A Derivative-Free Tracking Algorithm for
Implicit Curves with Singularities

José F.M. Morgado and Abel J.P. Gomes

Dept. Computer Science and Engineering, Univ. Beira Interior
6200-001 Covilha, Portugal
{fmorgado,agomes}@di.ubi.pt

Abstract. This paper introduces a new algorithm for rendering impli-
cit curves. It is curvature-adaptive. But, unlike most curve algorithms,
no differentiation techniques are used to compute self-intersections and
other singularities (e.g. corners and cusps). Also, of theoretical interest,
it uses a new numerical method for sampling curves pointwise.

1 Introduction

An implicit curve I' = {p € R? : f(p) = 0} is a level set (or zero set) of
some function f from R? to R. The algorithm proposed in this paper focuses on
the representation of planar implicit curves defined by real, but not necessarily
analytic, functions (e.g. polynomial and transcendental functions). There are
three major categories of algorithms to render implicit curves, namely:

— Representation conversion. Rarely, a global parameterization exists for an
implicit curve. But, a local parameterization always exists in a neighborhood
of a regular point of an implicit curve, i.e. a point p = (u,v) such that
f(p) =0 and Vf # 0. This allows us to render an implicit curve by using
the algorithms for parametric curves [T0J214J6/1].

— Space subdivision. Recursively, it splits the ambient space into subspaces,
discarding those not intersecting the curve. The subdivision terminates soon
after we obtain a good approximation to the curve by a set of small sub-
spaces (e.g. rectangles) [4II5]0]. Robust approximations can be implemented
by using interval arithmetic [14], algebraic or rational techniques [8[7], and
floating-point arithmetic [13].

— Curve tracking. Tt consists of sampling the curve pointwise [B[11]. This ap-
proach has its roots in the Bresenham’s algorithm for rendering circles, which
is essentially a continuation method in screen image space. Continuation
methods are attractive because they concentrate computational processing
where it is needed. However, they need a starting point on each curve com-
ponent. Finding a starting point on a component can be a frustrating expe-
rience, in particular for degenerated components consisting of a single point.
A way to compute these curve components is by means of the cylindrical
algebraic decomposition technique from computer algebra [3].

This paper deals with the rendering of implicit curves possibly with singula-

rities, but no derivatives are used at all.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 221 2004.
© Springer-Verlag Berlin Heidelberg 2004

222 J.F.M. Morgado and A.J.P. Gomes

2 Curve Sampling through Numerical Approximation

The basic idea behind the curve-tracking algorithm proposed in this paper is,
given the previous and current points P, @ of the curve I', to determine the
next point belonging to the intersection Ng N I', where Ng is the frontier of
a small circular neighborhood centered at @ (Fig. M(a)). The algorithm does
not evaluate the intersection points analytically. Instead, any intersection point
of Ng NI is computed by a new approximation method inspired in the false
position numerical method, called angular false position method.

(a) (b)

Fig. 1. The angular false position method

2.1 False Position Method: A Brief Review

The false position method is a root-finding algorithm which starts from two
distinct estimates A and B for the root of f(z) = 0, being f a function from
R to R, so that f(A).f(B) < 0, i.e. f(A) and f(B) have opposite signs or,
equivalently, a root is initially bracketed in the interval | A, B[. The next estimate
X isiteratively determined by linear interpolation given by the following formula:

f(B)
f(B) = f(A)
This numerical method retains the prior estimate, either A or B, that together
with X continue to bracket the root [12]. The formula () shows that the false

position is an adequate sampling numerical method for generic curves, not ne-
cessarily differentiable or analytic, provided that no derivatives are used at all.

