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Abstract. Imitation Learning is considered both as a method to acquire
complex human and agent behaviors, and as a way to provide seeds for
further learning. However, it is not clear what is a building block in imi-
tation learning and what is the interface of blocks; therefore, it is difficult
to apply imitation learning in a constructive way. This paper addresses
agents’ intentions as the building block that abstracts local situations of
the agent and proposes a hierarchical hidden Markov model (HMM) in
order to tackle this issue. The key of the proposed model is introduction
of gate probabilities that restrict transition among agents’ intentions ac-
cording to others’ intentions. Using these probabilities, the framework
can control transitions flexibly among basic behaviors in a cooperative
behavior. A learning method for the framework can be derived based
on Baum-Welch’s algorithm, which enables learning by observation of
mentors’ demonstration. Imitation learning by the proposed method can
generalize behaviors from even one demonstration, because the mentors’
behaviors are expressed as a distributed representation of a flow of like-
lihood in HMM.

1 Introduction

Imitation learning is considered to be a method to acquire complex human and
agent behaviors and as a way to provide seeds for further learning [6, 9, 7]. While
those studies have focused on imitating behaviors of single agents, few works
address imitation for teamwork among multiple agents because the complexity
of the world state increases drastically in multi-agent systems. On the other
hand, stochastic models like hidden Markov models (HMM) have been studied
as tools to model and to represent multi-agent/human interactions [8, 3, 2]. The
merit of stochastic models is that we can apply the models in both behavior
recognition and generation. However, it is hard to apply these stochastic models
to imitate teamworks by observation because of the complexity of the model
of multiple agents. This study focuses upon intentions of agents as building
blocks of an abstract state of the local world for the agent in order to overcome
the problem. Using intention, I formalize teamwork and propose a hierarchical
hidden Markov model for imitation learning of teamwork.
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2 Teamwork and Imitation

What is teamwork in multiagent systems? Consider a case wherein two soccer
players pass a ball with each other. When a passer, who is keeping the ball,
starts to pass the ball to a receiver, the passer must know that the teammate
is ready to receive. Also, the receiver will start free-running when the receiver
recognizes that the passer is looking for the receiver for a through-pass. This
example illustrates that recognition of the others’ intentions is important factor
for decision making of player’s intention. We enhance usage of intentions to
derive teamwork. This section formalizes teamwork from intention and makes a
correspondence to imitation learning.

2.1 Intention and Play

We suppose that an intention is a short-term idea to achieve a certain condition
from another condition. For example, in soccer, the intention ‘to guide a ball in
a certain direction’ is an idea to move to a certain direction with the ball. We
assume that an intention is an individual idea; therefore, an agent does not pay
attention to others’ efforts to achieve the intention.

A play, as opposed to a team-play, is postulated as a sequence of atomic
actions to achieve a single intention. The play is a basic building block of overall
behavior of agents. For example, in soccer, a ‘dribble’ is a play to achieve the
intention ‘guide a ball in a certain direction’, which consists of atomic actions
like ‘turn’, ‘dash’, ‘kick’, and so on. A play for the intention is also an individual
behavior without collaboration with other agents because an intention is an
individual idea.

We also assume that a play corresponds to just one intention. Therefore, we
use the word “play” and “intention” in the same meaning in the remainder of
this article.

As shown below, an intention and the corresponding play are used as a main
trigger to synchronize team-plays among multiple agents. This means that the
intention is treated as a kind of partial condition of the world. For example,
the fact that a player has a ‘dribble’ intention implies the following conditions:
the player is keeping the ball; the player is moving toward a certain place; and
the player may require teammates for support. In other words, an intention
represents abstracted and simplified conditions of the world.

2.2 Team-Play

We suppose that team-play is a collection of plays performed by multiple agents
to achieve a certain purpose. As mentioned in the previous section, an intention
is an individual idea. This means that multiple agents who do not change their
intentions can not perform a team-play because they have no way to synchronize
their plays. Instead, we assume that they can synchronize their plays by changing
their intentions according to situations of environments and intentions of other
agents. For example, in soccer, when two players (passer and receiver) guide a
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ball by dribble and pass, players will change their intentions as shown in Fig. 2.
In this example, the passer and the receiver initially have intentions ‘dribbling’
and ‘supporting’, respectively. Then, the passer changes the intention to ‘seek-
receiver’, followed by the receiver’s change to ‘free-run’, the passer’s change to
‘pass’, and so on. Play synchronization is represented as conditions when agents
can change the intention. In the example, the passer changes its intention from
‘seek-receiver’ to ‘pass’ when the teammate’s intention is ‘free-run’. In other
words, we can denote the condition as follows:

Intent(passer,seek-receiver) & Bel(passer, Intent(receiver,free run))
→ Intent(passer, pass)

2.3 Imitation Learning of Team-Play

Finally, we formalize imitation learning of the team-play.
In general, the imitation learning process is: (1) to observe behaviors of a

mentor and interpret them into internal representation; (2) to extract rules of
behaviors from internal representation; and (3) to generate a behavior based
on rules. In the context of the team-play formalized in the previous section, the
above process is realized as;

Observation phase: to observe behaviors of mentors and estimate what inten-
tion each agent has at each time step.

