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Abstract. This paper describes a topological navigation system, based
on the description of key-places by a reduced number of parameters that
represent images associated to specific locations in configuration space,
and the application of the developed system to robotic soccer, through
the implementation of the developed algorithms to RoboCup Middle-
Size League (MSL) robots, under the scope of the SocRob project (Soc-
cer Robots or Society of Robots). A topological map is associated with a
graph, where each node corresponds to a key-place. Using this approach,
navigation is reduced to a graph path search. Principal Components
Analysis was used to represent key-places from pre-acquired images and
to recognize them at navigation time. The method revealed a promising
performance navigating between key-places and proved to adapt to dif-
ferent graphs. Furthermore, it leads to a robot programming language
based on qualitative descriptions of the target locations in configuration
space (e.g., Near Blue Goal with the Goal on its Left). Simulation results
of the method application are presented, using a realistic simulator.

1 Introduction

The problem of robot navigation is, perhaps, one of the key issues in mobile
robotics. Roughly, it consists in driving a robot through a given environment,
using the information from his sensors.

The most common form of solving this problem is to construct a world model
from the sensorial information. Based on this model, it is relatively easy to apply
control algorithms and drive the robot to its target locations. One of the problems
with this approach is the amount of computational effort required to store the
above-mentioned world model. Even when that is not an issue, most of the times
the sensorial information is not as exact as it would be desirable.

In this line of thought, approaching the problem in a more qualitative manner
seems to be quite a promising alternative, in which the relevant places of the
world are determined from their appearance. Vision sensors are normally used
to extract the relevant information, as opposing to non-vision sensors which are
widely used in the construction of world models. The problem of appearance
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based methods for navigation is surely not a closed one and has been addressed
in various manners, in a recent past.

In [1] the localization of the robot in a topological map is obtained by ana-
lyzing images in the frequency domain. On the other hand, [2] uses the original
input images and [3] uses the color histograms of such images. An interesting idea
is to use Principal Component Analysis methods to extract the most important
characteristics from an image or group of images, as proposed in [4].

This paper introduces the application of topological navigation methods to
robotic soccer. We have developed a flexible method that allows the robot to
pursue its navigation objectives, during a match, using a qualitative approach,
making the interaction with higher knowledge levels natural. The methodology
used in solving the overall problem is summarized in Fig. 1.

The outline of this paper is as follows: Section 2 describes the PCA methods
used to construct the topological map. Section 3 presents the techniques used for
localization and navigation. In Section 4 the application of the previous methods
to robotic soccer is explained and Section 5 presents the main results. Finally in
Section 6 some conclusions are drawn and future research perspectives explained.
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Fig. 1. Summary of methods used in this work

2 Map Construction

The first step of the topological navigation approach is to build a representa-
tion for the topological map, based on which the robot will navigate. Several
representations of this map can be used; in our case we have chosen a directed
graph, where the nodes represent the key-places in the map and the transitions
represent the functions used to navigate between key-places.

This kind of representation is general enough to be used in a large number of
applications. In our case, the nodes will be identified with groups of postures in
the configuration space (x, y, θ) and the transitions correspond to basic functions
like move back or move forward.

After defining the topological map, the information required to represent
each of the nodes must be gathered. As this is an appearance based method, we
first start to acquire a set of images P that represents the space where the robot
will navigate. This set of images has to be general enough to represent all the
areas of the configuration space where we want the robot to navigate.
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The following step is to use Principal Component Analysis (PCA), also known
as Karhunen-Loeve (KL) expansion [5, 6], to compress the information in P . At
the end of the expansion, a basis for the η-dimensional that best approximates
the acquired images, in the least squares sense, is obtained. This method is equiv-
alent to retain the directions with the larger variance (i.e., the largest amount
of information) of the data set.

Furthermore, it’s possible to define the error we are making in the approxi-
mation, by the following expression:

E[ε2] =
M∑

i=η+1

λi (1)

or, in percentage terms:

ξ =

∑M
i=η+1 λi

∑M
i=1 λi

(2)

where η corresponds to the number of eigenvalues chosen to represent the eigen-
space. These expressions provide a criterion to choose the number of eigenvectors
to be used.

