagrams, and Workflow
models.

1 Introduction

In nowadays business competitive world, organizations have recognized the need for
more agility in the development of their Information Systems (IS). Indeed, it is not
anymore enough to have a system that fulfils the needs of a business. Now, it is nec-
essary that systems evolution matches the evolution of businesses. [Salinesi03a]
[Salinesi04].

According to [Jarke94], a system evolution can be designed as the movement from
a situation to a new one. Traditionally, these situations are (as shown in Fig. 1) re-
spectively captured in As-Is models and To-Be models. In many academic approaches,
the evolution requirements are expressed by only specifying the To-Be. Our experi-
ence in several industrial projects showed us that, on the contrary, evolution require-
ments were initially captured relatively to the As-Is (even when this one is implicit
and not specified), then the To-Be models are specified (if necessary from scratch). In
this approach, the change process is an As-Is to To-Be movement for which require-
ments can be expressed as gaps and similarities relative to As-Is models. In [Sa-
linesi03a], we demonstrated that this framework can be adapted to four different
classes of IS evolution projects, namely: direct change propagation, customisation
from a product family, adaptation of a baseline product and component assembly.

A Systematic Approach to Express IS Evolution Requirements 339

• In direct change propagation, the issue is to propagate the change requirements
from the business level to the system functionality level. Change requirements are
expressed as gaps with the As-Is [Salinesi03a].

• In customisation from a product family, the issue is to match the initial vision of
the business (defined in As-Wished models) with models of the functionality capa-
bility of the product family (defined in Might-Be models) to specify the To-Be on
the business and on the system functionality levels. The requirements for these To-
Be models are expressed as similarities with the As-Wished and with the Might-Be
[Zoukar04a] [Zoukar04b].

• In the case of adaptation of a baseline product, the issue is to find how the To-Be
should differ from the As-Wished (on the business level) and the Is-Baseline (on
the system functionality level) to obtain a correct adaptation of the baseline prod-
uct. The required differences are specified under the form of gaps [Rolland04].
In component assembly, the change process consists in retrieving from a collection

of COTS those that match the organization needs (defined in As-Wished business
models (BMs)), and assembling them to obtain the To-Be situation. In this complex
process, the matching requirements are expressed as similarities between the As-
Wished BMs and the Might-Be models of the system functionality (SFMs). The re-
quirements for component adaptation and assembly are expressed as gaps with the
initial Might-Be [Rolland01b].

As-Is
BM

As-Is
SFM

To-Be
BM

To-Be
SFM

Change
Process

As-Is
BM

As-Is
SFM

To-Be
BM

To-Be
SFM

Change
Process

Fig. 1. Methodological framework for IS evolution

Despite the diversity of engineering processes dealing with these four classes of IS
evolution projects, our experiences led us to identify two common underlying strate-
gies. One is based on gaps, and the other is based on similarities. Intuitively, our pro-
posal is to express IS evolution requirements with:
− gaps as operators that express transformations of As-Is models into the To-Be

models, and
− similarities specify through predicates what the As-Is (or Might-Be) and To-Be (or

As-Wished) should have in common.
Our languages of gaps and similarities are defined as two generic typologies of gap

operators and similarity predicates. A number of gaps operators and similarity predi-
cates were discovered within industrial projects. To achieve genericity and complete-
ness, the typologies were specified so that the gap operators and similarity predicate
would apply on the elements and structures of a generic meta model. This generic
meta-model can be instantiated by any specific meta-model such as Use Case, Entity
Relationship, etc.. As gap operators and similarity predicates relate to the generic
meta-model, the specific elements and structures identified for a specific meta-model
can be easily transposed onto specific gap operators and specific similarity predicates.

340 Camille Salinesi, Anne Etien, and Iyad Zoukar

This allows us to express gaps and similarities in a specific way whichever language
are required in the IS evolution project to specify the As-Is, As-Wished, Is-Baseline,
Might-Be or To-Be models. The language formed by our two typologies can then be
used to express evolution requirements; there is no assumption whether or not ex-
pressing these requirements necessitates the existence of the As-Is, As-Wished or
Might-Be models. Our experience showed that this language is richer and more al-
lows more precise specification of evolution requirements than the languages that are
intuitively used in practice or developed in academy without a reference meta-model.

The rest of the paper is structured as follows: section 2 details the approach
adopted to develop our generic typologies of similarity predicates and gap operators.
The two resulting languages are respectively described in section 3 and 4. An exam-
ple of application with goal/strategy maps, E/R diagrams and workflow models is
presented in Section 5. Sections 6 and 7 discuss respectively related works and the
future works in our research agenda.

2 Approach Taken to Develop the Typologies
 of Gap and Similarity

Gaps and similarities are the two central concepts needed to express requirements in
an IS evolution project. There are different kinds of gaps, different kinds of similari-
ties, and those can be defined to express requirements related to different kinds of
models. Therefore, we adopted a systematic approach aiming to (i) identify a list of
gap operators and similarity predicates that would be as complete as possible, and (ii)
provide the means to adapt the identified gap operators and similarity predicates to the
project situation.

