
An Open Robot Simulator Environment

Toshiyuki Ishimura, Takeshi Kato, Kentaro Oda, and Takeshi Ohashi

Dept. of Artificial Intelligence, Kyushu Institute of Technology
isshi@mickey.ai.kyutech.ac.jp

Abstract. At present, various kinds of robots such as AIBO, ASIMO and etc,
are available in public. However, the development of robots is still having some
difficulties since of their complexity, continual changes of environments, limita-
tion of resources and etc. To overcome this problem, robot developers often use
the simulator that allows to program and test robots’ program effectively under
ideal environmental conditions where specified various conditions can easily be
reproduced. It is still difficult to realize the simulator regardless of its usefulness,
because the cost of simulator implementation seems the unexpected cost in the
development of robots. As a result, it is need to realize the open robot simulation
environment in which any kind of robots can be simulated. This paper focuses on
vision-based robot simulation environment and describes a method to construct
it. Finally, we implemented a simulator for Robocup Sony 4-Legged League by
using this method.

1 Introduction

Nowadays various robots are available in public such as AIBO, ASIMO and etc. How-
ever, the development of robots is still having some difficulties because of their com-
plexity, continual changes of environments, limitation of resources and etc. Considering
environment changes in vision-based robot, for instance, changes of the lighting con-
dition in a specific environment will affect robot’s behavior seriously. To understand
the problems of the robot’s strategies in the real environment, it needs to check robots
strategies in exactly the same environment conditions. Because of in each testing time,
sensory values such as camera images and the effectors will change. There are two
types of robot simulators in order to solve this problem. One aims to simulate the robot
mechanical behavior with accurate robot model data and the other aims to simulate the
vision of the robot in order to test robot strategy. The simulator allows developers to
program and test robots’ program effectively in the ideal environment where specified
conditions can easily be reproduced. It is still difficult to realize the simulator regardless
of its usefulness since the cost of simulator implementation can be an unexpected cost in
robot development. Can overcome this problem by realizing the open robot simulation
environment as it can simulate any type of robots.

This paper focuses on vision-based robot simulation environment and describes a
method to construct it. The next section describes concept of open robot simulator.
Section 3 shows architecture of this method. Section 4 presents an implementation
of the environment. Section 5 shows evaluation of the simulator for Robocup Sony
4-Legged League. Finally, section 4 concludes with a discussion of our method.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 621–627, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



622 Toshiyuki Ishimura et al.

Network(TCP/IP)

Client

Agent
Program

Middleware

3D Models

Camera

Sensor
Effector

SimServer Communication Hub

Shared
Information

EventManager

Middleware

CoreEngine

Middleware

Write

Read

Notification

Send Event

Write

Read

Notification

Send Event

Environment 
Abstraction Layer

Fig. 1. The Simulation Environment Architecture

2 System Design

The purpose of the method is to improve the development efficiency of the vision-
based robots’ strategies. To achieve this, we implemented an open robot simulation
environment so that different robot developers can introduce different robots to the
environment in order to realize the functions of the simulator. The overall policy of
the method is as follows.

– Openness is the main focus in the system design stage. With high openness, de-
velopers can manipulate the simulation environment easily to treat various kinds
of robots. It also allows customizing simulation environment according to the real
environment to introduce new robots, new planning strategy, new color modules,
new collision detection module, new image processing module, etc

– Reproducibility - Real robot always changes the behavior according to the environ-
mental condition changes such as lighting condition. Since testing of robot strategy
consumes number of development cycle consists of coding and debugging, the sim-
ulator must support to reproduce a certain situation.

– Distribution in a Network - Since individual robots exist distributed in a physical
space, the environment must support distribution in a network.

– Minimize the Requirements - When migrating between real robot and the simulator,
it needs to reduce the cost of migration. In our method it is possible, since the
robot’s strategy program having less modification and its easiness to modify

3 Architecture

Fig 1 illustrates the system architecture, which adopts client/server model and intro-
duces two servers called the simulation server (SimServer for short) and the communi-
cation hub (ComHub for short). In this model, there are multiple heterogeneous robot
agents, which are implemented in different program languages and can participate to
this environment because clients connect to the server via the network.



An Open Robot Simulator Environment 623

robot

head

frontLeftLeg

tilt

value

value

resolution

rgbImage

frontRightLeg

range

range

camera

pan

frontLeftShoulder

frontLeftKnee

Fig. 2. A Tree Representation Ex-
ample of SimServer’s Objects

Fig. 3. An Example XML Output of Environment Infor-
mation

3.1 Simlation Server

The SimServer manages all the objects in the simulated environment and synthesizes
virtual camera images and simulates the robots’ effector. To reduce the cost of real-
ization of the simulator, the system provides a class library of fundamental component
which are implemented with opened interface in order to operate easily. The following
list show the main part of the class library.

