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Abstract Arguably the two most important techniques that are used
in model checking to counter the combinatorial explosion in the number
of states are abstraction and guidance. In this work we combine these
techniques in a natural way by using (homomorphic) abstractions that
reveal an error in the model to guide the model checker in searching for
the error state in the original system. The mechanism used to achieve
this is based on pattern databases, commonly used in artificial intelli-
gence. A pattern database represents an abstraction and is used as a
heuristic to guide the search. In essence, therefore, the same abstraction
is used to reduce the size of the model and guide a search algorithm. We
implement this approach in NuSMV and evaluate it using 2 well-known
circuit benchmarks. The results show that this method can outperform
the original model checker by several orders of magnitude, in both time
and space.

1 Introduction

In the past decade, model checking has become the formal method of choice
to verify reactive systems [I]. While it is an automated method, model check-
ing inherently suffers from the well-known “state explosion” problem, where the
complexity of the model is exponential in the number of components that com-
prise the system. Not surprisingly, most research in model checking is focused
on ways to minimise the impact of state explosion. Symbolic model checking [2]
B and on-the-fly, memory-efficient model checking [5l6] have had some quite
dramatic successes in the field. Although these methods have been successfully
used to verify some industrial strength systems, they are still unable to cope
with large systems in general. In [7], Clarke et. al. have developed a method for
using abstract interpretation of the system to reduce the complexity of (CTL)
model checking. This is based on the observation that irrelevant information can
be abstracted away from the concrete system to significantly reduce the size of
the model, while preserving the properties to be verified. The drawback of this
method is that it induces false negative results, namely, if this method reports a
counterexample that shows the property in the abstract system is violated, then
the counterexample may not be valid in the concrete system (called a spurious
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counterexample). If a spurious counterexample is found, one has to refine the
model and repeat the verification again. This is called the abstraction-refinement
model checking paradigm [8]9].

More recently, inspired by heuristic search in artificial intelligence, many
researchers have investigated the applicability of heuristic search techniques
to model checking. This can be referred to as the guided model checking
paradigm [TOTTIT2ITIITATHITE]. The effectiveness of this approach, however, de-
pends strongly on the informedness of the search heuristics. Generally, only
intuitive heuristics can be invented by humans. More informative heuristics can
be very application-dependent and complex to derive.

In artificial intelligence, an application-independent heuristic, called pattern
databases, has been successfully employed to solve hard search problems such as
the N-puzzle and Rubik’s cube [I7I18]. To define a pattern database, we refer to
a fixed part of a given state as a pattern. The set of all such patterns forms the
domain of the database. Given any state, the pattern can be looked up in the
pattern database to find the minimum path length from a state containing the
pattern to a goal state. In essence, a pattern contains the subgoals that must be
achieved to solve the problem [17].

For example, in a puzzle, we can consider a subset of tiles to be a pattern. A
pattern database is then based on the retrograde analysis of the pattern starting
at the goal state. Because we only consider the pattern during the course of
pattern database construction, many original states may become indistinguish-
able from the pattern (i.e. if we mask out non-pattern information, two states
result in the same configuration). Note that a pattern database is essentially an
abstraction of a system.

In [1920], Holte et. al. extend the notion of “pattern” to homomorphic ab-
straction in an attempt to automatically create application-independent heuris-
tics. Generally, we can abstract a system using two methods: homomorphic ab-
straction and embedded abstraction. Homomorphic abstraction can be achieved
by merging groups of states and all transitions within the group are therefore
not observable in the abstract system, whereas embedded abstraction can be
achieved by adding more transitions to the system. In the abstraction-refinement
paradigm of model checking, to preserve the temporal properties of the system,
one often uses data abstraction [7]. In essence, data abstraction is a homomor-
phic abstraction. We focus on safety properties in this work, all properties can
be expressed using ACTL" of form AGp, where ¢ is a Boolean expression of
atomic propositions.