2.1 General Overview

The general overview of our approach is presented in Fig. 2. As the figure shows,
gaps (represented by the symbol ∆) and similarities (represented by the symbol ≡) are
specified at the modelling level. Gaps and similarities are relative; hence they can
relate to various models (As-Is BM, As-Is SFM, As-Wished BM, Might-Be SFM,
etc). These models can be specified using different meta models such as Use Case,
E/R, Workflow, Business Process, Goal hierarchy, etc. In a concrete project, it is for
instance possible to express a number of change requirements using gaps predicates,
then build the To-Be models, then forecast the value/cost ratio of the change require-
ments in reference to the future business and system.

The link between models and meta-models is an instantiation link. This means that
any element in a model instantiates an element in a meta-model. Similarly, we believe
that any requirement expressed as a gap or as a similarity on the modelling level
should be an instance of some concept formalised on the meta-model level. We call
the different kinds of meta-models “specific meta models” (as they all have their
specificities), and the typologies of gap operators and similarity predicates that corre-
spond to them “specific typologies”. The link between the specific typologies and the
specific meta-models shows that any specific typology of gap operators or specific
typology of similarity predicates applies on a specific meta-model.

A Systematic Approach to Express IS Evolution Requirements 341

Rather than defining as many typologies of gap operators and similarity predicates
as there are of specific meta-models, our approach proposes to take a larger generic
view. A generic meta-model level is thus used on top of the specific meta-model
level. This generic meta-model level contains a unique generic meta-model on top of
the specific meta-models, and a generic typology of gap operators and of similarity
predicates on top of the specific typologies.

Issued from

Typology
Applied on
elements of

Generic Meta-
model

Issued from

Generic
Meta-
model
level

Generic
Typology

Applied on
elements of

Model
level

Specific
Meta-
model
level

Meta-model

Instance of Instance of Instance of

≡

≡

As-Is or
Might-Be
model

To-Be or
As-Wished

model

Issued from

Typology
Applied on
elements of

Generic Meta-
model

Issued from

Generic
Meta-
model
level

Generic
Typology

Applied on
elements of

Model
level

Specific
Meta-
model
level

Meta-model

Instance of Instance of Instance of

≡

≡

As-Is or
Might-Be
model

As-Is or
Might-Be
model

To-Be or
As-Wished

model

To-Be or
As-Wished

model

Fig. 2. Overview of the approach for defining the typologies

Let us take the example of a hotel room booking system specified with a Use Case
Model. Similarities could be used to express which Use Case, and which part of the
Use Cases have a similar equivalent in the Use Case Models defined for a number of
software packages available for the hotel business. These similarities instantiate the
specific typology of similarity predicates developed for Use Cases. This typology
contains predicates such as “Two actors have the same name” or “the attributes of a
Use Case include those of another Use Case”, etc. These predicates shall be used to
express requirements such as: (i) the actors in a Use Case have the same name as
those identified by the legacy system, and (ii) a component of the software package
can be selected if its attribute values are included in the attributes values defined for
one of the Use Cases that define the legacy system.

Similarly, the specific typology of gap operators contains the operator “Add Use
Case”, “Change Origin of Use Case-Actor Association”, or “Merge Actors”. This
allow to express requirements such as: (1) add a “cancel booking after booking date”
Use Case in the Use Case Model of a booking system, or (2) merge the “salesman”
and “receptionist” actors into a unique “front-desk” actor to simplify the organisation
of sales in the hotel.

As these examples show it, specifying gaps and similarities to express require-
ments is not difficult once the specific typologies of gap operators and similarity
predicates are known. However, defining these typologies from the generic typologies
requires knowing how the specific meta-model at hand specialises the generic meta-
model.

2.2 Generic Meta-model

The generic meta-model is not a ‘universal’ meta-model that would aim at specifying
any concept in any method. On the contrary, its purpose is only to make explicit the

342 Camille Salinesi, Anne Etien, and Iyad Zoukar

main elements and structures of method parts that can be specified in a product meta-
model [Rolland02]. We developed this meta-model based on a long experience
of meta-modelling and meta-meta-modelling [Grosz97] [Plihon96] [Si-Said99]
[Ralité01]. The generic meta-model shown in Fig. 3 with the UML notation stipulates
that any that can be represented graphically model is composed of a collection of
elements with properties.

Elements have a name and have properties. For example, a Use Case Model, a Use
Case, an Actor, or a Scenario are different elements of the Use Case meta-model. The
various attributes of Use Cases are as many properties that directly relate to the Use
Case element. Elements are also classified into two pairs of sub-groups. First, a dis-
tinction is made between simple elements and compound elements. Second, elements
are classified into link and not link.

Compound elements are composed of elements. Those can at their turn be simple
or compound, and thus several levels of composition can be defined. For example, a
Use Case Model is composed of Use Cases, which are at their turn composed of sce-
nario descriptions, etc. Let us notice that any model or diagram is composed of ele-
ments. There are models in which one element always appears. This is for example
the case of the system boundary in a Use Case model, or for the Object class in a class
inheritance diagram. These elements are classified as Root.

Link Elements are connectors between pairs of elements. Every link can be ori-
ented. Therefore, one of the linked elements plays the role of Source and the other of
Target. For example, the "extends" relationship and the uses relationships are link
elements of the Use Case meta-model.