Having explained the idea behind the approximation, an iterative procedure
can be used to compute the principal images, as explained in [5]. We call principal
space to the space obtained after all these calculations.

The next step in the construction of the topological map is to associate the
previously gathered information with the nodes of the graph. In this part of the
method, we start by projecting each image in the principal space, associating the
projection with the node of the graph that the corresponding image represents.
Of course, it is essential that the input images are previously grouped according
to the node they best characterize.

We can think of the obtained groups of projections as classes of patterns,
which allows the localization problem to be formulated as a pattern classification
one.

3 Topological Navigation

With the tools to represent the topological map available, it is possible to de-
fine the methods to use in the navigation itself. So, we start by presenting the
localization problem and then move to the discussion of the path planning and
path execution problems.

It must be pointed out that navigation procedures, as opposed to map con-
struction, must be executed in real-time.

As previously stated, the localization of a certain image in a node of the graph
can be formulated as a classification problem. To solve this problem, a known
classifier can be used. We chose to classify the images in the k-nearest neighbor
[7] sense. In this classifier, the current input image projection is compared to
the projections of all the images used in the map construction (also known as
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learning) stage of the method. We then retain the k closest images and classify
the image in the most represented class among the selected k images.

A path to the objective node of the robot was obtained using widespread
search algorithms [8]. Of course, an heuristic could be used to improve the search
efficiency.

The other step in the navigation process concerns guidance, in which we must
ensure that the robot accomplishes the goals set by the path planner. In this
context, it is straightforward to achieve such goals, since the path is defined as a
sequence of primitive transition functions. The guidance loop for this approach
is described through the flowchart in Fig. 2. The problem with this solution is
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Fig. 2. Open loop guidance supervisor Fig. 3. Modified open loop guidance super-
visor, to include path replanning

that, if a transition fails and the robot finds itself, e.g., in a node which does
not belong to the path, it simply cannot fulfill its objectives. A straightforward
solution for this problem is to generate a new path each time the robot detects
a failure in a transition, as explained in the flowchart of Fig. 3.

4 Application to Robotic Soccer

Our team of robots, the RoboCup MSL ISocRob team, consists of four Nomadic
Super-Scout II robots, which have, among other sensors, a front camera and
moves based on a differential drive kinematic structure.

In order to better test the previously described navigation method, we de-
veloped a simulator, which could generate images similar to the front camera of
our robots. This simulator was implemented in Virtual Reality Modeling Lan-
guage (VRML), and field textures were used to improve the realism. The images
obtained were RGB images with 320×240 pixels taken over a field with 10×5[m].

Figure 4 compares a simulator image and the image seen by the robot’s front
camera, in a real situation.
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Fig. 4. Simulated vs Real images
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Fig. 5. Graph representation of the Topological Map

4.1 Topological Map

To construct the map, we considered 3 nodes where the BLUE goal was visible,
3 nodes where the YELLOW goal was visible and 4 nodes where no goal was
visible. We used 7 different transitions to travel between these nodes.

The nodes where defined considering the relative position of the goal w.r.t
the robot. We used four nodes for the situation where there is no goal on the
images to avoid conflicts and ambiguities in the definition of the graph. However,
the difference between these nodes can only be determined based on the history
of the robot path accomplished so far.

The transitions where defined specifying the angular and/or linear speed,
and the relative position which we want to maintain of a specific goal (if any)
w.r.t. the robot (e.g., move forward keeping the blue goal in the right of the
robot).

The graph that was used in the robots navigation is shown in Fig. 5. After
defining the graph, we extracted a set of 528 training images and applied the KL
transform. To determine how many principal components to use, we computed all
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the 528 eigenvalues and used equation (2) to compute the number of eigenvalues
required to achieve ξ < 10%, leading to 46 principal components.

In Fig. 6, a plot comparing the mean square error for the training set and
for a testing set is presented. The latter was obtained in random field positions
and the error was calculated for several principal spaces with different numbers
of eigenvalues, between 0 and 60.