X=B- (B — A) (1)

2.2 Angular False Position Method

As described above, the false position method calculates the roots of some func-
tion from R to R in the product space R2. But, for the curve I" defined implicitly

A Derivative-Free Tracking Algorithm 223

by f: 2 C R2 = R, we are not interested in the roots of f in the product space
R3, but in the zero set of f in R2, i.e. the curve itself in the domain space R?.
For that, the curve is sampled by intersecting the zero set and a small circle Ng
centered at the current point @ (Fig. @ (a)). But, the intersection I'N Ng occurs
in the domain space of f, not in the product space. To overcome this difficulty
we have first to transform the co-ordinates of both point estimates A and B on
the circle onto their corresponding angle estimates «(A) and «(B) defined by
a function o : R? — R. Then, as illustrated in (Fig. (b)), the false position
method is used to determine an intermediate angle given by

T a(B) —a(4)] (2)

Thus, the angular approximation method occurs in the product space of foa ™!,
i.e. R?, according to the following diagram:

R2 — R

R

Fig. 2. Diagram of the angular false position method

3 Curve Tracking Algorithm

This algorithm confines all computations to the neighborhood Ng to determine
the intersecting points I' N Ng. The main difficulty is to correctly choose the
next point X amongst those in I'N Ng. The main criterion for choosing the next
point is based on the variance of curve curvature within Ng, what is given by
/ZPQX. Remarkably, this criterion works for any local shape, no matter whether
or not the curve self-intersects, it has a cusp or a corner, it almost touches itself,
or it oscillates.

3.1 Computing Neighborhood Points

The curve points Ng NI are numerically determined by the angular method in-
troduced above. Instead of using the z-axis for computing the points approaching
an intersection point, we use a small circular neighborhood Ng (Fig. B).

We could think of a uniform distribution of points on the neighborhood Ng
separated by an angle 6, and then apply the angular method to every pair of

224 J.F.M. Morgado and A.J.P. Gomes

Fig. 3. Distribution of points on the neighborhood of the current point @

points in order to determine possible intersection points. Such a distribution of
points is given by (z,y) = (x.+7cosb,y.+rsinfd), with 6 € [-180°, 180°], being
(%, ye) the center of Ng, i.e. the current point). To speed up our algorithm,
the circle points are computed for § € [—120°,120°] because the others were
calculated before in the neighborhood of the previous point P (Fig. [).

We start by determining three points, A = @ + m, B=Q+ Mzﬂ/g.m,
and C =Q + M,Qw/g.Qj on Ng, where M is the rotation matrix.

Then, one determines the point D = @ + Ma.@i, with a € [5°,10°], such
that f(D).f(A) < 0, by applying the angular approximation method to the arc

AD. Note that for curves with small curvature, a small « leads to very fast
search for intersection or solution points. In particular, for a straight-line curve,
the point A is the solution point itself. Nevertheless, we have to look for solution

points along the arcs AB and C'D in case we have more curve points on Ng.

3.2 Cusp and Other High-Curvature Points

Most curve-tracking algorithms break down at singularities (see, for example,
[5]). Nevertheless, the algorithm proposed by [I1] works for curves with bifur-
cation points by analysis of the sign changes of the partial derivatives in a rec-
tangle neighborhood. However, it breaks down at other singularities such as, for
example, cusps, which belong to the function domain, but not to the domain
of the partial derivatives. For example, it is not capable of rendering the curve
|z| + |y| — 2 = 0 (Fig. Bl(b)) with four singularities at (0,2), (2,0), (0, —2) and
(—2,0), where the partial derivatives do not exist.

In contrast, our algorithm needs not compute derivatives at all. This allows
us to draw curves defined by both differentiable and non-differentiable functions.
This reduces somehow the computation time of each point in the curve. In fact,
the computation of the partial derivatives of an analytic function such as, for
example, y(9 — zy)(z + 2y — y*)((x — 10)% + (y — 4)? — 1) = 0 (Fig.[6(f)) may be
more time-consuming than the function itself.

Cusps and corners are points at which the curvature flips. A cusp point
(Fig. B(a)), or a quasi-cusp point (Fig. (b)), is characterized by having a high
curvature variance along the curve within Ng. To be sure that there is a cusp

A Derivative-Free Tracking Algorithm 225

(a) (©)

(b)

Fig. 4. (a) A cusp; (b) a quasi-cusp; (c) a self-intersection point

(or a quasi-cusp) point in N, we have to check that the mediatrix of PA in Ng
intersects the curve at exactly a single point. But, first, we have to check that
the angle ZPQA is relatively small. A small angle ZPQA means that A is not
an appropriate point next to Q.