Not link Compound

Simple

Property

Element
Name

source

target

has a

0..*

Is-a

Root

Link

Not link Compound

Simple

Property

Element
Name

source

target

has a

0..*

Is-a

Root

Link

Fig. 3. Generic meta-model for defining the gap and the similarity typologies

The systematic definition of generic gap operators and generic similarity predicates
directly results of the structure of the generic meta-model. For example, (i) adding or
removing elements in the composition of a compound element are gaps, and (ii) hav-
ing the same collection of components is a similarity that typically relate to compound
elements. The two typologies were therefore developed by: first, looking for gap op-
erators and similarity predicates in the literature, then, by systematically generalising
them by applying them on all parts of the generic meta-model.

3 Generic Typology of Similarity Predicates

The generic meta-model indicates that any meta-model is composed of elements with
properties. Besides, the structure of a meta-model is shown through element composi-

A Systematic Approach to Express IS Evolution Requirements 343

tion and through links between elements. Based on this, the generic typology of simi-
larity predicates emphasises that given a pair of elements, (i) their properties can be
similar, and (ii) their structure can be similar. As Fig. 4 shows, there are thus two
classes of similarities, intrinsic similarities and structural similarities.

A pair of elements has an intrinsic similarity if they have similar properties. Ele-
ment properties can be considered similar if they have a close semantics. In the first
place, intrinsic similarity relates to synonymy. However, hyponymy (or the other way
round hyperonymy) are also semantic relationships that can be used to define intrinsic
similarities.

Structural similarity deals with (i) the composition of elements, and (ii) their or-
ganisation within models. There are thus two classes of structural similarity: composi-
tional similarity, and relational similarity. Contrary to intrinsic similarity that only
involves the two compared elements, structural similarities also imply comparisons
between other elements that are related to the two compared ones. As shown in Fig. 4
by the aggregation link from structural similarity class to the similarity class, a struc-
tural similarity is a complex one and involves other similarities. For example, two
elements have the “same components in a composition” if each component in one
element has a semantically “same” counterpart in the composition of the other ele-
ment.

Similarity

Intrinsic Structural

Hyperonymy/
Hyponymy

Synonymy CompositionalRelational

Similarity

Intrinsic Structural

Hyperonymy/
Hyponymy

Synonymy CompositionalRelational

Fig. 4. Generic typology of similarity predicates (main categories)

Thirty-three similarity predicates composing the generic typology have been identi-
fied so far and are listed in table 1. These were classified in the four aforementioned
classes and are defined as follows:

(i) Synonymy:

− Two elements have a synonym type if their types are equal or have a common
super-type (they are then cousins). This is, for example, respectively the case of
two goals in map models, or two actors in Use Case models.

− There are different degrees of possible resemblances between the properties of a
pair of elements: two elements have the same property when their properties have
exactly the same name and the same meaning (for example two extension condi-
tions in two different Use Case models); they have alike properties when their
properties are identified with different words but have the same meaning (for ex-
ample two classes that specify the same business object in two different ERP mod-
ules); or they have a resembling property when the properties have different names
and values, but they still have a close meaning (like for example a standard busi-
ness object in two different ERPs).

344 Camille Salinesi, Anne Etien, and Iyad Zoukar

(ii) Hyponymy/Hyperonymy relates two elements when the meaning of the one sub-
sumes/is subsumed by the meaning of the other. As with synonymy, hy-
ponymy/hyperonymy similarity can be defined on the type and on the properties of
elements:

− with respect to type, hyponymy/hyperonymy relates to a father/son relationship
between the types of the involved elements.

− With respect to properties, two elements are in a hyponymy/hyperonymy relation-
ship if the properties of the ones includes/extends the properties of the other. This
is for instance the case when the attributes of one class are included (or have a
similar counterpart) in the collection of attributes of another class.

(iii) Relational similarities are defined between link elements that are connected to
similar source/targets, or between elements that are related to the rest of their models
through similar links. As table 1 shows, there are different kinds of relational structure
similarity predicates. These include (without being restricted to): same number of
links (when two elements are source/target of the same number of links), same num-
ber of links entering in a node (when two elements are source of the same number of
links), same number of links outgoing from a node (idem, the other way round),
same/alike/resembling source, target, or source and target (when two links have
similar extremities), same depth (same max distance between nodes and leaves of the
trees they belong to) or same height (same max distance between nodes and the root
of the trees they belong to).

(iv) Compositional similarities deal with compound elements that are similar in their
composition, and with elements that belong to similar compositions. Table 1 quotes a
number of compositional structure similarity predicates: same cardinality of a com-
ponent (when two compound elements have the same number of components), same /
alike / resembling components in a composition (when the compositions of two com-
pound elements are comparable), same/alike/resembling common component in a
composition (when part of the compositions are comparable), etc.