Extraction phase: to extract conditions prevailing when each agent changes
intentions. A condition is represented as a conjunction of others’ intentions.

Generation phase: to generate a sequence of intentions according to changes
of environment and others’ intentions.

In the Extraction phase of this process, the intention plays an important role:
that is, conditions of changes of intentions. As described in Section 2.1, we con-
sider that intention can represent world conditions. In addition to it, we use only
intentions to construct rules for agents to change their intention. Although such
abstraction reduces performance to express detailed conditions of the world, it
provides good features for the machine learning. One important issue in machine
learning is how to represent the state of a complex environment. This becomes a
serious problem under a multi-agent environment because the number of factors
to take into account increases exponentially in such environment. Abstraction of
the world state by intentions can reduce the number of factors during the con-
dition significantly. This kind of abstraction is necessary for imitation learning
because only a small number of examples are given for imitation learning.

3 Hierarchical Hidden Markov Model for Agents

3.1 Basic Behavior Model

We formalize behaviors of a basic play m performed by a single agent as a
Moore-type HMM as follows:

HMMb
m = 〈Sm, V m, P m, Qm, Rm〉 ,
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Fig. 1. Dribble and Pass Play
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Fig. 2. Changes of Intentions in Dribble
and Pass Play

si

a e

sj

a e

sk

a e

sl

a e

Play

si

a e

sj

a e

sk

a e

sl

a e

Play

si

a e

sj

a e

sk

a e

sl

a e

Play

Fig. 3.Complex Behavior Model
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Fig. 4. Joint Behavior Model

where Sm is a set of states for the play m, V m is a set of a pair of sensor value
and action commands which are used as outputs from the state, P m = {pmij},
Qm = {qmi(v)}, and Rm = {rmi} are probability matrixes of state transition,
state-output, and initial state, respectively. These probabilities are defined as
pmij = Pr(s〈t〉mj |s〈t−1〉

mi ), qmi(v) = Pr(v〈t〉|s〈t〉mi), and rmi = Pr(s〈0〉mi), where s
〈t〉
xyz

means s〈t〉 = sxyz, and 〈t〉 on the right shoulder of a variable indicate the time t.

3.2 Complex Behavior Model

As discussed in the previous section, we consider that team-play consists of a
sequence of intentions of multiple agents. This means that cooperative complex
behavior of a single agent in a team of agents is considered as transitions among
several basic plays (HMMb ). Therefore, we formalize complex behavior as the
following modified Mealy-type HMM (Figure 3),

HMMc = 〈M , U , E, F , G, H〉 ,
where M = {HMMb

m} is a set of basic plays and U is a set of output from the
model (normally, same as M); E = {em} is a set of initial play probabilities,
F = {fmin} is a set of exiting probabilities from plays, and G = {gmnj} is
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a set of entering probabilities to plays. Also, H = {hmn(u)} is a set of gate
probabilities between plays. Formally, these probabilities are defined as: em =
Pr(HMMb〈0〉

m ), fmin = Pr(HMMb〈t〉
n |s〈t〉mi), gmnj = Pr(s〈t〉nj |HMMb〈t−1〉

m ), and

hmn(u) = Pr(u〈t−1〉 ∈ U |HMMb〈t−1〉
m ,HMMb〈t〉

n ).
Using these probabilities, an actual probability from state i in play m to

state j in play n is calculated as

p′minj = Pr(s〈t〉nj |s〈t−1〉
mi ) =

{
fmimpmij ; m = n
fmingmnj ; m �= n

.

3.3 Joint-Behavior Model

Finally, we coupled multiple HMMcs , each of which represents the behavior of
an agent. Coupling is represented by gate probabilities H (Fig. 4). For example,
when agent X and agent Y are collaborating with each other, hmn(u) in HMMc

for agent X indicates the probability that agent Y is performing play u at time
t when agent X changes the play from m to n during time t→t + 1.