The strategy is then to assume that the points after the cusp (or quasi-cusp)
are image points of those before it in Ng. For example, A is the image of P.
The image of @ is B by tracing a line segment parallel to PA. The next point
R is determined by intersecting the curve with the mediatrix of QB in Ng. R
is possibly a cusp, but if it has an image point C', we determine again the next
point by computing the intersection between the curve and the mediatrix of RC,
stopping when the distance between the latest next point and its image is under
107, The latest next point is nearly the cusp point (or the quasi-cusp point).

3.3 Self-Intersection Points

A self-intersection point can be seen as a generalized cusp point (Fig. @lc)). In
fact, every two adjacent curve branches incident at the crossing point can be
viewed as meeting at a cusp point. As for a cusp (or a quasi-cusp), no curve
point on N is the next point because, with the exception of B, the points A
and C' form small angles with P,). But, B cannot be the next point either
because the segment PB intersects the curve at a point. This intersecting point
between P and B is a better candidate to next point than B because it is before
B. It can be determined by applying the false position method between P and
B.

Similar to a cusp point, we have to compute the image point D of @) by
intersecting the curve with a line segment parallel to PA passing through Q
in Ng. Then, we determine the remaining image points £ of D and F of E
by using the segments parallel to AB and BC, respectively. At this point, we
can generalize the convergence process to a cusp, so that the next point R
is determined by intersecting the curve with the mediatrix of QD in Ng. This
process converging to the self-intersection point stops when the distance between
the latest next point and its image is under 1075, This latest point is nearly the
self-intersection point.

226 J.F.M. Morgado and A.J.P. Gomes

(a) (c)

Fig. 5. Near-branch points

3.4 Near-Branch Points

Sometimes a curve almost touches itself, i.e. some of its points are very close
(Fig.). Unlike the previous cases, one of the neighborhood-intersecting points
is the point next to Q. Note that determining the next point is done without
changing the neighborhood radius, even under ripples and undulations.

Let us look again at Fig. [H, where P and @ are the previous and current
points, respectively. To see that the neighborhood-intersecting point C' is the
next point after @), we use two criteria: angle (or curvature) criterion as above,
and the neighbor-branch criterion. In Fig. [B(a) and (b), A cannot be the next
point because the angle Z/PQA is far from 180°. But, both angles Z/PQB and
ZPQC are close to 180°, and neither PB nor PC crosses the curve, so either B
or C' can be the next point. To pick up the right point, either B or C, we use
the neighbor-branch criterion. This criterion is basically an elimination criterion
amongst candidates to the next point, and can be described as follows:

1. Determine the midpoints of the segments PC, CB, and BA in Fig.[H(a)(b)
(the midpoint of PA is not calculated because A is, by the angle criterion,
no longer a candidate next point).

2. For each segment with midpoint M, discard its endpoints if the segment
QDM intersects the curve at one or more points, being M’ the projection of
M on the neighborhood circle by prolonging QM. This eliminates B as a
candidate next point in Fig. [B(a). Note that the point B in Fig. B(b) cannot
be the next point for a different reason. In fact, the segment PB crosses the
curve at a point, preventing it from being the next point.

In Fig.[El(c), the angle criterion eliminates A and E as candidate next points,
whereas B and D are eliminated by the near-branch criterion. So, the point C' is
the next point. Note that the neighborhood radius holds constant independently
of whether the curve oscillates or not.

3.5 The Algorithm

The NEXTPOINT algorithm sketched below determines the point X next to
the current point @) according to criteria described above.

A Derivative-Free Tracking Algorithm 227

fepp=3.5
drawing time=0.12s
radius (step)=0.15

fepp=3.1
drawing rime=0.11s
radius (step)=0.1

fepp=4.82
drawing time=(.08s
radius (step)=0.4

N

fepp=6.08
drawing time=0.51s
radius (step)=0.01

fepp=s.34; 1|
drawing time=0.2Ts
radius (step)=0.05

{ —_

fepp=4.01
drawing time=0.23s |
radius (step)=0.05

(d) sin*x)+4sin(v)-3sin(2x)sin(v) =0 (&) y=sin(l/x)=0 () yo-w+2y—y)(G—10° +(—47 —D=0

Fig. 6. Implicit plane curves

Algorithm (NEXTPOINT). The inputs are the previous and current points P,

Q, the radius v of Ng and the function defining the curve I'. The output is the
point X next to Q.