Table 1. Generic typology of similarity predicates (details)

Synonymy
Hyperonymy
Hyponymy

Relational Compositional

Type Type Same number of links Same cardinality of a component

Equal type Father type Same links number entering in a node Same/Alike/Resembling components in a composition

Cousin type Son type Same links number outgoing from a node Same/Alike/Resembling common component in a composition

Same/Alike/Resembling source Part of Same/Alike/Resembling compound

Property Property Same/Alike/Resembling target

Same property Includes property Same/Alike/Resembling source & target

Alike property Extends property Same depth

Resembling property Same height

4 Generic Typology of Gap Operators

We propose to define gaps operators under the form of change operations made on
models. There are different kinds of such operations: adding elements, removing
them, changing their definition, replacing them by others, etc. Fourteen operators
have been identified and defined on the generic level, i.e. to apply on the generic

A Systematic Approach to Express IS Evolution Requirements 345

meta-model. Each operator identifies a type of change that can be performed on an
element or a property of the As-Is model. Table 2 sums up the generic gap typology
composed of 14 operators that we identified on Element or Property.

The operators have been classified according to the part of the generic meta-model
on which they apply. The five operators that can be applied on an element can also be
applied on any of the element specification (i.e. Link Element, Not Link Element,
Compound Element and Simple Element). The Rename operator changes the name of
the element in the To-Be model. Two separate As-Is elements become one in the To-
Be model when the Merge is applied on them. For example, two Use Cases can be
merged into one to indicate that from now on, the corresponding services shall be
provided by the system within a single transaction. In the opposite, the Split operator
decomposes one As-Is element into two To-Be elements. For example, a Use Case
UC1 can be split into UC2 and UC3. This can occur when the user requires to be able
to use independently the service defined in UC2 and UC3, and initially defined as part
of UC1. It may be necessary to replace an As-Is element by a different To-Be one
with the Replace operator. The Retype operator allows to change in the To-Be model
the type of an As-Is element.

All the other operators can only be applied on one type of element: the
ChangeOrigin operator only applies on Link elements in order to change the sources
or targets of links. The changeOrigin operator can for instance be used to specify that
the initiator actor of a Use Case has changed. The AddComponent operator is used
when a component is added in the To-Be. In the opposite, a component can be re-
moved with the RemoveComponent operator.

Three operators were also defined to specify when it is the properties of elements
that change: the Give operator allows to add a property to the To-Be element. This
operator is for example used when a new invariant predicate is attached to a Use
Case. In the opposite the Withdraw operator removes an As-Is property in the To-Be
element. Finally, the Modify operator changes the property of the To-Be element.

Finally, two operators can be applied on Root elements: Add, that allows to create
a model by introducing the Root, and the other way round, the Remove operator when
the model is destroyed. Typically, the system boundary is the first element to be
added; and the last element that should be removed when a Use Case model is created
or destroyed. Each gap operator at the specific meta-model level is defined with pa-
rameters to specify on which element it is applied.

5 Example of Application

This section illustrates the ability of our approach to adapt to different contexts. The
example taken is that of an IS evolution project in which goal/strategy maps [Rol-

Table 2. Meta-model elements and related operators

Element Link Compound Property Root
Rename ChangeOrigin AddComponent Give Add
Merge RemoveComponent Withdraw Remove

Split MoveComponent Modify
Replace
Retype

346 Camille Salinesi, Anne Etien, and Iyad Zoukar

land99] [Rolland01a], E/R diagrams [Chen76], and workflow diagrams [Casati96] are
used. The application domain is the one of hotel room booking [Salinesi03b]. In this
example, a hotel chain initially uses a system to handle room booking in a centralised
way. A project is undertaken to change the hotel booking business process in order to
improve competitiveness.

In the current situation, the products offered by the hotel chain are independently
designed in the system in a flat list which is augmented each time a new product is
designed. Once products are in the list, they are used to create booking contracts. Any
product of this list can be removed when it terminates its lifecycle. As shows the
goal/strategy map extract on top of Fig. 5, there are two strategies available to achieve
booking contracts management goal in the current situation: on the spot (i.e. at the
hotel), and with a third party (e.g. at the city’s tourist office or in an agency). The
contract management process ends up either by cancellation of the contract, or by
consumption of the associated product by the consumer.

Capture the
requirements needs

Make
propositions

Make Booking
Define the

request Manage
Payment

Status = accepted

Status = refused

Status = cancelled

Manage loyalty
points

Define customer
profile

On the spot

By a third party

Manage Booking
contracts

Construct a
product list

1,n

1,1

Hotel

- hotel#

- name

- address

- city

Room

- room#

- nbOfBeds

- nbOfPers

Belongs to

Define the
request

Make
propositions

Make
Booking

Manage the
request

Deal with
Payment

Status = accepted

Status = refused

Status = cancelled

Capture the
requirements needs

Make
propositions

Make Booking
Define the

request Manage
Payment

Status = accepted

Status = refused

Status = cancelled

Manage loyalty
points

Define customer
profile

On the spot

By a third party

On the spot

By a third party

Manage Booking
contracts

Construct a
product list

1,n

1,1

Hotel

- hotel#

- name

- address

- city

Hotel

- hotel#

- name

- address

- city

Room

- room#

- nbOfBeds

- nbOfPers

Room

- room#

- nbOfBeds

- nbOfPers

Belongs to

Define the
request

Make
propositions

Make
Booking

Manage the
request

Deal with
Payment

Status = accepted

Status = refused

Status = cancelled

Fig. 5. Extracts of the three As-Is models; goal/strategy map (top left); E/R (top right); work-
flow (bottom)

A number of evolutions were required. Three major evolutions can be highlighted: (1)
From now on, the system should be customer-centric; (2) It should be possible to
propose complex products (such as packages including tourist activities) to custom-
ers; (3) The sales channels have to be diversified.

