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Abstract. Fingers of the hand are interdependent: when a person mo-
ves one finger or produces a force with a fingertip, other fingers of the
hand also move or show force production. Hence, no direct correspon-
dence exists between the neural commands to individual fingers and fin-
ger forces. The relations among fingers are described with inter-finger
connection matrices, IFM. The IFMs depend on the number of fingers
involved in the task. This presentation addresses three aspects of the
IFMs: (1) computation of the IFMs, (2) role of finger interdependence
during manipulation of hand-held objects and (3) inter-individual diffe-
rences in the IFMs.

When a person moves one finger or produces a force with a fingertip, other fin-
gers of the hand also move or show force production[12,6,4]. This phenomenon
has been termed enslaving[18,19]. The finger interdependence is due to three
sources/mechanisms: (1) peripheral connections, both tendinous[8] and inter-
muscular myofascial[5], (2) multi-digit motor units in the extrinsic flexor and
extensor muscles[6], and (3) central neural connections[13]. Due to the ensla-
ving, there is no direct correspondence between neural commands to individual
fingers and finger forces.

The relations among fingers can be described with inter-finger connection
matrices, IFM [18,11]. The IFMs depend on the number of fingers involved in
the task. The reason behind this dependence is a so called force deficit: a maximal
force exerted by a finger in a multi-finger task is smaller than a maximal force
produced by this finger in a single-finger test. The deficit increases with the
number of fingers involved in the task[9,10]. Existence of the force deficit makes
determination of the IFMs in static tasks nontrivial: recording of finger forces
while the subject tries to press with only one finger does not account for the
force deficit and, hence, is not sufficient to determine an IFM. This presentation
addresses three aspects of the IFMs: (1) computation of the IFMs, (2) role of
finger interdependence during manipulation of hand-held objects and (3) inter-
individual differences in the IFMs.
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1 Computation of the IFMs

So far, two techniques have been used to compute the IFMs: (a) neural networ-
king and (b) algebraic approximation.

1.1 Neural Networks

The three-layer network model is shown in Fig. 1. The model consists of three lay-
ers: the input layer that models a central neural drive; the hidden layer modeling
finger flexors serving several fingers simultaneously, and the output layer repre-
senting finger force output. Note the existence of direct input-output connections
that model muscular components that serve individual fingers. The networks in-
corporate the following ideas/hypotheses:

(a) Existence of two groups of muscle components. Each muscle/compartment
of the first group serves an individual finger (unidigit muscles; intrinsic mu-
scles of the hand) and each muscle/compartment of the second group serves
several fingers (multi-digit muscles; extrinsic muscles of the hand). The first
group of muscles is represented in the neural networks by a direct one-to-
one connection from the input to the output layer. The second group is
represented by the middle layer and its multiple connections.

(b) The force deficit phenomenon is modeled by specific transfer characteristics
of the middle layer neurons: the output of the middle layer was set as inver-
sely proportional to the number of fingers involved. Note that in the model,
the force deficit effects are only assigned to the multi-digit muscles of the
hand.

(c) The enslaving effects are modeled by the connection weights from the middle
to the output layer.

Fig. 1. Basic network. The hidden layer models the extrinsic hand muscles (those that
are located in the forearm) having multiple connections to all four fingers while direct
input-output connections represent the intrinsic hand muscles (those that are located
in the hand) that serve individual fingers. The index, middle, ring and little finger
correspond to 1, 2, 3, and 4, respectively.
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The net input to the jth unit of the hidden layer from the input layer is
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ij are connection weights from the ith unit in the input layer to the jth

unit in the hidden layer. The characteristic of input/output in the hidden layer
is described as
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where zj is the output from the hidden layer. The net input to the kth unit in
the layer (s(2)

k ) from the hidden layer is expressed as

s
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where w
(2)
jk are connection weights from the jth unit in the hidden layer to the kth

unit in the output layer. vk are the connetion weights directly from the kth unit
in the input layer to the kth unit in the output layer. An identity input/output
transfer relationship was defined at the output layer, i.e.

yk = f2(s
(2)
k ) = s

(2)
k k = 1, 2, 3, 4 (4)

The inputs to the network were set at xi = 1, if finger i was involved in the task,
or xi = 0 otherwise. The weights from the input layer to the hidden layer were
set as a unit constant (w(1)

ij ). The network was trained using a backpropagation
algorithm[1].