Effective and intuitive heuristics are hard to find in guided model checking
because of the high complexity. The lack of good heuristics hinders the ability of
the guided search to reduce the size of the state space. As well, the refinement of
an abstract system can be computationally expensive. In this work, we combine
the abstraction and guided approach, using pattern databases that are derived
from homomorphic abstractions of the system. These patterns guide the model
checking algorithm towards a goal (error) state.
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The rest of paper is structured as follows. We formally define homomorphic
abstractions in Section P] and symbolic pattern databases in Section [B] Our ap-
proach and experimental evaluation are described in Section[4] and [ respectively.
Finally we conclude the paper and propose some possible future research.

2 Homomorphic Abstractions

In this work we are only interested in finite-state transition systems that can be
formalised in the following way.

Definition 1 (Transition systems). A finite state transition system is a 3-
tuple M = (S, T, Sy), where

— S is a finite set of states
— T C S xS is a transition relation
— So C S is a set of initial states

The set of states of a transition system can be described by a non-empty set
of state variables X = (z,z1, ..., 2, ), where each variable z; ranges over a finite
domain D;. A homomorphic abstraction of a transition system is denoted by a
set of surjections H = (hq, ha, ..., hy,), where each h; maps a finite domain D;
to another finite domain D; with |D;| < |Dy|. If we apply H to all states of a
transition system, denoted by H(S), we will generate an abstract version of the
original, concrete system.

Definition 2 (Homomorphic abstraction). Given a transition system M =
(S,T,Sy) and a set of surjective mapping functions H = (hy, ha, ..., hy), a ho-
momorphic abstraction of M is also a transition system and denoted M =
(S,T, §0), where

— S =H(S) is a set of states with |S| < |9|

— T C S xS is a transition relation, where (s1, $2) € T iff $1 = H(s1) N sy =
H(SQ) AN 331382(81,52) eT

— So={5l8€ SAs=H(s)Ase Sy}

SN
N0}

R AN O

N
0;
N restrict the last bit

to a single-element
domain °

concrete system abstract system

S 6'0

Fig. 1. A homomorphic abstraction of a transition system
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Intuitively, a homomorphic abstraction is a kind of relaxation of the concrete
transition system in the sense that we deliberately eliminate some information
by merging groups of states. In [7], Clarke et. al. prove that a homomorphic
abstraction preserves a class of temporal properties (ACTLF): in other words,
the concrete and abstract system satisfy the same set of formulae. Note however
that if the abstract system does not satisfy the property, we cannot conclude
that the concrete system violates the property: the model needs to be further
refined and model-checked again. Refinements however can be computationally
expensive. Instead, we use the homomorphic abstraction to construct a pattern
database to guide the search towards an error state in the concrete system.

3 Symbolic Pattern Databases

In the guided model checking paradigm, one must provide heuristics (or hints) to
steer the model checking algorithm. In practice most heuristics are application
dependent, so there is a strong need to discover a systematic way of relaxing the
system. Pattern databases provides a systematic way of deriving heuristics. In
essence, a pattern is a subgoal of the goal state. In this work we are interested
in searching for a given goal state in a transition system rather than in verifying
the system as a whole. We therefore need to add another element, a goal state
G, to the 3-tuple M. Without loss of generality, we define G to be a single
state[l]. If we have a transition system M = (S, T, Sy, G), then a homomorphic
abstraction will map the goal state to the subgoal state, i.e. G = H(G). By
applying this mapping to the entire set of states of the system, we will have
an abstract system M = (S T So, G) where T" and S, are defined in the same
manner as in Definition 2

For example in Figure [[] we show a transition system and a homomorphic
abstraction that restricts the right-most bit to a single-element domain. By ap-
plying this abstraction to every state of the system, we generate the abstract
system shown in Figure [[las well. A pattern database can be constructed based
on this abstract system. An item in the pattern database is a 2-tuple (3,n),
where § € S is an abstract state and n is the number of transitions required to
reach § from the abstract goal. A simple example of a pattern database for the
abstract system in Figure [[lis shown in Table [l