Each of the three following sub-sections shows how specific typologies of gap op-
erators and similarity predicates are defined then used to express evolution require-
ments with each of the three modelling techniques used in the project.

Two different ways have been chosen to manage these evolutions: (i) by modifica-
tion of the legacy to create an ‘in-house’ To-Be (ii) by introducing COTS. These two
approaches are simultaneous described in following sub-sections; the first one is
based on gaps whereas the second one uses similarities.

A Systematic Approach to Express IS Evolution Requirements 347

5.1 Expressing Goal/Strategy Maps Evolution Requirements

A goal/strategy map is an oriented graph which nodes are goals and edges strategies,
i.e. ways to achieve a goal. Instantiating the generic meta-model shows that
goal/strategy maps are compound elements that contain “sections”. Every section in a
map is itself a triplet composed of two goals and a strategy. One goal plays the role of
source and should be achieved for the section to be undertaken. The other goal is the
target i.e. the section aims at achieving. Strategy is a link between goals that defines
way to reach the target goal from the source goal. Goals are simple/not link elements
which main property is the goal statement structure [Ralyté01]. As shown in [Rol-
land04], this allows to define specific operators for each kind of elements in
goal/strategy maps.

For example, the diversification of sales channels calls for a change on the As-Is
goal/strategy map (Fig.5) in which the As-Is system only proposes to achieve the
“Manage Booking contracts” goal with two strategies: on the spot and by a third
party. adding a third strategy. The AddStrategy(with web site, Attract People, Manage
Customer relationship) gap operator can for example be used to express this require-
ment. It is a specialisation of the AddComponent gap operator.

Another decision could be to use a hotel management software package (e.g. such
as Orchestra, WebHotel or Betisoft). Fig. 6 shows the intended business goals and
strategies and the facilities provided by one of these COTS. The COTS models have a
number of structural and intrinsic similarities with the As-Wished models, namely: (i)
the two goals “Attract people” and “Attract potential clients” are synonymous, and
have alike properties, and (ii) the COTS strategy of “Promotion” is labelled as a hy-
peronym of the strategy “By keeping customer’s loyalty” that was initially wished. It
is therefore decided to acquire the COTS and implement it in the new system.

By offering booking facilities to customer

By keeping customer’s loyalty

Manage customer
relationship

Attract
People

On the spot With web site By agency

By booking facilities

Promotion strategy

At the hotel By internet By agency

Manage customer
relationship

Attract
potential client

By offering booking facilities to customer

By keeping customer’s loyalty

Manage customer
relationship

Attract
People

On the spot With web site By agency

By offering booking facilities to customer

By keeping customer’s loyalty

Manage customer
relationship

Attract
People

On the spot With web site By agency

By booking facilities

Promotion strategy

At the hotel By internet By agency

Manage customer
relationship

Attract
potential client

By booking facilities

Promotion strategy

At the hotel By internet By agency

Manage customer
relationship

Attract
potential client

Fig. 6. Extracts of As-Wished (left hand) and COTS (right hand) goal/strategy maps

5.2 Required Evolutions with Respect to the WIDE Workflow Model

The contracting process is currently achieved as described in the WIDE workflow
model in Fig. 5. Fig. 7 shows two other workflow models, one which is the wished
target defined by the stakeholders, and the other which is the one supported by the
selected COTS.

In the WIDE meta model [Casati96], a Workflow Schema is a graph which nodes
are Tasks and edges Connectors. Connectors are links between tasks that define the
order in which they must be executed. Besides, a set of Variables with values (that
can be a default value) is associated with any Workflow schema. A Task is a unit of
work. Every Task has a ConditionFonction specifying the conditions that need to be

348 Camille Salinesi, Anne Etien, and Iyad Zoukar

satisfied before the task can be executed. A Null Task is a task that immediately fin-
ishes after it starts (no work is done); it is introduced only as a conceptual device to
define the semantics of a workflow schema. For example, an empty schema is defined
as containing a null task. A Connector defines a link of precedence / succession be-
tween tasks. There are different kinds of connectors: fork, and join.

The requirements for the new organisation have been initially defined as follows:
the system should be customer centric. It is thus decided to rename the first task “De-
fine the request” into “Capture customer needs”. Stakeholders also decided to enforce
customer loyalty. Two tasks should be added for this purpose: (i) “Define Customer
profile” that will allow the hotel consortium to make personalised offers to clients;
and (ii) “Manage loyalty points” that specifies that each time the client buy a product,
it receives loyalty points. Finally, the task “Deal with payment” is replaced by “Man-
age payment”. Indeed, the payment can not only be made with credit card, cash, per-
sonal cheques etc. as before, but henceforth also with loyalty points.