The developed network yielded a relation between the neural commands and
the finger forces:

[F ] = k[w][c] + [v][c] (5)
where [F ] is a (4 × 1) vector of the finger forces, [w] is a (4 × 4) matrix of
inter-finger weight coefficients, [c] is a (4 × 1) vector of dimensionless neural
commands (command to a finger ranges from 1.0, when a finger is intended to
produce maximal force, to 0.0, if the finger is not intended to produce force),
[v] is a (4 × 4) diagonal matrix with gain coefficients that model the input-
output relations for single-digit muscles, and k is a coefficient that depends on
the number of fingers in the task (0 ≤ k ≤ 1). The value of k was set either at
1/n, where n is the number of intended fingers in the force production task, or
computed by the network; the two approaches yielded similar results[18]. From
(5) it follows that a command cj sent to a finger j (j = 1, 2, 3, 4) activates all
other fingers to a certain extent (enslaving effects). For a given n, in particular
for n = 4, (5) can be reduced to

[F ] = [W ][c] (6)

where [W ] is the (4 × 4) IFM accounting for both force enslaving and force
deficit[17,18,11].



Inter-finger Connection Matrices 1059

1.2 Algebraic Approximation

Recently, Danion et al.[2] suggested a different equation in which the force deficit
is represented by a coefficient related to the number of explicitly involved fingers
and the IFM accounts only for enslaving:

[F ] =
1

n0.66 [W ′][c] (7)

where 1/n0.66 is an empirical force deficit coefficient and [W ′] is a ’pure’ enslaving
matrix. The elements of [W ′] can be easily estimated without the neural network
computations from single-finger maximal force contraction (MVC) tasks.

The above approach inspired a mode-control hypothesis of finger coordina-
tion. According to the hypothesis, for each single-finger task, the CNS controls
a unique variable (a Mode) leading to force production by the master finger,
as well as by the enslaved fingers. For instance, when a subject produces force
voluntarily with the index finger (I), Mode-I is recruited by the CNS. Due to
the enslaving phenomenon, Mode-I also leads to force production by the middle,
ring, and little fingers. Similarly, voluntary force production by the middle (M),
ring (R) or little finger (L), is assumed to involve corresponding Modes (Mode-
M, Mode-R, and Mode-L, respectively). Therefore, a Mode can be viewed as
a collective variable, which leads to activation of many hand muscles bringing
about a specific pattern of force production by several fingers.

2 The Role of Finger Interdependence during
Manipulation of the Hand-Held Objects

An interest to the IFMs greatly increased when it was shown that the enslaving
occurs during natural grasping[17]. Knowledge of the IFMs allowed to recon-
struct the intensity of neural commands sent to individual fingers and to esti-
mate the magnitude of the enslaving effects, the force exerted by finger i due to
the command sent to finger j.

If the vector of finger forces [F ] and IFM matrix [W ] are known the vector of
the neural commands can be determined by inverting (6). The vector of neural
commands is then

[c] = [W ]−1[F ] (8)

To test whether the various observed force-sharing patterns were optimal,
optimization methods have been employed. The norms of the following vectors
were employed as cost functions:

(G1) Finger forces.
(G2) Finger forces normalized with respect to the maximal forces measured in

single-finger tasks.
(G3) Finger forces normalized with respect to the maximal forces measured in

a four-finger (IMRL) task.
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(G4) Finger forces normalized with respect to the maximal moments that can
be generated by the fingers while grasping an object with five digits.

(G5) Neural commands.

The main distinction between the first four cost functions and the fifth one lies
in the way of finger interdependence being accounted for: the cost functions based
on the finger forces neglect the finger interdependence while the optimization of
neural commands accounts for it.

In experiments with static holding of a handle with an attached load, when
the subjects were required to produce different combinations of force and torque,
some (’agonist’) fingers generated moments in the direction required by the task
while other (’antagonist’) fingers produced moments in the opposite direction.
Optimization of neural commands was able to model such ’antagonist’ finger
force production and resulted in a better correspondence between the actual and
predicted finger forces than the optimization of various norms of the finger forces
(Fig. 2, next page). Hence, during grasping strong commands to particular fingers
activate also fingers that generate moments of force in the direction opposite to
the direction required by the task.

3 Inter-individual Differences in the IFMs

Individuals forming the general population may be expected to show both simi-
larities and differences in the way their central nervous system organizes finger
interaction. These differences may be related to such gross characteristics as the
amount of total maximal finger force a person can produce[15] or to more subtle
individual factors such as experience with particular tasks that require precise
finger coordination[16]. An IFM for a hand contains 16 numbers. Hence, in gene-
ral, individual differences in finger interaction, as reflected in IFMs, may require
16 variables to be fully described. We hypothesize, however, that a significantly
smaller number of variables may be sufficient to describe differences among in-
dividuals without special skills. Hence, we aimed to discover such variables and
relate them to indices of finger interaction introduced in earlier studies.