3.4 Learning Procedure

Using the Baum-Welch algorithm, we can derive an learning procedure to adapt
probabilities in HMMc . The first step is to calculate forward and backward
likelihoods for each state and timestep in all plays as follows:

α
〈0〉
nj = enrnjqnj(v〈0〉)

α
〈t+1〉
nj =


∑

i

f̃ninα
〈t〉
ni pnij +

∑
m �=n

ᾱ〈t〉
mngmnj


 qnj(v〈t+1〉)

β
〈T 〉
mi = 1

β
〈t−1〉
mi =


∑

j

f̃mimpmijqmj(v〈t〉)β
〈t〉
mj +

∑
m �=n

f̃minβ̄〈t〉
mn


 qnj(v〈t+1〉),

where

ᾱ
〈t〉
mn =

∑
i α

〈t〉
mif̃min

β̄
〈t〉
mn =

∑
j gmnjqnj(v〈t〉)β

〈t〉
nj

f̃min =




fmin+λsticky
1+λsticky

; ifm = n
fmin

1+λsticky
; otherwise

.

Here, λsticky is a positive value called a sticky factor. This factor is introduced
because we should consider that an agent retains an intention relatively per-
sistently. If the agent changes its intention repeatedly, it becomes difficult to
estimate an agent’s intention by observation, rendering complex behavior diffi-
cult. The sticky factor λsticky inhibits such frequent changes of intention during
observation and estimation of mentors’ behaviors. Note that the sticky factor is
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used only in the Estimation phase, and ignored in the Generation phase in
the imitation learning.

Using α and β, we can adjust probabilities as follows:

em←
∑

i

γ
〈0〉
mi , fmin←

∑
t ξ

〈t〉
min∑

t γ
〈t〉
mi

, gmnj←
∑

t ξ
〈t〉
mnj∑

t γ
〈t〉
mn

, hmn(u)←
∑

t,u〈t〉=u γ〈t〉
∑

t γ
〈t〉
mn

,

where

ξ
〈t〉
min = α

〈t−1〉
Mi fminhmn(u〈t−1〉)β̄〈t〉

mn

ξ
〈t〉
mnj = ᾱ

〈t−1〉
mn gmnjqnj(v〈t〉)β

〈t〉
nj

γ
〈t〉
mi = α

〈t〉
miβ

〈t〉
mi

γ
〈t〉
mn = ᾱ

〈t〉
mnhmn(u〈t〉)β̄〈t+1〉

mn .

3.5 Imitation Learning Using HMM

Using proposed HMMs, we realize the imitation learning as: (1) to train sepa-
rately each HMMb for each play; (2) to construct HMMcs using the trained
HMMbs ; (3) to observe mentors’ behaviors and environmental changes; then
estimate likelihoods of each play (and each state in a play) at each time step
by calculating forward and backward likelihoods (α〈t〉

nj and β
〈t〉
mi) as shown in

Section 3.4; (4) to adjust initial, exiting and entering probabilities (E,F and
G) according to observation; (5) to repeat steps 3 and 4 until the probabili-
ties converge (Observation); (6) to calculate gate probabilities (H) using final
forward/backward likelihood (Extraction); (7) to generate transitions among
states and plays according to acquired probabilities (Generation). In the last
phase, play generation is done as follows: The initial state for each agent is de-
cided according to initial probability Pr(s〈0〉mi) = emrmi. When the play and the
state of an agent at time t are m and smi, respectively and the set of others’ plays
is u〈t〉, then the next play n and the state i of the agent is decided according to
the following likelihood L:

L(s〈t+1〉
nj ) =

{
fmimpmijqmj(v̂〈t+1〉) ; m = n
fmingmnjhmn(u〈t〉)qnj(v̂〈t+1〉) ; m �= n

(1)

where v̂〈t+1〉 is a partially observed output value in v at time t + 1.

4 Experiments

4.1 Cyclic Alternating Shift Actions

Several simple experiments were conducted to demonstrate the performance of
the proposed model.

In the experiments, two agents change four plays in a certain order by syn-
chronizing them with each other. The four plays are: to move on a round path
clockwise (A), to move on a round path counter-clockwise (B), to move in an
‘∞’-letter-shape path (C) , and to move in an ‘8’-letter-shape path (D). Actual
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A B C D

Fig. 5. Basic Plays used in Exp. 1 and
Exp. 2

Exp. 1
Agent X →A→B→C→D→A
Agent Y D→C→B→A→D→

Exp. 2
Agent X →A→B→C→D→A→D→C→B→A
Agent Y A→B→D→A→C→D→B→C→A→

Fig. 6. Change Patterns of Team-plays used
in Exp. 1 and Exp. 2

paths are shown in Fig. 5. The agents’ actions (movement) are observed as a
sequence of positions where the agent is located in each timestep1.