Table 1. An example of pattern database

abstract state (8)|transitions from abstract goal state (n)
11 0
10 1
00 2
01 3

1 Multiple goals can be handled quite easily by removing the detected goal state from
the goal set and running the algorithm until the goal set is empty.
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A pattern database is based on the breadth-first backward traversal of the
abstract system M. While traversing backward in the abstract system, we label
each abstract state § with the number of transitions starting at state G. Note
that there can be more than one path from G to a state §, but we keep the
shortest one. (When the breadth-first traversal encounters a state that has been
labelled before, it is simply ignored.) Since we are interested in finite systems,
the breadth-first traversal will eventually expand all states backward-reachable
from G in M. This is called the fixed point. Once we reach this fixed point,
we collect all states (with labels) and put them into a table similar to Table [
This is the pattern database of the system M with respect to the homomorphic
abstraction H. Note that many states will be labelled with the same number
because they are the same distance from the abstract goal state.

In symbolic model checking, sets of states can be encoded as binary decision
diagrams (BDDs) [2[21]. Since our approach is also based on symbolic model
checking, we represent the entire pattern database using BDDs as well. Note
that symbolic pattern databases have been used in planning problems and can
represent very large pattern databases, and often uses relatively less memory
than explicit representations [22]. This is mainly because of the compactness
nature of BDDs [21]. We represent those states in explicit pattern databases
that have the same label (the same number of transitions starting at G’) with
a single BDD, denoted b;, where i is the label of that set of states. Because
the pattern database is derived using the backward breadth-first traversal in the
abstract system, ¢ should range over {0,1,2,..., N} where N is the maximum
depth of the traversal. In the worst case, N would be |S| — 1.

Definition 3 (Symbolic Pattern Database). Given a transition system
M = (S,T,50,G) and a homomorphic abstraction H, the symbolic paltern
database of M with respect to H 1is a set of BDDs P = {bg, b1,...,bn}, where by
1s the BDD representing the abstract goals G= H(G), and b; is the BDD repre-
senting all states at depth i in a breadth-first backward traversal in the abstract
system starting at G. The depth of P, denoted |P|, is defined to be the mazimum
depth N of the backward traversal, i.e. |P| = N.

In Figure 2 we show the BDDs representing the symbolic pattern database
of the example in Table [l We use a Boolean vector X = (x,z1,22) to rep-
resent a state in the concrete system, so an abstract state can be represented
by X = (20, 21). The symbolic pattern database contains 4 BDDs represent-
ing the characteristic Boolean functions of the corresponding abstract states:
bo=x9 Nx1,b1 =29 NT1,b0 =T ANT1,b3 =T N 1.

Intuitively, because the homomorphic abstraction clusters a set of states of
the concrete system as a single state of the abstract system, the path in the
concrete system can be short-circuited. In the extreme case, 2 states that are
not reachable from each other in the concrete system can become reachable when
mapping them to the abstract system. For a transition system M = (5, T, Sy, G),
we define the cost of any state s to be the minimum number of transitions using
backward breadth-first traversal starting at G, denoted c,. The following lemma
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Fig. 2. An example of symbolic pattern database

shows that the cost of the state § in the abstract system is a lower bound of the
cost of its corresponding concrete state s.

Lemma 1. Given 2 transition systems M = (S,T,5,G) and M =

(S,T, g@,é), if M is a homomorphic abstraction of M, i.e. M = H(M), then
for any state s € S and § € S, ¢s > ¢z where § = H(s).

Proof. Suppose m = s1, S2,53,...,5, is an arbitrary path in M with s, = G.
If all states along the path are distinct, then ¢;, = n. If all the states
H(s1),H(s2),...,H(sy) are also distinct, then following the definition of a
homomorphic abstraction, there exists a path # = H(sy), H(s2),...,H(s,).
Thus, ¢s, = cg,. If all states in H(s1), H(sz2),...,H(s,) are not distinct, say
H(s;) = H(sj),i < j, then all states between them will be short-circuited in the
abstract path, since a traversal from H (s;_1) to H(s;j41) only needs 2 transitions.
Thus, ¢, > cg .