Robot holds cameras, effectors and its position and orientation.
Camera holds parameters such as view angle, resolution and so on, synthesized images

by the Core Engine.
Effector keeps current value and the range of values. It also can hold any sub-effector

and camera as children.

This library allows users (i.e. robot developers) to construct the virtual robot by
few steps; combination of any object according to real robot, customization of object
parameter such as camera resolution and the range of effectors, and corresponding to
existing 3D shape model data of the robot. The SimServer manages all the objects in
tree structure and provides name space according to that structure so as to developer can
get information user friendly. The robot’s strategy program and developers can access
all the objects and its all attribute information by that name. Fig 2 shows an example of
tree structure of the Sony ERS-210.

Any object in the SimServer can be appended and removed in runtime to configure
the simulation environment dynamically. For example, when a new robot participates in
the simulator, the SimServer create new objects according to robot template on demand.

3.2 Communication Hub

The communication hub (ComHub for short) holds whole environmental information
including from each robot’s estimated position in the soccer field to camera images
generated through the SimServer .



624 Toshiyuki Ishimura et al.

Snapshot. The hub also can take a snapshot of its contents. The snapshot is XML
formatted so that programmers can modify and export. (Fig 3 gives an example of
the XML output result.)

Dynamic Connection/Disconnection of Clients. This is one reason why we introduce
the hub. In development cycle, we frequently kill/run the clients. Using this hub,
the system can continue the execution regardless of disconnection because the last
state of a robot is still hold even if it was crashed.

Dual Communication. We provide two communication mechanisms - one is synchro-
nous operations: read() and write() operations to the tree. These operations
are fairly simple. To read value on the path name of /robot/head/camera/rgbImage
is read("/robot/head/camera/rgbImage"). It returns a byte array con-
tainer. To gain the performance, bulky versions of these operations are provided.
The other is an asynchronous event mechanism which supports send and listen
event operations. All events must be sent with a string label to address the contents.
The event receiver can set a filter to receive interested events and reduce bandwidth
by specifying a regular expression. Only events matches the regular expression can
be received.

A communication pattern may be used in common is like that 1) a client receives an
update event, and 2) issues read() operations to get its interested nodes, 3) send
an finish read event. 4) After receiving the finish read event, a client who wants to
write data start to write the nodes through write() operation. After that, 5) it sends
an update event. The tree held in the communication hub works as a shared memory.
Asynchronous event mechanism can be used as a synchronization mechanism between
data producer and consumer.

3.3 Functionality

The following functionalities enhance the simulation environment: plugin user module,
a script language, persistence of simulation environment state, communication among
the agents and visualization of view frustum.

First, developers can insert fragment of program as plug-in module to the virtual
robot in order to customize its behavior. The environment provides interfaces for plug-in
modules such as image transformation plug-in, effector plug-in and constraints plug-in.
By using this functionality, user can realize strange camera image, reduction of effector
speed, etc without time consuming task. For instance, if a simulator should provide the
YUV image, the robot developer only prepare a plug-in which transform from RGB
to YUV color space. In fact, our team implemented the plug-in described a few codes,
since Sony ERS-210 generates YUV camera image. Since every plug-in module is as
the SimServer ’s object, they can be appended / removed and enabled / disabled by
scripting at runtime.

Second, to provide interaction between developers and the SimServer , a script lan-
guage likes the S-Expression is introduced. The following enumeration shows typical
features of the scripting:

– Getting and setting values of all the objects in the environment
– Loading new objects and plugin at runtime



An Open Robot Simulator Environment 625

(let
(set /Ball/loc/x

(plus /ribo0/loc/x
(/ (dist /robo0 /robo1) 2)

)
)
(set /Ball/loc/y

(plus /ribo0/loc/y
(/ (dist /robo0 /robo1) 2)

)
)

)

Fig. 4. An Example of script language Fig. 5. An Example of image transformation
plug-in

– Removing all the objects and plugins at runtime
– Configuration of system setting such lighting condition, frame rate of the simulation
– Easy to introduce new commands

This allows us to test the robot’s strategy in the exactly the same environment because
the simulator can reproduce it repeatedly. Fig 4 shows an example code to place a ball
between two robots (named robo0 and robo1).

Third, the ComHub can export its snapshot to a file as described the above. By using
this feature, the system can reproduce a certain situation according to the snapshot. This
functionality increases reproducibility.

