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Abstract. The design of spatial missions to Mars requires the develop-
ment of analytical theories in order to put artificial satellites in orbit
around Mars.
In this paper, we present a complete third order analytical model of a
satellite perturbed by the zonal J2, . . . , J6 harmonics of the Mars po-
tential. Two Lie transformations, the elimination of the Parallax and
the elimination of the Perigee, and the Krylov–Bogoliubov–Mitropolsky
method are applied to obtain a complete integration of the model. The
algebraic expressions of the generators, the Hamiltonians and the inte-
grals, together with a software code to compute the ephemeris of the
satellite, are automatically obtained using our computer algebra system
ATESAT.

1 Introduction

Mars is one of the main challenges for the aerospace community. Since 1965,
when the Mariner IV made the first successful flyby of Mars, man has wanted
to reach the planet. The study of the Martian topography, gravity surface com-
position, atmospheric structure, etc., depends on the orbital missions around
Mars. Besides, the possibility of future manned missions to Mars forces to select
brief parking orbits with a precise analytical determination of the position of the
satellite [9].

The interest of the Centre National D’Etudes Spatiales (CNES, France) in
this kind of orbiters, together with the experience of the Space Mechanics Group
(GME) of the University of Zaragoza in obtaining analytical theories of Earth
artificial satellites by using symbolic computational tools, drove us to collaborate
in order to obtain an analytical theory of a Martian artificial satellite with an
error less than one kilometer in one month. To this aim, we used the same
methods as those applied to Earth satellites.

The Lie–Deprit method [7] based on Lie canonical transformations was used
to develop efficient analytical theories of the satellite problem. To obtain our
theory we applied two Lie transformations: the elimination of the Parallax and
the elimination of the Perigee. After these eliminations, the simplified Hamilto-
nian was reduced to one degree of freedom. To obtain a theory without singulari-
ties in eccentricity and inclination and without series expansions in eccentricity,
we applied the Krylov-Bogoliubov-Mitropolsky (KBM) method instead of the
classical Delaunay normalization. Both, the Lie-Deprit method and the KBM
technique are very well suited methods for symbolic computation.
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In general, during the computing of an analytical theory in the artificial satel-
lite problem one has to cope with long series expansion, handling a huge amount
of terms and particular objects like the so-called Poisson series1. This makes
general purpose algebraic manipulators ineffective and forces to create specific
computer algebra systems to handle these type of objects in an efficient way.
Our software ATESAT ([2,3,13]) uses the Poisson Series Processor PSPC [1,14]
to generate automatically analytical theories and their corresponding ephemeris
programs for satellite orbits.

With ATESAT we developed the complete third order theory of the motion
of an artificial satellite perturbed by the first sixth order zonal harmonics of the
potential of Mars. With this theory we obtained the required precision; in fact
the error for a wide range of initial conditions is less than 400 meters per month.

2 Dynamical Model

The Hamiltonian formalism that describes the orbit of an artificial satellite aro-
und Mars is written in Whittaker’s or polar-nodal variables2 as
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∑
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where Pn is the Legendre polynomial of degree n, µ is the gravitational constant,
α is the equatorial radius, Jn are the zonal harmonic coefficients, si = sin i =√

1 − (N2/Θ2), is a function of the momenta N and Θ, and the small parameter
ε is the Martian constant of oblateness.

The variable ν is cyclic in the zonal problem, and therefore we have a dyna-
mical system with two degrees of freedom.
1 A Poisson series is a multivariate Fourier series, whose coefficients are multivariate

Laurent series
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2 (r, θ, ν, R, Θ, N), where r is the radial distance from the planet’s mass center to the
satellite, θ is the argument of latitude, and ν is the argument of the ascending node.
The variables R, Θ and N are the conjugate momenta to the coordinates r, θ and ν,
respectively.
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3 Canonical Lie Transformations

A Lie transformation [7,10,11] can be defined as an infinitesimal contact trans-
formation ϕ : (y,Y , ε) → (x,X), such that x(y,Y ; ε),X(y,Y ; ε) satisfy the
differential equations

dx

dε
= ∇XW (x,X, ε),

dX

dε
= −∇xW (x,X, ε), (3)

with the initial conditions x(y,Y , ε = 0) = y,X(y,Y , ε = 0) = Y , where
x,X,y,Y ∈ IRm, and W =

∑
i≥0(ε

i/i!) Wi+1(x,X) is the generator of the
transformation.