Analyse
customer needs

Make
propositions

Make
Booking

Manage
the request

Manage
Payment

Status = accepted

Status = refused

Status = cancelled

Manage
loyalty points

Define
customer profile

Capture
customer needs

Make alternative
propositions

Obtain customer
decision

Capture
customer needs

Make
propositions

Make
Booking

Manage
the request Manage

Payment

Status = accepted

Status = refused

Status = cancelled

Manage
loyalty points

Define
customer profile

Analyse
customer needs

Make
propositions

Make
Booking

Manage
the request

Manage
Payment

Status = accepted

Status = refused

Status = cancelled

Manage
loyalty points

Define
customer profile

Capture
customer needs

Make alternative
propositions

Obtain customer
decision

Analyse
customer needs

Make
propositions

Make
Booking

Manage
the request

Manage
Payment

Status = accepted

Status = refused

Status = cancelled

Manage
loyalty points

Define
customer profile

Capture
customer needs

Make alternative
propositions

Obtain customer
decision

Capture
customer needs

Make
propositions

Make
Booking

Manage
the request Manage

Payment

Status = accepted

Status = refused

Status = cancelled

Manage
loyalty points

Define
customer profile

Capture
customer needs

Make
propositions

Make
Booking

Manage
the request Manage

Payment

Status = accepted

Status = refused

Status = cancelled

Manage
loyalty points

Define
customer profile

Fig. 7. Parts of the As-Wished model (top) and the Might-Be model (bottom) concerning the
products in the catalogue

A number of the facilities can also be implemented by adapting the COTS that was
considered in the previous section. Indeed, the COTS Might-Be model has the same
decision function as the As-Wished discussed above. Besides, a number of the tasks it
supports have the same properties as the ones that were initially wished, e.g. “manage
the request” and “manage loyalty points”. Compositional and relational similarities
can be easily detected too. All the facilities offered by the COTS and specified in the
Might-Be are adopted as fulfilling the requirements that were initially wished. There-
fore, the decision that is made is to keep all these facilities. This requirement for the
To-Be is therefore specified under the form of similarities with the COTS-supported
workflow.

5.3 Evolution Requirements with Respect to the E/R Models

One of the important required evolutions was to replace the flat product list with a
collection of complex product definitions. It is decided that contract should now in-
clude all the hotel facilities such as for instance tennis, swimming pool, amphitheatre
and meeting rooms, Internet connections. In terms of gaps with the As-Is E/R model,

A Systematic Approach to Express IS Evolution Requirements 349

the evolution requirements are thus to: AddEntity(Activity), AddEntity(Option), Ad-
dRelationship(Proposes, Hotel, Activity), AddRole(<Proposes, Hotel, Activity>),
AddRelationship(Offers, Hotel, Option), AddRole(<Offers, Hotel, Option>), AddAt-
tribute(Activity, activity#), AddAttribute(Activity, activityName). These gaps directly
instantiate the specific typology of gap operators developed for the E/R meta-model.
The E/R model resulting from these evolution requirements can be designed as shown
in Fig. 8.

1,n

1,1 Activity

- activity#

- activityName

- actDescription

Hotel

- hotel#

- name

- address

- cityl

0,n

0,n

0,n

0,n

Room

- room#

- nbOfBeds

- nbOfPers

offers

proposes

Option

- option#

- optionName

- optDescription

1,n

1,1 Activity

- activity#

- activityName

- actDescription

Activity

- activity#

- activityName

- actDescription

Hotel

- hotel#

- name

- address

- cityl

Hotel

- hotel#

- name

- address

- cityl

0,n

0,n

0,n

0,n

Room

- room#

- nbOfBeds

- nbOfPers

Room

- room#

- nbOfBeds

- nbOfPers

offers

proposes

Option

- option#

- optionName

- optDescription

Fig. 8. Extract of the To-Be model with the products catalogue

Fig. 9 shows an E/R model of the COTS. A number of structural similarities are nec-
essary to confirm that the COTS matches the wished requirements. For example we
can notice that there are type and property synonymies concerning each entity of the
To-Be model with their counterpart in the Might-Be model. The “same common
component in a composition” structural compositional similarity allows to show that
the part of the To-Be is included in the Might-Be model.

These structural and intrinsic similarities between the two models help the re-
quirement engineer to master the matching process in order to establish the COTS
customisation tables. In addition, we can notice that the E/R model of the COTS is
richer than the To-Be.

1,n

1,1 Activity

- activity#

- activityName

- actDescription

Activity

- activity#

- activityName

- actDescription

OptionHotel

- hotel#

- name

- address

- cityl

Hotel

- hotel#

- name

- address

- cityl

0,n

0,n

0,n

0,n

Room

- room#

- nbOfBeds

- nbOfPers

Room

- room#

- nbOfBeds

- nbOfPers

offers

proposes

Appendix

- appendix#

- appendixName

- appDescription

Service

- service#

- serviceName

- serviceDescritpion

Service

- service#

- serviceName

- serviceDescritpion
0,n

0,n

0,n

0,n

proposes

Refers to

- option#

- optionName

- optDescription

Fig. 9. Parts of the Might-Be model concerning the products in the catalogue

350 Camille Salinesi, Anne Etien, and Iyad Zoukar

6 Related Works

Handling IS evolution is an important issue in both the academic world and in indus-
try; as show for example the IWPSE series of workshop [IWPSE]. The literature pro-
poses different approaches to manage IS evolution. Some approaches deal with the
propagation of change on the system implementation using a maintenance or a correc-
tion point of view. For example, [Breche96] defines a typology of operators to make
the class instances migrate from the old system to the new one. [Sadiq00] and [Bandi-
nelli93] propose similar approaches, respectively with a workflow meta-model and a
software process meta-model. Our approach differs from those in that we adopt a
requirement-driven point of view [Rolland04], whereas the aforementioned ap-
proaches rather focus on technical aspects such as system implementation or instance.

