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Abstract. A Monte Carlo algorithm was constructed combined with a
Java applet for the simulation of statistical physics quantities charac-
terizing noninteracting bosons within micro- and macroscales. By this
approach the Bose-Einstein condensate was considered within a three-
dimensional isotropic harmonic oscillator in real-time. The algorithm
can be used to study both the static properties of ideal bosons within
other trapping potentials and the relaxation of the system to the con-
densate. The algorithm can be extended to cover also collisions between
bosons. Conluding, our approach can be used for studying and visua-
lizing both educational and professional problems regarding quantum
statistical physics of bosonic systems.

1 Introduction

In educational and professional computational physics lattice gas models have
attracted much attention since they can be successfully used in Monte Carlo
simulations [I], particularly in real-time computer experiments. The principal
goal of this paper is to show the main possibilities of our software to study,
within micro- and macroscales, the noninteracting bosons. We show that it can
mimic the quantum statistical physics features of particles by using standard
MC simulations and a lattice gas model provided with a peculiar requirement
(cf. Secl). We trace the consequences of this mimic, mainly by simulation of
the Bose-Einstein condensate (BEC), which can be treated as a macroscopic
system. Since below the transition temperature the ground level is occupied
by a marcoscopic amount of bosons, the situation can be considered within
the macroscale in distinction from the case where the temperature exceeds the
transition temperature. Here, a microscopic amount of bosons occupy each level
which defines the case that should be considered within the microscale.

By macroscopic occupancy of the ground energy level we understand that
the ratio (Np)/N is larger than zero even at the limit where the total amount of
bosons N in the system (which possesses infinitely many energy levels) increases
to infinity; of course, the normalization Y ;> (N,)/N = 1 is always obeyed,
where (Ny,), h = 0,1,2,..., is the average number of bosons occupying the
energy level h. We can say that the occupancy of any energy level is microscopic
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if impy_00(Np)/N = 0. Of course, in our numerical experiments performed
within finite systems we can observe only the finger print of macroscopic and
microscopic energy level occupancies.

We hope that our MC algorithm offers a complementary possibility for stu-
dying statistical and thermal physics of Bose-Einstein condensate (i.e. its static
and dynamic properties) both on educational and professional levels. Since 1995,
when this exotic state of matter was experimentally observed in dilute atomic
gases for the first time [2I3], this state is the subject of intense analytical, nu-
merical, experimental and educational studies [4]. The present work is a direct
continuation of our previous one [5] extended by including the interactive Java
applet, which is a modern, platform-independent programming technology use-
ful both for educational and professional purposes (our applet is working under
the Java 2 version 1.4.1.1 or higher).

2 Model and Simulation Procedure

We define the model together with the algorithm for Monte Carlo simulation. The
algorithm allows us to calculate relevant quantities within different statistical
ensembles [6l7]. This algorithm makes possible to study both static and dynamic
statistical physics quantities such as ground- and excited state occupancies of
energy levels by bosons and the corresponding fluctuations, internal energy of the
system, its entropy and specific heat. Thus, it provides an approach to consider
thermal and statistical physics of quantum (and classical) gases in equilibrium
and non-equilibrium states both on educational and professional levels. It should
be noted that none of the known numerical methods has so wide possibilities.
For example, by using partition functions one can calculate only equilibrium
quantities [G§]; an alternative MC simulation of BEC for ideal bosonic gas but
enclosed in a rigid box was performed in [9].

In the case of a classic lattice gas identical (point) particles are conside-
red to be distinguishable and any number of particles in the same site can be
understood as a single-particle quantum-mechanical state. However, the clas-
sical particles require in some sense an even more rafined treatment than the
quantum ones since they are genuinely indistinguishable when occupying the
same single-particle quantum-mechanical state but otherwise they are entirely
distinguishable and can then be treated as entirely independent particles. Such
particles obey the Boltzmann statistics which is quantum-mechanically incorrect
but can serve, e.g., as a reference high-temperature case.