Forth, by using the ComHub ’s feature that holds whole environmental information
as shared information, the system provides communication among the each client. The
ComHub allows the SimServer and every client to put different information to it. When
putting information, the ComHub notifies this update to the SimServer and each client.

Finally, when using the active camera, enhancement of camera motions is important
to recognize the virtual environment. The simulator provides functionality to visualize
the view frustum that each of the cameras is now seeing. This visualization is useful in
order to adjust and tune-up camera motion.

4 Implementation

Initially, we implemented the SimServer and the ComHub by using Java and Java3D
[2]. The SimServer is shown in Fig 6 and it consists of four components; global view,
command line panel, the tree view, local camera views.

On the global view, user can change his own view by mouse operations. The com-
mand line panel allows us to interact with the simulator by the script language described
in the above. The tree view shows information about all the objects in the simulation
environment.



626 Toshiyuki Ishimura et al.

Global View
Command Line

Tree View

Camera View

Fig. 6. The overview of the SimServer

Second, to evaluate the method, we implemented a simulator for the Robocup Sony
4-Leggued League on the environment. Then we succeed in migration from real robot’s
strategy program [1] to the simulator with minor modification.

5 Evaluation

We measured the frame rate of the simulator on the PC Intel Pentium 4, 2.8GHz,
1024MB Ram with ATI RADEON 9700 Pro video card and three robot agents con-
nected to the simulator via 100MB LAN. As a result, each client worked at almost 6.2
fps (frame/seconds).

At this time, the main differences arise in the simulator environment against the real
field one are that lack of a robot physical model, accurate sensory values, ideal effectors
(no slippery walking), no collision to the ball, robots and the field boundaries, noiseless
synthesized local vision images, relatively rich computation resources rather than ERS-
210, lesser inter-robot communication latency. Most of the factors would be dealt with
the introduction of new plug-in modules (like a noisy camera filter). But depending on
applications, these differences could break precision of a target simulation and make
the results unusable. However, as far as we have tested the simulator from 1 years ago,
in our application practice shows its strong effectiveness. The following is the some
practical examples.

1. Multi-agents coordination programming: The simulator can accommodate mul-
tiple-agents with its inter-agent communication facility. A programmer checked
an inter-agent information sharing mechanism, ball occlusion test (Fig 5), a lot of
team formation strategy. Through this process, the programmer successfully cre-
ated a coordination algorithm which applied in a real game.



An Open Robot Simulator Environment 627

2. Vision module debugging: A programmer discovered a serious vision code bug
which appears very occasional. With the simulator, debugging can be done effec-
tively because of rich development environment.

3. Robustness test: A lot of the audience wears colorful clothes which can easily con-
fuse the robots vision system. To minimize the influence, we introduced a filter
which eliminates too high markers. The simulator can create an ideal bad environ-
ment in a fraction of time.

4. Education: For aibo programming beginners, we provided the simulation environ-
ment as a primary test bed. This accelerates their learning curve. The simulator
never hurts real robots so the learner can try new things freely.

6 Conclusion

On the vision-based robot simulator, it is important to reduce the cost of robot strat-
egy programming. To achieve this, we proposed the open robot simulation environment
to accommodate any kinds of robots by using standard Java, distribution in a network
with TCP/IP, minimized the requirements through simple communication operations,
providing rich information through the tree structured external representation, open-
ness with communication hub and plug-in facility in the simulator and rich debugging
facility.

In the four-legged league in RoboCup 2002, our system had not been implemented.
Now we have a good fundamental to experiment new planning and coordination strat-
egy and so on. At this time, the primary implementation has been done. As a future
work, we have to evaluate the system in practical and to introduce another sensor such
as omni-directional camera and laser range sensor, etc. On the other hand, the system
has been yet considered physical effects in the simulation, nevertheless, we plan to in-
troduce simple method by using collision detection.

The authors would like to express their gratitude to the Information-technology
Promotion Agency (IPA), Japan for sponsorship of this project and Professor Takaichi
Yoshida for supporting.

References

[1] Kentaro Oda, Takeshi Ohashi, Takeshi Kato, Toshiyuki Ishimura, Yuki Katsumi, The
Kyushu United Team in the Four Legged Robot League, in Robocup-2002: Robot Soc-
cer World Cup VI, page.452, 2002

[2] Java 3D(TM) API Home Page. http://java.sun.com/products/java-media/3D/


	1 Introduction
	2 SystemDesign
	3 Architecture
	3.1 Simlation Server
	3.2 Communication Hub
	3.3 Functionality

	4 Implementation
	5 Evaluation
	6 Conclusion
	References