We suppose that learner agents are already trained for these four plays; that
is, the learners’ HMMbs , each of which consists of 20 states, are already trained
for these plays. This means that the HMMbs can generate required movements
of corresponding play-A,-B,-C, and -D.

Note that only one example is given to the learner for each experiment in the
following experiments, Because of imitation learning, learners should be able to
generalize acquired behaviors from the example so that the learners can generate
varied behavior according to difference of environments.

Exp. 1: Simple Shift of Plays: In the first experiment, each mentor agent
simply changes its plays in a certain order (A →B →C →D for agent X and D
→C →B →A for agent Y) alternately with each other as shown in Fig. 6-(a).

Figure 7 shows the relative likelihood of each play state for each agent at each
timestep estimated by Observation phase. In this figure, there are eight rows
of small squares: upper 4 rows correspond 4 plays of the first agent (agent X),
and the rest 4 are plays for the second agent (agent Y). Each row corresponds
to a play A, B, C or D in Fig. 5 respectively. In each row, a column consists of
20 small squares each of which corresponds a state of HMMb for the play A–D
at a certain timestep. The ratio of black area in the square indicates the relative
likelihood with which the state of the HMMb is active at the timestep. Columns
are aligned along with time. So, a horizontal line of squares means changes of
likelihood of a state of HMMb . From this figure, we can see that the learner
estimate that the agent X behaves according to play-A at the beginning (states
for play-A (squares in the most upper row) are active in the left most part of
the figure), then adopts play-B, play-C, play-D continuously; it then returns to
play-A, followed by the same changes. Similarly, the learner estimates that agent
Y behaves play-D first, then changes plays in the reverse order of agent X. In
addition to it, the change from play-A to play-B, from play-B to play-C, and
from play-C to play-D in the agent X occur while the agent Y is doing play-C,

1 Actually, the world is quantized into 49 (7 × 7) blocks when it is observed. There-
fore, movements are observed as a sequence of blocks in which the agent is at each
timestep.
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Fig. 7. Exp. 1: Result of Recognition of Mentors’ Behaviors

Fig. 8. Exp. 1: State Transitions Generated by Learned HMM

play-B, and play-A, respectively. These conditions are consistent with the change
pattern of the mentor shown in Fig. 6.

Using the result of the estimation, the learner acquires probabilities in HMMc

as conditions of changes of plays. For example, probabilities to transit from play
A to play B and from play B to play C in the agent X were acquired in a certain
trial as follows2:

hAB(C) = 1.00, fA8B = 0.33, fA14B = 1.00,
hBC(B) = 1.00, fB3C = 0.71, fB6C = 0.96.

(2)

2 Actual values of these probabilities vary according to initial values before learning
and random noise added in the mentors’ behaviors.
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These probabilities represent the following conditions about changes of plays:

Intent(X,A) & Bel(X, Intent(Y, C)) → Intent(X, B)
Intent(X,B) & Bel(X, Intent(Y, B)) → Intent(X, C)

Using these probabilities, the learner can generate similar behaviors to those
shown in Fig. 8. This figure is constructed in the same way as Fig. 7, but only
one square is filled in a timestep because the learner decides one of the possible
states according to the likelihood shown in Eq. 1. From this figure, we can see
that the learner generates behaviors in the same manner of the mentor; that is,
the order of the generated plays of agent X and Y are ‘A →B →C →D’ and ‘D
→C →B →A’ respectively. Also, timings of the change of plays are consistent
with the mentor’s demonstration.

Generated behaviors are not deterministic because the acquired probabilities
may take intermediate values as like fA8B and fB3C in Eq. 2. For example,
durations of the play-C in agent Y are different in the first cycle and the second
cycle in Fig. 8. This means that the learner has the ability to adapt to difference
of the environment using methods for HMM such as Vitabi’s algorithm.

Exp. 2: Conditional Change of Plays: The second experiment illustrates
that the proposed framework can learn conditional transitions of plays using
change pattern shown in Fig. 6-(c). The change pattern of Fig. 6-(c) includes con-
ditional branching of the transition of plays. For example, agent X may change
its play from A to two possible destination, B or D. The change can be decided
encountering agent Y’s play. When agent Y is doing play-B, agent X changes
its play from A only to B; when agent Y is play-D, agent X changes to D.
Figure 10 shows resultant behaviors generated after learning. As shown in this
figure, the learner acquires correct conditions of the branching transition. For
example, changes from play-A to -B of agent X only occur during agent Y’s play-
B. Actually, these conditions are represented by gate probabilities: for example,
hAB(B) = 0.97 and hAD(B) = 0.00 for agent X.