In the particular case of the Hamiltonian formalism, a Lie transformation
converts a Hamiltonian H(x,X; ε) =

∑
i≥0(ε

i/i!)Hi,0(x,X) into a new one
K(y,Y ; ε) =

∑
i≥0(ε

i/i!)H0,i(y,Y ) by means of the relations

Hp,q = Hp+1,q−1 +
p∑

k=0

(
p

k

)
(Hp−k,q−1; Wk+1) , (4)

where ( ; ) stands for the Poisson bracket. Equation (4) is called Lie triangle.
Note that with this approach, there appear many intermediate terms Hp,q which
must be computed and stored.

The Lie-Deprit method [7] tries to find the generator of a Lie transformation
to turn the Hamiltonian into a new one satisfying some prefixed conditions.

This method looks for the generator order by order. Once the order (n−1) is
solved we know the expressions of Wi, i = 0, . . . , n − 1 and Hp,q, p + q ≤ n − 1.
By joining the equations in (4) for p + q = n, we find the homological equation

L0Wn = (H0, Wn) = H0,n − H̃n,0, (5)

where H̃n,0 can be computed from the previous orders by means of the Lie
triangle. To solve the order n, we must follow three steps:

1. Compute H̃n,0 from the expressions of order (n − 1).
2. Choose H0,n.
3. Find an integral Wn of the homological equation.

3.1 Elimination of the Parallax

The first step of this theory looks for a Lie transformation called elimination of
the Parallax. This canonical transformation [8] reduces the complexity, not the
number of degrees of freedom, of the Hamiltonian (1). Besides, the elimination
of the Parallax algorithm allows us to compute the expression in a close form of
the eccentricity, and therefore to obtain general purpose theories valid for any
kind of elliptic eccentricity.

The homological equation (5) is expressed, in Whittaker variables, as follow

L0Wn = R
∂Wn

∂r
−

(
µ

r2 − Θ2

r3

)
∂Wn

∂R
+

Θ

r2

∂Wn

∂θ
= H0,n − H̃n,0. (6)
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Instead of looking for an integral of the previous equation, we will apply the
property

L0




∑

j≥0

(Cj sin jθ + Sj cos jθ)



 =
Θ

r2

∑

j≥1

j (Cj cos jθ − Sj sin jθ) ,

valid for any function of the algebra F = {F =
∑

j≥0 (Cj cos j θ + Sj sin j θ) ,
Cj , Sj ∈ ker(L0)}. Particularly, using the C = e cos g, S = e sin g and p =
a(1 − e2) functions of the orbital elements a, e and g, the Hamiltonian (1) can
be expressed as a function of F if we take into account the relations 1/r = 1/p+
C/p cos θ + S/p sin θ, R = CΘ/p sin θ − SΘ/p cos θ, since C, S, p, Θ ∈ ker(L0).

After applying the previous change of variables, the equation (6) becomes

L0 (Wn) +
Θ

r2 C0 =
Θ

r2 F

and then we apply the three steps of the method described in the previous section

1. Computing F = (r2/Θ) H̃n,0 =
∑

j≥0 (Cj cos jθ + Sj sin jθ) .

2. Choosing H0,n = (Θ/r2) C0.

3. Finding Wn =
∑

j≥1 [(Cj/j) sin jθ − (Sj/j) cos jθ] .