Several typologies of gap operators or similarity predicates were already proposed
to maintain the consistency and the validity of models [Breche96], [Bandinelli93]
[Deruelle99], [Ralyté01]. However, each of these typologies is only defined for one
specific meta-model. In our approach, we propose a generic typology of gap operators
and a generic typology of similarity predicates that can be specialised for any meta-
model, as we showed with 3 different examples of application and in [Etien03].

Similarity measurement is also a topic of interest in different areas of IS engineer-
ing and Requirements Engineering. For example, [Castano92] proposes to evaluate
components reusability through conceptual schema. [Jilani97] used similarity meas-
ures to select best-fit components. Similarity metrics for heterogeneous database
schema analysis were introduced by [Bianco99]. Our similarity approach is inspired
by [Castano92] and [Bianco99]. It could be compared to that of [Ralyté01], except
that we are not defining similarities between meta-models but between models, and
except the fact that the purpose is not just to find which element looks like another,
but also to specify evolution requirements according to which there should be simi-
larities between a future situation and an old one. Similarity measurement can also be
automated (e.g. see [NattOchDag01]). Such techniques could be used to guide the
matching between COTS and As-Wished models, but manual work is still needed to
transform the matching results into proper evolution requirements.

7 Conclusions

The example of the hotel room booking system shows how to use the gap modelling
and similarity modelling to express requirements in a context of IS evolution. Apply-
ing this approach on three different meta-models does not demonstrate that the ap-
proach is generic. However, combined with the fact that we already used this ap-
proach in the context of several different industrial projects ([Zoukar04a],
[Rolland04], [Salinesi02a], [Salinesi02b]) we believe it is sufficient to show that this
approach is indeed usable in different methodological contexts, and scalable to real-
world projects. Our approach to deal with scalability is to abstract As-Is, As-Wished,
Might-Be and To-Be using goal models, then drive the analysis in a top-down way.
As shown in the aforementioned experience reports, this helps to undertake the analy-
sis in a synthetic way, prune uninteresting parts of the business and of the system
functionalities, then concentrate on those parts of the business that are the most likely

A Systematic Approach to Express IS Evolution Requirements 351

to change or with respect to which stability is crucial. Our approach is however not
applicable in any IS evolution project. For instance it shouldn’t be used in project in
which the foreseen change has a revolutionary impact on the IS and on its business
environment (i.e. there should be only a limited amount of evolutions).

Further evaluations of our approach are however needed to substantiate our claim.
Besides to being generic, we expect that the evolution requirements language that is
constituted by our typology of gap operators and by our typology of similarity predi-
cates has also a number of other qualities such as completeness, exhaustiveness,
minimality, concision, and coherence. We have already empirically evaluated the gap
typology according these criteria [Etien03]. However, we believe further experiments
are needed, e.g. to evaluate the efficiency of expressing evolution requirements using
our approach, and to compare it with other approaches in real project situations.

Another important issue is the one of guiding the elicitation of evolution require-
ments and checking their correctness. We are currently developing three process
models. One is to elicit compliance requirements ensuring an adequate transition to
the new system when business evolution requirements have already been specified
[Salinesi03b]. The second one is being developed for an ERP project at the French
national railway company. It aims at guiding the elicitation of ERP requirements
[Zoukar04a] [Zoukar04b] so as to ensure maximum fitness of the ERP implementa-
tion with the new organisation of the business that the ERP project makes itself
evolve. The process model was developed in a project with a French company of the
automotive industry and guides adaptation of a baseline product [Rolland04]. We
would like to develop in the near future a process model for the fourth kind of project
that our methodological framework lead us to identify (namely component assembly),
and to look for an integrated multi-way-of-working process model [Plihon96]
[Grosz97] [Ralyté01] that could be adapted to any project situation. We believe that
one of the salient characteristic of these process models might be that evolution re-
quirements are not independent from each other. Clusters of change requirements and
inter-requirements dependency links are concept that we are considering in our cur-
rent research project to complete our approach.

References

[Bandinelli93] Bandinelli, S., et al. Software Process Model Evolution in the SPADE Environ-
ment. IEEE Transactions on Software Engineering, 19(12) pp.1128-1144, (1993).

[Bianco99] Bianco G. A Markov Random Field Approach for Querying and Reconciling Het-
erogeneous Databases. Proc. DEXA’99, Pisa, Italy, September 1999.

[Breche96] Breche P. Advances Primitives for Changing Schemas of Object Databases, Proc.
CAiSE'96, Springer Verlag (pub), Heraklion, Greece, 1996.

[Casati96] Casati, F., Ceri, S., Pernici, B., Pozzi, G. Workflow Evolution. Proc. Of 15th Int.
Conf. On Conceptual Modeling (ER'96), Cottbus, Germany, pp. 438-455 (1996)

[Castano92] Castano S. De Antonellis V. Zonta B. Classifying and Reusing Conceptual Com-
ponents. Procs. of ER’92, pp. 121-138, Karlsruhe, 1992.