The basic feature of our lattice gas model consists in that it mimics quantum
indistinguishability, where the net result of a simple interchange of two identical
particles is that no new state of the whole lattice gas is obtained. In distinction
from the classical lattice gas, it does not matter which particle is in a given
single-particle state, but only how many particles are in this state. The sim-
plest example considered below should make this general idea clearer and make
possible the construction of an algorithm.
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2.1 Strategy of the Algorithm

Let us consider, for example, a lattice gas consisting of only two identical particles
and call them 1 and 2, which is an auxiliary numeration which helps us to
describe the idea of our algorithm, (we also consider in higher dimensions an
equivalent algorithm where no auxiliary numbering of particles is necessary). We
denote two lattice sites, i.e. different single—particle states as h = 0 and h = 1.
According to quantum indistinguishability, the configuration where particle 1 is
at state h = 0 and particle 2 is at state h = 1 is no longer counted as distinct from
the configuration where these two particles are interchanged. Thus, we see the
basic step of our algorithm since we can decide that particle number 1 never has
a higher energy than particle number 2 (the opposite situation is disregarded). In
other words, the sequence of particles is dynamically preserved during the whole
simulation which defines the conservation principle which is a generalization of
the Pauli exclusion principle valid for fermions or fermionic lattice gas. As it
is seen, the space of states for this system is shrunk and the correlation between
particles exist when the total number of particles in the system is fixed (e.g.,
for canonical or microcanonical ensembles). The above introduced conservation
principle has already been used by us to study one-dimensional bosonic lattice

gas (BLG) [10].

2.2 Local Dynamics

We confine our attention to spinless particles; for simplicity we assume that
there is no mutual interaction between particles apart from the above introduced
conservation principle which, however, can introduce correlations between them.

The initial particle configuration was randomly selected but other initial
configurations are also accepted since the final equilibrium result does not depend
on the choice of the initial condition.

We deal with a three-dimensional isotropic harmonic oscillator. Then each
(energy) level, h(=0,1,2,...), of the energetic ladder is degenerated and consists
of g(h) = $h(h + 3) + 1 single-particle states (sites); the energy level spacing
(which is fixed) is denoted as Ae. Every state is defined here by the state-vector
h = (hl,hg,hg), where hl, h2, hg Z 0, while h = ]’Ll + h2 + h3.

Note that two states can be connected here by a direct jump of a boson
only if the chosen components of the initial and final states differ by +1. This
configuration of states together with the above rule for jumps determine, in fact,
the bosonic lattice gas defined by the three-dimensional lattice consisting of site-
vectors having non-negative coordinates. As, for simplicity, particle jumps are
assumed to occur only between the nearest-neighbor sites, there are no direct
jumps between states belonging to the same energy level (since they would only
slow down the relaxation).

From the strategy developed in Sec[2] it follows that one and only one
particle from all IV}, ones currently occupying the given single-particle state h
performs an upward jump and it is unimportant which one, since the particles are
indistinguishable in the quantum-mechanical sense. We have a similar situation
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for any excited state when a downward jump is performed. The above defines
the strategy of an alternative algorithm, particularly effective when energy
levels are degenerated (as is the case of the three-dimensional isotropic harmonic
oscillator). Namely, instead of using the above defined numbering of particles it is
sufficient to choose at random a particle from an occupied (earlier chosen) state
with probability 1/Nj and then determine the direction of the jump. It should
be noted that we choose an occupied state simply by drawing a particle; hence,
the probability that a state is chosen is proportional to the current number of
particles occupying that state. The above procedure defines the most effective
algorithm (since no Monte Carlo step is lost) which defines the relaxation process
to the bosonic condensate.