Note that after computing H̃n,0 by means of the Lie triangle, obtaining H0,n

and Wn becomes a simple symbolic exercise of coefficients reordering.
After the Parallax elimination, the transformed Hamiltonian and the gene-

rator of third order, expressed as a Poisson Series, have 176 and 1837 terms,
respectively. The number of terms of the direct and inverse expression of this
transformation are given in the following table

Parallax r θ ν R Θ N
Direct 2056 5000 4738 1988 3057 1
Inverse 2052 4981 4610 1989 3034 1

3.2 Elimination of the Perigee

Apparently, the elimination of the Parallax removes the argument of latitude θ,
however, this variable appears implicitly in the state functions C and S, which
are functions of the perigee g. In order to reduce the problem, we can eliminate
the perigee by applying a new Lie transformation whose generator has two terms

Wn = W∗
n(C, S, Θ, θ) + W̃n(C, S, Θ, ),

W∗
n, which depends on θ, and W̃n, which does not depend on θ. The Lie operator

L applied to this generator

L0Wn = R
∂Wn

∂r
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r3

)
∂Wn

∂R
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∂Wn

∂θ
=
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∂W∗
n

∂θ
,

only depends on W∗
n.



Analytical Theory of Motion of a Mars Orbiter 331

With such a property, the solution W∗
n =

∫
r2(H̃n,0 − H0,n)/Θ dθ of the

homological equation only gives one part of the expression of the generator.
The homological equation (5) is obtained by detaching from the n-th line of

the Lie triangle the known terms of order n−1 of the unknown terms. Then, there
are more unknown terms depending on W̃n−1, and the homological equation
becomes L0W∗

n = H̃n,0 + H0,n + n(H1,0; W̃n−1).
By computing H̃n,0 and splitting it into the part H̃θ

n,0 that depends on θ and
the part H̃∗

n,0 that does not depends on θ, we can choose the new Hamiltonian
of order n > 1 as the expression

H0,n = 〈H̃∗
n,0〉g =

1
2π

∫ 2π

0
H̃∗

n,0(C, S) dg,

that does not depends on g.
Eventually, taking into account the expression

(H1,0; W̃n−1) = F1(θ) − 3µα2

2Θ3r2 (4 − 5s2
i )

∂W̃n−1

∂g
,

we can use it to obtain W̃n−1

W̃n−1 =
2Θ3r2

3nµα2

1
(4 − 5s2

i )

∫ (
H0,n − 〈H̃∗

n,0〉g

)
dg,

and W∗
n

W∗
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∫
r2

Θ

(
H̃θ

n,0 + nF1(θ)
)

dθ.

This algorithm called elimination of the Perigee [5] is applied to remove
the argument of the perigee g from the perturbation. This elimination is not a
normalization in the sense that the transformed Hamiltonian does not belong to
the kernel of the Lie derivative L0 associated with H0, rather it reduces by one
the number of degrees of freedom.

The Hamiltonian after the two previous transformations can be expressed as

H =
1
2

(
R2 +

Θ2

r2

)
− µ

r
+

∑

n≥1

εn

n!
Mi,j

n

Ri

rj
, (7)

where Mi,j
n are functions of the constants α and µ and the momenta Θ and N .

This transformed Hamiltonian has 317 terms, and the generator has 4521 terms.
The number of terms of the direct and inverse expression of this transformation,
which is considerably greater than in the previous transformation, is given in
the following table

Perigee r θ ν R Θ N
Direct 83410 155376 81893 80156 66322 1
Inverse 83294 154769 81435 79915 66322 1



332 J.F. San Juan, S. Serrano, and A. Abad

4 The Satellite as a Perturbed Harmonic Oscillator

The variables θ and ν are cyclic in the Hamiltonian (7), then the momenta Θ
and N are constant and we will consider only the two first Hamilton’s equations

dr

dt
=

∂H
∂R

,
dR

dt
= −∂H

∂r
, (8)

in order to find the temporal evolution of r and R. After finding the solution
of previous differential equations, the problem lies in the computation of two
quadratures to obtain θ and ν.

By differentiating again the first equation in (8), combining both to obtain a
second order differential equation, and changing the variables r and dr/dt and
the time t for two new variables u and v, and a new time s defined by

u =
1
r

− µ

Θ2 , r2 ds

dt
= Θ, v =

du

ds
, (9)

we obtain the equation of a perturbed harmonic oscillator

d2u

ds2 + u =
∑

n≥1

εn

n!
Ki,j

n uivj , (10)

where Ki,j
n are polynomials in the constants µ, Θ and Mi,j

m .