[Chen76] P. Chen. The Entity-Relation Model - Towards Unified View of Data. ACM Transac-
tions on Database System, 1(1):9-36, March 1976.

[Deruelle99] Deruelle, L., et al. Local and Federated Database Schemas Evolution An Impact
Propagation Model. Proc. DEXA'99, pages 902-911, Italy, September 1999.

352 Camille Salinesi, Anne Etien, and Iyad Zoukar

[Etien03] Etien, A., Salinesi, C. Towards a Systematic Definition of Requirements for Software
Evolution: A Case-study Driven Investigation. Proc of EMMSAD’03, Austria, 2003.

[Grosz97] G. Grosz, et al. Modelling and Engineering the Requirements Engineering Process:
An Overview of the NATURE Approach. Requirements Engineering Journal, (2), 1997.

[IWPSE] IWPSE International Workshop on the Principles of Software Evolution
[Jarke94] Jarke, M., Pohl, K. Requirements Engineering in 2001: Managing a Changing Real-

ity. IEEE Software Engineering Journal, pp. 257-266. November 1994.
[Jilani97] Jilani L.L. Mili R. Mili A.. Approximate Component Retrieval: An Academic Exer-

cise or a Practical Concern?. Procs. (WISR8), Columbus, Ohio, March 1997.
[Plihon96] Plihon V. Un environnement pour l'ingénierie des méthodes. PhD Thesis, University

of Paris1 Panthéon-Sorbonne, 1996
[Ralyté01] Ralyté J. Ingénierie des méthodes à base de composants, PhD Thesis, University of

Paris1 Panthéon-Sorbonne, January 2001.
[NattOchDag01] Natt och Dag J. Evaluating Automated Support for Requirements Similarity

Analysis in Market-driven Development. Procs. REFSQ’01, Switzerland, 2001.
[Rolland99] Rolland C., Prakash N., Benjamen A. A Multi-Model View of process Modelling,

Requirements Engineering Journal, Vol 4, pp 169-187, 1999.
[Rolland01a] Rolland C., Prakash N. Matching ERP System Functionality to Customer Re-

quirements, Proceedings of RE'01, Canada, pp. 66-75, 2001.
[Rolland01b] Rolland C. Requirements Engineering for COTS based Systems. XXVII Latin

American Conference on Informatics (CLEI'2001), Merida, Venezuela. September, 2001.
[Rolland02] Rolland C. A Comprehensive view of Method Engineering Invited talk, Pro-

moteIT2002, Knowledge Foundation Symposium, Skovde, Sweden, April 2002.
[Rolland04] Rolland, C., Salinesi, C., Etien, A. Eliciting Gaps in Requirements Change. Re-

quirement Engineering Journal Vol. 9, pp1-15, 2004
[Sadiq00] Sadiq, S. Handling Dynamic Schema Change in Process Models. Australian

Database Conference, Canberra, Australia, 2000.
[Salinesi02a] Salinesi, C., et al. A Method to Analyse Changes in the Realisation of Business

Intentions and Strategies for Information System Adaptation. Proc. EDOC'02, Sept. 2002.
[Salinesi02b] Salinesi, C., Wäyrynen J.: A Methodological Framework for Understanding IS

Adaptation through Enterprise Change. Proceedings of OOIS’02, France, September 2002
[Salinesi03a] Salinesi, C., Rolland, C.: Fitting Business Models to Systems Functionality Ex-

ploring the Fitness Relationship. Proceedings of CAiSE’03, Velden, Austria, 2003.
[Salinesi03b] C. Salinesi, A. Etien, Compliance Gaps: a Requirements Elicitation Approach in

the Context of System Evolution, Proceedings of the OOIS’03, Switzerland, Sept. 2003.
[Salinesi04] Salinesi C. et al Goal / Strategy Maps - Methods, Techniques and Tools to Specify

Requirements in Different Evolutionary Contexts. Proc. INCOSE'04, France, June 2004.
[Si-Said99] Si Said S. Proposition pour la modélisation et le guidage des processus d'analyse

des systèmes d'information. University of Paris1 Panthéon-Sorbonne, February 1999.
[Zoukar04a] Zoukar I., Salinesi C. Engineering the Fitness Relationship between an ERP and

the Supply Chain Process at SNCF. Proc. IRMA'04, USA, May 2004.
[Zoukar04b] Zoukar I., Salinesi C. Matching ERP Functionalities with the Logistic Require-

ments of French Railway. Proc. ICEIS'04, Portugal, April 2004.

	1 Introduction
	2 Approach Taken to Develop the Typologies of Gap and Similarity
	2.1 General Overview
	2.2 Generic Meta-model

	3 Generic Typology of Similarity Predicates
	4 Generic Typology of Gap Operators
	5 Example of Application
	5.1 Expressing Goal/Strategy Maps Evolution Requirements
	5.2 Required Evolutions with Respect to the WIDE Workflow Model
	5.3 Evolution Requirements with Respect to the E/R Models

	6 Related Works
	7 Conclusions
	References