The particles perform thermally activated jumps between the lattice sites
since the lattice gas is coupled to a heat bath (canonical ensemble). To define the
local dynamics the jump (transition) rates Iy and I'| are assumed which obey the
so-called detailed balance condition for the jump rates: I') /I = exp(Ae/kgT).
In fact, this condition is necessary to prove that the classical, non—-interacting
particles obey the Boltzmann statistics. Since this condition does not uniquely
define the jump rates we can assume their simplest form I'|+ ~ exp(£Ae/2kpT)
as energy levels are equally distant; this leads to the following jump (transi-
tion) probabilities: pj+ = poexp(+Ae/2kgT), where py = %m is the
normalization factor. Of course, other choices of jump rates (obeying a detailed
balance condition) have no influence on the equilibrium quantities; they could
play a role when one would study dynamic properties, e.g. relaxation in the
system.

We assume the blocking boundary condition in the vertical direction although
the length of the energetic ladder, L, and the ratio Ae/kgT are limited so that
in statistical equilibrium the macroscopic part of jumping particles, in principle,
does not reach the top of the ladder, i.e. (p1)F < py.

3 Results

We observed that already the system including several hundreds of particles
reproduces quite well the Bose-Eintein condensation or A-transition. Hence, it
is possible to obtain the condensation and the corresponding phase diagram in
real time by the Monte Carlo simulation within the interactive Java applet, cf.
Fig [Tl where temporal distribution of bosons among different energy levels is also
shown (e.g., for kT /Ae = 4.8) to directly show the condensation phenomenon
(here below the relative transition temperature kpTe/Ae ~ 6.9).

By using the applet we are able to calculate and show the characteristic
thermodynamic quantities such as boson occupancies and fluctuations, inter-
nal energy, entropy and the specific heat of the bosonic system as a function
of temperature. We are able to show (with good approximation) that internal
energy and entropy are continuous but non-differentiable functions of the rela-
tive temperature kp7'/Ae at the transition temperature. Hence, we show that
the specific heat has characteristic discontinuity at this temperature which is a
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Fig. 1. Screen’s picture given by our applet: (i) the phase diagram of the Bose-Einstein
condensate (denoted by large black squares shown in the plot placed in the middle right
window) i.e. the equilibrium ground-level occupancy No/N vs. relative temperature,
kpT/Ae, for example, for N = 500 bosons in the system obtained in real time by our
interactive Java applet (within a single experiment but with sufficiently good accu-
racy). (ii) The equilibrium distribution of bosons among energy levels obtained after a
sufficiently long time (counted by Monte Carlo steps/particle) is shown (by horizontal
indicators) in the diagram placed in the left middle window; its main part, including
occupancies of the first 15 energy levels, is placed in the upper window. (iii) The lower
window presents occupancies of the ground-level (the highest plotted curve) and three
consecutive excited levels versus time (curves at the bottom); in this simple way we
make it clear when the system reaches the statistical equilibrium, i.e. when there are
no trends in the time-dependences. Temporal distributions considered in (ii) and (iii)
relate to the condensate, for example, in the macrostate denoted in the phase diagram
by plus (+).
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clear finger print of A-type phase transition. Moreover, there is no latent heat
of the phase transition and therefore we can conclude that it is not of the first
order. Note the pronounced A-shape of the curve reminds the specific heat curve
of He* near the transition to superfluidity.

4 Concluding Remarks

An algorithm is presented and its possibilities are discussed for studying the
condensation phenomenon occurring within the bosonic lattice gas. Below the
transintion temperature we observe the physical phenomenon characteristic for
the macroscale as the macroscopic amount of bosons occupies the ground level
in distinction from the situation where the temperature exceeds the transition
one; then, a microscopic amount of bosons occupy each energy level. Applying
our Monte Carlo simulations we are able to study statistical physics and ther-
modynamics of the Bose-Einstein condensate which could also have meaning
for studying similar aspects of superfluidity. The approach well illustrates the
properties of the bosonic lattice gas and can help in understanding the open pro-
blems concerning, e.g., the dynamical behavior of bosonic systems. Our approach
is promising also for education since already small systems consisting of a few
hundreds of lattice bosons, reproduces quite well the characteristic properties of
macroscopic systems.
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