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Abstract. The vertical disease spreading from parent to offspring
and/or horizontal transmission through infection is discussed, using cel-
lular automata approach implemented on a N x N lattice. We concentrate
on age distribution of the population, resulting from different scenario,
such as whether newborns are placed in close vicinity of parents or se-
parated from them. We also include migration aspect in context of di-
sease spreading. Main conclusions drawn are that the vertical version is
resistant to manipulations of parameters which control migration. Hori-
zontal version represents self-recovering population unless migration of
grown-ups is introduced for the case of offsprings located in vicinity of
parents. Then the migration seems to be beneficial for highly infectious
and lethally diseases, while it brings more deaths for milder infections.

1 Introduction

Most population evolution models are based on differential equations which de-
scribes a statistically significant and representative member of the population
and applies deterministic rules to its time evolution. Time is then a continuous
variable. However it is not so often that then we may solve the set of differential
equations and then we apply discrete time and set rules to predict the t — ¢+ 1
transition of the system. Obviously, it may work for the time step sufficiently
small, when changes in parameters characterizing the system are small, too. In
simulation iterations, time is discrete. The the system often shows elementary
interactions between its components on microscopic scale, which is not well de-
scribed in terms of spatially continuous distribution. In fact, we often get quite
different result [1]. Cellular automata [2] is a proper tool for that case, either in
the standard deterministic version or for the probabilistic rules. If the system is
also vulnerable to some non-deterministic component, it is easy to implement
erratic behaviour as a noise or more correlated deviations from the deterministic
picture.

The cellular automata technique is often used to describe dynamics of the
infection by some viruses [3]. In basic epidemiological models, a disease may be
transmitted horizontally through infection (say, due to a direct contact) and/or
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Fig. 1. Simulated age a distribution of population n(a), in arbitrary units, of infection-
free population. Upper case corresponds to newborns randomly placed at any lattice
cell. Lower case is obtained if babies may be placed only in the nearest neighbours cells
of parent’s site

vertically, i.e. from parent to offspring. More mathematical approach of parasites
as carriers in can be found in [4,5]. However, we do not intend to interpret
the typical task of immune system simulation which involves the many different
specialized biological cells (B-cells, macrophages, helpers and others), apart from
the virus itself, and all related interactions and relations between them. Here we
confine ourselves to very simple description of a two dimensional N x N lattice
with cells free or occupied by one item, either infected or free of the virus. The
dynamics is controlled by a proposed set of parameters in each evolution step
t — t + 1 evolution. After the many iterations we mostly concentrate of space
or/and age distribution of items, infected or not. Typical age distribution of the
non-infected population is shown in figure 1.

We intend to simulate both vertical and horizontal version of the infection
pass, and see how it may influence the n(a) distribution.

2 Model

The basic algorithm assumes given number of iteration cycles, for every cycle we
scan the N x N lattice and apply evolution rules to non-empty i-cells, i = 1..N2.
Each item is characterized with its age a(7), parameters c(i) responsible for an
overall health condition and v(7) indicating the virus infection. At each time
step, the i-th individual is verified:
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Fig.2. Age distribution n(a) for vertical transmission of infection. Babies are freely
scattered over the lattice. Upper case is for no infection passed, lower case is for 80%
offsprings affected and 80% of them later killed by the developed disease

— if its age a is above a biological maximum age maxA = 120, the item dies,

— then it also may die with probability p o< n/N?2, the Verhulst factor [6],
where n is the current population size,

— if the individual survived, and its age is above minimum reproduction age
(here 16) yet still below maximum reproduction age (here 48), it gives birth
to B = 0.2 babies (It means a baby with a copy of parent’s ¢, is born
with conditional probability 0.2, if the proposed destination is an empty
cell. It can be chosen either on the whole lattice or limited to the nearest
neighbourhood of parents),

— infection may take place according to specification below,

— item’s ¢ is corrected according to the nearest neighbours c-values, so that
better neighbours pushes its ¢ up, (and vice versa)

— also the intensity v of the already infected is up as the disease develops,

— further elimination process continuous - the item is out if its ¢ is below a
threshold value minC', here minC' = 0,

— if v is more that a maximum value mazV', the item’ future is decided: it dies
with probability pV, else it is cured and v = 0,

— at this stage the individual has survived and enters the next time t + 1,
perhaps after some movements due to migration process which takes place
with probability pMov, then getting one year older, a — a + 1 and a little
less fit, ¢ — ¢ — Ac.

In the vertical transmission version, the baby catches disease v =0 — v = 1
with probability pl if parent’s v is from vl to v2. Horizontal transmission is
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Fig. 3. Age distribution n(a) for horizontal transmission of infection through neigh-
bours. Babies are fixed in vicinity of parents. Upper case is the infection-free population,
lower case is for 20% offsprings affected, and 80% of them are later killed by the disease

similar, yet the virus is passed from the nearest neighbour. When the scan all
over the lattice is finished, the iteration cycle is completed with standard cyclic
boundary conditions.