4.2 Navigation

For localization, we used, as previously stated, the k-nearest neighbor classifier,
with k = 5 an associated Euclidean metric, in the principal space. We obtained
several classification results using a large number of postures from most regions
of the configuration space. In Section 5 we explain some of those results.

The overall algorithm was tested by running it on the simulator, generating a
new goal node randomly each time the last one was accomplished. Furthermore,
we created another graph having the same nodes and transitions topology but
where the images associated with each of the nodes were different — we only
considered an image to be ”near a goal” when it was taken at a distance of 2 m
from that goal, as opposing to the first situation where this distance was extended
to 5 m (mid-field situation). This setup also allowed us to test the percentage of
times a given transition would fail for a given representation. Some of the results
from those tests are presented in Section 5.

5 Experimental Results

The principal space was obtained from a set of training images. Obviously, not
all images with the same size live on this space and, in general, they are far
from it. In fact, by neglecting the smaller eigenvalues we are doing an acceptable
approximation of the eigenspace obtained from the training images but, on the
other hand, the principal space might not be so good so as to approximate
conveniently other images of the same size.

In Fig. 6 we compare the mean square error for training and test sets. As
expected, the error for the training set converges to a constant value. This value
corresponds to the mean square distance between the test set and the eigenspace.
For the training set the mean square error converges towards zero. The imple-
mented classifier was also tested, as mentioned in Section 4, by using a large
number of postures on the soccer field, with small distances between them, which
ensures a good representation of the whole configuration space. We present an
example of a 2 dimensional cut in the configuration space, with the coordinate
y fixed in the zero value. Refer to Fig. 8 for information on the frame used.

The localization tests led to the conclusion that the classifier is not immune
to the presence of outliers, which can make the path execution a bit more trou-
blesome, justifying the need for a supervisor. However, the results are much
better for 5 neighbors than the use of a single nearest neighbor classifier.

As for the execution of the complete navigation method, we stated that it was
mostly successful in travelling between key-places of the topological map, due to
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Fig. 7. Example of the classifica-
tion/localization

the usage of an execution supervisor. In fact, some of the transitions proved to
have a failure rate higher than 50%, which suggests that there are some implicit
transitions on the graph which were not defined a priori. This was, in fact,
expected, since the nodes did not quite correspond to the configuration space
regions we intended them to represent.

A more serious situation that occurred, due to the existence of these implicit
transitions, were live-locks — situations where the robot stays in a loop from
where it cannot get out, unless a new goal node is given. Other than that, the
method was always successful in achieving the proposed key-places.

In Fig. 8 we can see a trajectory of the robot in a multi-objective situation,
and where the border between Far Goal nodes and Near Goal nodes was set at
the distance of 2 m from the goal. It is interesting to underline angular velocity
control to ensure that the robot keeps the goal on its right or left, leads the
robot to align itself with the goal-posts.

Fig. 8. Example of a trajectory

6 Conclusions and Future Work

This paper addressed the application of topological navigation methods to
robotic soccer. We introduced an appearance based method which can navigate
between different regions of the configuration space, represented by key-places
of a topological map.



558 Gonçalo Neto, Hugo Costelha, and Pedro Lima

The method has shown promising results, when navigating between key-
places. Although some of the transitions displayed high failure rates, the inclu-
sion of the supervisor was able to deal with most of those situations, making the
robot reach its goal nodes. However, some parts of the algorithm still need to
be improved. The main one is the occurrence of live-locks, not in the topological
map but as the result of the method application, due to specific failure cycles in
the transition execution. We will investigate the application of Discrete Event
Supervision techniques [9] to the detection and prevention of such cycles.

Another part of the method with open research topics is image compression.
Actually, we would like to show it is possible, for this application, to use a
smaller number o eigenvectors, compressing the needed information much more.
This goal is most likely to be accomplished by reducing the size of the acquired
images and/or using omnidirectional cameras instead of the front camera.

We are currently committed to use the developed methodology to solve the
RoboCup Challenge 4 - Play with an arbitrary FIFA ball of RoboCup 2003 MSL.
The idea is to use PCA to extract the most important features describing the
ball, Topological Navigation to move the robot close to the ball and, finally,
metric-based navigation already implemented in the ISocRob team to take the
ball to the desired goal.
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