1. Compute the intersection points I'N Ng by means of the angular numerical
method described in Sect. 2.2.

2. if (#(I' N Ng) = 1)

(a) X < get such a single point from I' N Ng
(b) if (L(PQ,PX) % 180°)

e X < compute cusp or quasi-cusp through the convergence technique
described in Sect. 3.2

—a single candidate point

else —two or more candidate points
a) X < get such a single point from I'NNg by applying elimination criteria
Q
described in Sect. 3.4

(b) if (X = NULL) —there is a self-intersection point about Q

e X < compute self-intersection point through the convergence tech-
nique described in Sect. 3.3

3. return X

This algorithm is part of the 2DCURVE algorithm that is able to render
generic implicit curves in R? as those in Fig. B, which is not detailed here because

of space limitations.

228

4

J.F.M. Morgado and A.J.P. Gomes

Conclusions and Experimental Results

The algorithm 2DCURVE was written in C4++. Its major contributions are:

It works for general curves defined by real functions.

It is derivative-free. So, it does not break down at other singularities.
It does not break down under shape oscillations and ripples either.
It introduces a new numerical method for sampling curve points.

Fig. [0 shows interesting performance results for some curves defined by real
functions in R2. The term ’fepp’ stands for 'function evaluations per point’, i.e.

the

average number a function is evaluated for each sampled curve point. The

runtime tests were performed on a mere Windows PC equipped with a 500MHz
Intel Pentium and 128MB RAM, but even so we got really fast rendering times.

References

1.

2.

10.

11.

12.

13.

14.

15.

Allgower, E.,; Gnutzmann, S.: Simplicial Pivoting for Mesh Generation of Implicitly
Defined Surfaces. Comp. Aid. Geom. Des. 8 (1991) 30-46

Abhyankar, S., Bajaj, C.: Automatic parameterization of rational curves and surfa-
ces III: algebraic plane curves. Technical Report CSD-TR-619, Purdue University,
Computer Science Department, USA (1987)

Arnon, D.: Topologically reliable display of algebraic curves. Comp. Graph. 17
(1983) 219-227

Bloomenthal, J.: Poligonisation of implicit surfaces. Comp. Aid. Geom. Des. 5
(1988) 341-355

Chandler, R.: A tracking algorithm for implicitly defined curves. IEEE Comp.
Graph. and Appl. 8 (1988) 83-89

Hobby, J.: Rasterization of nonparametric curves. ACM Trans. on Graph. 9 (1990)
262277

Keyser, J., Culver, T., Manocha, D., Krishnan, S.: MAPC: a library for efficient
and exact manipulation of algebraic points and curves. In Proceedings of the 15th
ACM Symposium on Computational Geometry, ACM Press (1999) 360-369

. Krishnan, S., Manocha, D.: Numeric-symbolic algorithms for evaluating one-

dimensional algebraic sets. In Proceedings of the ACM Symposium on Symbolic
and Algebraic Computation (1995) 59-67

Lopes, H., Oliveira, J., Figueiredo, L.: Robust adaptive polygonal approximation
of implicit curves. In Proceedings of the SibGrapi 2001, IEEE Computer Society
(2001)

Lorensen, W., Cline, W.: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. Comp. Graph. 21 (1987) 163-169

Moeller, T., Yagel, R.: Efficient rasterization of implicit functions.
http://citeseer.nj.nec.com/357413.html (1995)

Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: the
art of scientific computing. Cambridge University Press, 2nd edition, 1992.
Shewchuk, J.: Adaptive precision floating-point arithmetic and fast robust geome-
tric predicates. Disc. and Comp. Geom. 18 (1997) 305-363

Snyder, J.: Interval arithmetic for computer graphics. In Proceedings of ACM
SIGGRAPH’1992, ACM Press (1992) 121-130

Taubin, G.: An accurate algorithm for rasterizing algebraic curves. In Proceedings
of the 2nd ACM Solid Modeling and Applications, ACM Press (1993) 221-230

	Introduction
	Curve Sampling through Numerical Approximation
	False Position Method: A Brief Review
	Angular False Position Method

	Curve Tracking Algorithm
	Computing Neighborhood Points
	Cusp and Other High-Curvature Points
	Self-Intersection Points
	Near-Branch Points
	The Algorithm

	Conclusions and Experimental Results