3 Results and Discussion

The age distribution of the population for vertical transmission of infection to
babies is shown on Fig. 2. The two branches of points correspond to (a) no
disease passed (upper set), and (b) pI = 0.8 fraction of offsprings of ill parents
picking up the disease (lower set). When the disease develops and the critical v
is reached, the model assumes only 20% of the individuals do recover, pV = 0.8.
It is seen that a reduction of 10-20% of population is the net result of the
vertical disease transmissions, yet the overall characteristics of age distribution
is nearly the same. It reflects the long time scale of this type of infection, since
the harmless period of the illness development must last long enough for the
parent to reach the minimum reproduction age, and more to give chance to
produce new items. The discussed case of babies free to sit at any empty lattice
site may be verified against the version when babies are kept near the parents.
As expected, apart from the general trend of smaller population as result of less
room for new members, recall Fig. 1, we observe similar effect of 10-20% further
reduction of population and no change in age distribution after it is normalized
to cancel out the population size effect.
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Fig.4. Age distribution n(a) for simultaneous vertical and horizontal transmission of
infection, with babies bound to stay with parents. Upper case is the reference of the
infection-free population

Contrary to the vertical case, the horizontal transmission may yield different
effects for bounded and unbounded location for children. One can anticipate
more significant differences for the bounded case since the nearest neighgours
are responsible for the disease spread. Indeed, Fig. 3 for the bounded case shows
a decrease in n(a) distribution, in comparison with infection-free population,
especially in the middle age fraction of population. The free choice of location for
children gives only a tiny smaller n(a) with respects to the disease free reference
case. For calculations we used pI = 0.2 and pV = 0.8. The number 0.2, which
replaces 0.8 for vertical case, was chosen as there are 4 nearest neighbours and
each of them may infect. Also the time scale is generally much shorter - this
time it is not essential that the disease carrier must live long enough to pass the
virus. In fact, we applied half of the whole life span as the time for which the
vertical disease develops, while only 3% of maximum age limit for the horizontal
diseases. If both horizontal and vertical (h&v) mechanisms are present, see Fig.
4, the deviation from the disease-free population is bigger than if only one of the
two named mechanisms are active. This is obvious, yet significant difference is
the interference which make the net result is not the simple sum of contributions
coming from the two contributions. (This may be seen for more detailed analysis
when we compare (h&v) data against the independent contributions (h)+(v).)
Such interplay is the consequence of the elimination mechanism implemented
in the model. We treat the two cases as corresponding to different units, yet
weakening by one of the disease makes the item is less resistant to the other
sickness and so the death is then more likely. The n(a) distribution may also
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Fig. 5. Results of simulation of age dependence of S(a) = log ¢, the exponential Gom-
pertz law of mortality ¢(a) predicts a straight line. The line showing minimum is for
the case of simultaneous vertical and horizontal transmission of infection, the other
line corresponds to the infection-free population

be seen in terms of the usually discussed mortality ¢(a) = 1 — n(a + 1)/n(a),
which is a fraction of the population eliminated at age a. The Gompertz law
predicts exponential dependence of g(a), g(a) ~ €%, which yields a straight line
on logarithmic plot of S(a) = log ¢ against age a. The results of simulations
presented on Fig. 5 is the translation of Fig. 4. It shows the general tendency
that the disease presence in population changes the mortality distribution. This
change leads to a minimum in the S(a) dependence, a feature observed in human
population. Deviations from the Gompertz law is of a main interest in many
publications, see for example [8] for review.

It is interesting to include migration processes for the horizontal version of
disease spread, in the case of babies staying with the parents. The alternative case
brings in no effect of migration which is already present in the form of offfsprings
dispersed all over. For the new members kept close by, the migration may play
dual role. Firstly, for highly infected clusters of local communities, it is a chance
to escape from the doom of unavoidably getting infected. Then migration lessen
the infection pressure and so the whole picture is shifted towards less infectious
environment. This effect is illustrated in Fig. 6. The reference case (upper points)
with 30% risk of the disease leading to the death, pV = 0.3, is recalculated with
higher risk pV' = 0.72. Not only the population drastically drops (bottom points),
but also the distorted age distribution n(a) due to a jump at age a = 12 — 13,
is well pronounced. This is so as we applied a sharp disease development limit,
maxV = 12. If intense migration is allowed, the middle points, some recovery is
then observed and the population size is higher.

However, if only a tiny fraction of population is infected, migration helps
the infection to spread all over, especially if the pI parameter, indicating of how
likely is the virus transmittable, is high.
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Fig. 6. Babies by parents case. The reference (upper points) set of death risk pV' = 0.3,
is confronted against much higher risk pV = 0.72, the bottom points. When high rate
of migration pMov = 0.9 is switched on, the situation is improved, the set of middle
points

4 Conclusions

One can notice some resemblance of the cellular automata approach and the
Penna model [7,8,9]. In a way, the parameter ¢ coding the item’s health condition,
plays similar role as the genome in the Penna model. Activated mutations in
Penna model and the threshold maximum value of bad mutations correspond
roughly to the decrease in ¢ as time flows. Limited environmental capacity is
equivalent to the lattice size N x N, or more precisely (N x N —n) sites left free
as n sites are already occupied. Therefore to some extend the proposed approach
may be considered as an alternative.

Main conclusions of the proposed approach were already discussed in the
main text. In short, the vertical transmission of infection makes population a
little smaller by 10-20%, yet with nearly no effect on age distribution, apart
from arbitrary normalization factor. In this case neither migration nor possible
fixing of the offsprings make difference in output.

The horizontally passed infections are not important if babies are isolated
from parents. It is only during the initial transient period that the population in
small isolated clusters suffer and die, or get cured, while babies being free from
infection do not carry the disease to their far destination. If babies are in vicinity
of parents, they are also vulnerable to the disease. Then the age distribution
n(a) differs from the reference sickness-free case, and also possible migration
influences the results. The migration itself is helpful for rapidly spreading and
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deadly infections. For milder infections, migration is responsible for spreading
the disease and also increases the death toll.
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