4.2 Exp. 3: Dribble and Pass Play in Soccer

Finally, I applied the framework to collaborative play of soccer. The demonstra-
tion by mentors is dribble and pass play as shown in Fig. 1: A player starts to
dribble from the center of the left half field and brings the ball to the right half.
At the same time, another player runs parallel along the upper (or lower) side of
the field supporting the dribbling player. Then, the first player slows to look-up
the second player; it then passes the ball to that player. Simultaneously, the sec-
ond player starts to dash to the ball and dribbles after receiving the ball. After
the pass, the first player exchanges roles with the teammate so that it becomes
a supporting player for the second player.

To imitate this demonstration, I trained six HMMbs to model ‘dribble’,
‘slow-down and look-up’, ‘pass’, ‘free-run’, ‘chase-ball’, and ‘support’. Each of
HMMb has 5 states. The output of these HMMbs consists of local situations
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Fig. 9. Exp. 2: Result of Recognition of Mentor’s Behaviors

Fig. 10. Exp. 2: State Transitions Generated by Learned HMM

(the relative position and the velocity to the ball) and agent’s actions (‘turn’,
‘dash’, ‘small-kick’, ‘long-kick’, ‘trap’, and ‘look’). Note that there is no informa-
tion about others’ situations for output of HMMbs . As described in Section 2.2,
others’ situations are taken into account during the Extraction phase in learn-
ing.

Two HMMcs for agent X (the first player) and Y (the second player) are
constructed after the training of the HMMbs . Then, the learner observes be-
haviors of the mentor and adjusts probabilities of the HMMcs .

Figure 1 shows result of observation and estimation. There are six HMMbs
in this experiments; therefore, there are six rows (denoted by D, K, P, F, C,
and S) for each agent, in which a column consists of five squares. Rows mean
‘dribble (D)’ , ‘slow-down and look-up (K)’, ‘pass (P)’, ‘free-run (F)’, ‘chase-ball
(C)’, and ‘support (S)’, respectively. From this figure, we can see that the learner
estimates changes of play for agent X and Y are ‘dribble’→‘slow-down’→‘pass’
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Fig. 11. Exp. 3: Result of Recognition of a Mentor’s Behaviors

Fig. 12. Exp. 3: State Transitions Generated by Learned HMM

→‘support’ and ‘support’ →‘chase-ball’ →‘dribble’. Consequently, the learner
can generate various behaviors similar to the demonstration as shown in Fig. 12.
In this example, although the learner sometimes generates wrong state transi-
tions, for example a transition to states to the ‘free-run’ play in agent Y during
agent X is doing ’slow-down’, it recovers to the suitable transitions and contin-
ues to imitate the demonstrator. This shows robustness of the model against
accidents. Because the model is coupled loosely with world and other’s states by
output probabilities of HMM, it can permit variation and misunderstanding of
world and others’ states.

5 Related Works and Discussion

There are several works on coupling HMMs that can represent combinational
probabilistic phenomena like multi-agent collaboration [5, 1, 4]. In these works,
probabilistic relation among several HMMs (agents) are represented as state-
transition probabilities, such that the amount of memory complexity increases
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exponentially. This is a serious problem for imitation learning because we assume
that the number of examples is small for imitation. In our model, the relation
among agents is represented by gate probabilities H, in which others’ states are
treated as outputs instead of as conditions of state transition. Using them, the
likelihoods of state-transitions are simplified as products of several probabilities
(Eq. 1). In addition, detailed states of other agents are abstracted by play (in-
tention). As a result, the number of parameters is reduced drastically, so that
learning requires very small number of examples as shown in above examples.
Although such simplification may decrease flexibility of representation as a prob-
abilistic model, experiments show that the proposed model has enough power to
represent team-play among agents.

Intention in the model brings another aspect to communication among
agents. We assume that there are no mutual communication in the proposed
model. However, we can introduce communication as a bypass of observation
and estimation of other’s intention (play). The proposed model will be able to
provide criteria for when an agent should inform their intention to others by
comparing agents’ actual intentions and estimated intention of the agent itself
by simulating its own HMMc .

One important issue is the design of the intention. In the proposed model, in-
tentions play various important roles like chanking of the actions and conditions
of world state. Therefore, we must design intentions carefully so that team-plays
can be represented flexibly.
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