To this end, we recorded maximal finger forces in single-finger and multi-
finger tasks in 20 right-handed university male subjects. The data were analyzed
in the following way:

(A) The individual IMFs were computed by the artificial neural network shown
in Fig. 1. We will call these matrices the non-normalized IFMs. The sum of
the elements of a non-normalized IFM equals the total force of all fingers in
the four-finger task.

(B) Normalized IFMs were computed by dividing the elements of a non-
normalized IFM by the sum of its elements, i.e. by the total force of the
four fingers in the IMRL task. The sum of the elements of a normalized
IFM equals one. Both normalized and non-normalized IFMs were used for
the further analysis.
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Fig. 2. Comparison of actual force data with force patterns predicted by different
optimization criteria. Criteria G1-G4 do not predict the antagonist moments while the
optimization of neural commands does.

(C) The similarities/dissimilarities (proximities) between the individual matri-
ces have been quantified. Suppose we have two IFMs computed on subjects
s1 and s2. The corresponding matrices are A and B and their difference is
(A − B). The dissimilarity of the matrices was computed as a square root
of the trace of a matrix, (A − B)T(A − B), that is

δij = {trace[(A − B)T(A − B)]}0.5 (9)

where the superscript T denotes the transpose. In order to avoid confusion
with the ’distances’ determined in the multi-dimensional scaling (MDS)
method (see below) and following the accepted terminology, we called δij a
proximity of matrices A and B, i.e., the proximity of subjects s1 and s2.
The 190 computed values of δij were arranged in a 20×20 proximity matrix
∆.

(D) The MDS was performed on the proximity matrix. The proximity matrices
∆ for both normalized and non-normalized IFM were input into MDS func-
tion module to perform MDS analyses ( Statistica, Statsoft Inc, OK, USA).
The MDS program transforms the proximity data into Euclidean distances
in a low-dimensional space. The Euclidean distances and the monotonic
function that transforms the proximities into distances[7] were estimated
by minimizing the following stress function:

stress =
√∑

i

∑

j

[f(δij − dij ]2/
∑

i

∑

j

d2
ij (10)

where dij are the distances and f(δij) indicates a monotonic transforma-
tion of the elements δij of the input proximity matrix ∆. To estimate the
goodness-of-fit the following values of stress are usually recommended: 0.2
- poor, 0.1 - fair, 0.05 - good [7].

(E) To identify the meaning of the dimensions in the 2- and 3-dimensional spa-
ces yielded by the MDS, individual coordinates of the subjects along the
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two/three dimensions (using both non-normalized and normalized IMFs)
were correlated with the following variables: (1) sum of finger forces during
four finger (IMRL) task; (2) - (5) individual finger forces during single fin-
ger (I, M, R, L) tasks, N; (6)-(9) shares of finger contribution into the total
force during a four-finger task, % (I/IMRL, M/IMRL, R/IMRL, L/IMRL);
(10) location of the resultant force of the four fingers along the medio-lateral
axis, mm (Location) [10]; (11) and (12) traces of the IFMs, both normalized
and non-normalized, - they represent the total sum of the ’direct’ finger for-
ces, in N and percents, respectively; (13) and (14) sums of the off-diagonal
elements of IFMs, both normalized and non-normalized,- they represent the
total amount of the enslaved finger forces, in N and percents, respectively;
(15) and (16) the size of the hand, its length and width, respectively.

Number of dimensions. The stress as a function of the number of dimensions
(the so-called ’scree plot’) is presented in Fig. 3. For non-normalized IFMs the
stress can be represented sufficiently well in two dimensions (although the three-
dimensional representation is more accurate) while at least three dimensions
are necessary to account for the individual differences in the normalized IFMs.
The decrease in dimensionality achieved by the MDS was substantial: from the
20 × 20 proximity matrix to 2- or 3-dimensional spaces.

Fig. 3. Scree plots (stresses vs. number of dimensions). For non-normalized IFMs the
stress was 0.098 at two dimensions and it was 0.027 at three dimensions. The stress
for the normalized IFMs equaled 0.102 at two dimensions and it was 0.045 at three
dimensions.

Interpretation of the dimensions. To interpret the meaning of the computed
dimensions, they were regressed on a set of finger force parameters described
in the text. For the non-normalized IFMs an interpretable dimension was the
strength of the subjects. For the normalized IFM’s, two dimensions were in-
terpreted: (a) the location of the point of resultant force application along the
medio-lateral axis that is defined by the pattern of force sharing among the fin-
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gers and (b) the total contribution of the enslaved forces into the total finger
force.

In summary, the employed set of methods: experimental recording of finger→
forces artificial network modeling and determining of individual IFMs→ compu-
ting differences (proximities) between the individual IFMs→MDS offers promise
for future research.
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