4.1 The Krylov–Bogoliubov-Mitropolski (KBM) Method

The solution of the differential equation (10) of the perturbed harmonic oscillator
can be written as an asymptotic expansion u =

∑
n≥0(ε

n/n!) un(δ, f), where
u0 = δ cos f , un(δ, f) are 2π–periodic functions in f , and the variation of δ and
f with respect to the time is given by

dδ

ds
=

∑

n≥0

εn

n!
An(δ),

df

ds
=

∑

n≥0

εn

n!
Bn(δ), A0 = 0, B0 = ω. (11)

The KBM method, [6,12], gives an iterative way to find the terms An, Bn

and un. Assuming that the order (n − 1) has been solved, we find a function Un

that depends on all expressions until order (n − 1). Then, by calling cj(F ) and
sj(F ) respectively the coefficients of cos jf and sin jf in the Fourier expansion of
F (f), the expressions of An, Bn are An = −s1(Un)/(2ω), Bn = −c1(Un)/(2ωδ),
and the function un is given by its Fourier expansion whose coefficients are
c0(un) = c0(Un)/ω2, cj(un) = cj(Un)/ωj , sj(un) = sj(Un)/ωj , j ≥ 2, with
ωj = ω2(1 − j2).

Applying the KBM method to the equation (10) we find the variation of δ
and f with respect to the new time s by means of the expressions

dδ

ds
= 0 ,

df

ds
= nf = 1 +

∑

n≥1

εn

n!
Ψ(δ, Ki,j

n ). (12)
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Equation (12) shows that δ has a constant value. nf is also a constant since
the values of Ki,j

n are constant. However, we will not integrate equation (12) to
obtain the relation between f and s, rather, we will obtain a generalized Kepler
equation in the next section. This latter equation will give us a direct relation
between f and t.

Besides we obtain the expressions of u and v. These expressions together
with the change of variables (9), allow us to find the expression of R

R =
µe

Θ
sin f − εK1,0

1
µe

Θ
sin f +

ε2

2!

5∑

k=1

KR
k sin kf, (13)

and the expression of 1/r, that once inverted gives

r =
p

1 + e cos f
− ε

p2K0,0
1

(1 + e cos f)2
+

ε2

2!




2p3

(
K0,0

1

)2

(1 + e cos f)3
(14)

− p2

(1 + e cos f)2
(Kr

0 + Kr
2 cos 2f + Kr

3 cos 3f + Kr
4 cos 4f + Kr

5 cos 5f)
]

,

where KR
k and Kr

k are functions of constants, and we use the generalized semi–
latus rectum, eccentricity and semi–mayor axis. These expressions are used to
obtain the variables θ and ν and the momenta Θ and N .

5 Generalized Kepler Equation

The variation of the generalized true anomaly, f , with respect to time, t, is
obtained after considering the definition of s given by (9) from which we get

nf Θ dt = r2 df, (15)

in which we substitute r by the expression (14) in terms of f .
Then, we apply a change of variables as in the case of the transformation of

the true anomaly into the eccentric anomaly in the non–perturbed two body pro-
blem p/(1 + e cos f) = a(1− e cos E), df =

√
1 − e2(1 − e cos E)dE. This change

of variables is usually used in orbital mechanics to transform integrals with po-
wers of (1 + e cos f) in the denominator into terms with powers of (1 − e cos E)
in the numerator. By doing so, we can integrate these expressions. In our pro-
blem, the existence of factors cos nf, sin nf in the numerator of the perturbation
terms implies that, even after applying the change, some terms still have powers
of (1 − e cos E) in the denominator.

A practical way to avoid this formal problem is to apply first the change of f
into w defined by w = 1 + e cos f, cos f = (w − 1)/e. By using the properties of
Chebyshev’s polynomials, Tn, Un, we can express each term of (15) as a positive
or negative power of w, multiplied or not by sin f . Then, to integrate (15) we
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just have to consider integrals of the form
∫

wn df,
∫

wn sin f df, that can be
easily performed [4].

Finally, we obtain the equation n(t−T ) = E −e sin E +
∑

i>0(ε
i/i!)Ki(E, f),

where T represents the value of t when f = E = 0, equation known as the
generalized Kepler’s equation. Note that for orders greater than one, some terms
in f and E are mixed up in this generalized Kepler equation.
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