4 The Guided Invariant Model Checking Algorithm

4.1 Standard Invariant Model Checking Algorithm

In computational tree logic (CTL), an invariant of a transition system can be
expressed as AGy. In symbolic model checking, we can use two methods, namely
pre-image and image computation, to check the correctness of this class of prop-
erties. Given a set of states F' and transition relation 7', pre-image and image
are computed as follows: pre-image(T,F) = {s|(r € F) A ((s,r7) € T)} and
image(T, F) = {s|(r € F) A ((r,s) € T)}. The pre-image invariant checking is
based on a greatest fixed point calculation algorithm [2[1] as characterised by
AGyp =vZ.p N AXZ, where vZ is the greatest fixed point operator. In prac-
tice, this algorithm corresponds to a backward breadth-first search and may be
inefficient because some states generated by the backward search may not be
reachable from the initial state of the system (and hence need not have been
computed).
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Another method, image computation, is based on forward breadth-first
search. This algorithm requires two inputs: the transition system (S, T, Sy) and
the error state p, where ¢ is the invariant that holds in any state along all paths.
For convenience, we use the transition system with a goal element G = % as an
input, where G ¢ Sy. The algorithm is shown in Figure Bl In each iteration, a
set of new reachable states R,.., and the difference between R,;q and R, e, F
(frontier), are computed. To check whether the invariant has been violated, F' is
intersected with the error state in each iteration as well. If the intersection is

Procedure InvarCheck (S, T, So, G)
1 Roia < False

2 Rpew +— So

3 while(Roiq # Rnew)
4 F + Rpew A Rola
5 Rold — Rnew

6 F < Image(T, F)
7

8

9

1

if (FF' NG # False)
return ErrorFound
Rypew < RoiaV F
0 return NoErrorFound

Fig. 3. Symbolic invariant checking algorithm

not empty, we terminate the algorithm and report the error. If the intersection
remains empty and the set of reachable states does not change (a fixed point),
then we can claim that invariant ¢ is never violated in this model. Note that we
test the existence of an error state in each iteration (on-the-fly), whereas some
model checkers compute the entire set of reachable states and then intersect it
with error states. For large transition systems, computing all reachable states
may not be feasible as the BDD representing the reachable states is too large.
In this work, we use an on-the-fly technique to test for error states.

4.2 An Example

Before formally introducing our guided model checking algorithm, we illustrate
the technique on the transition system that we saw in Figure[ll. We use a Boolean
vector X = (g, x1,22) to represent a state, and the invariant we are interested
in is that all three Boolean variables cannot be true simultaneously in any state.
This property can be expressed in CTL as AG(@), where a = Ty VZ1 VZ5. Hence,
our search goal (error state) is the complement of the property «. To construct
the pattern database, we define a homomorphic abstraction H that abstract the
third Boolean variable, x5, to a single-element domain. So the abstract system
can be constructed as shown in Figure[ll We then apply standard model checking
(the InvarCheck algorithm shown in Figure ) to the abstract system. In this
example, InvarCheck will report an error because there is a path leading from
So = (0,0) to G = (1,1) in the abstract system. At this point, instead of
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Fig. 4. The search trees generated by the (a) InvarCheck, and (b) GuidedIn-
varCheck algorithms for the example in Section

refining the abstract system and checking it again, we use the abstract system
to construct a symbolic pattern database as shown in Table [l and Figure

The essence of the guided algorithm is that each state (set of states) is asso-
ciated with an estimated distance to the goal as well as the actual distance from
the initial state. We use the symbolic pattern database constructed from the
homomorphic abstraction to assign to each state an estimated value (Figure [
and Table [[). We map a state in the concrete system to an abstract state and
look up its estimated value in the database. For example, for the state (0,1, 1),
the corresponding abstract state is (0,1, ) and the estimated value is 3 (see
Table[D)). In a symbolic pattern database, each item is a BDD representing a set
of abstract states, so the database look-up can be accomplished by calculating
the conjunction of two BDDs. For example, to look for the estimated distance
for state (1,0,0), we iteratively compute (g AZT1 ATz) Ab; for i from N to 0. If
the resulting BDD is not constant False, we assign ¢ to (1,0,0) as the estimated
distance. In this particular case, (xg AT1 ATz) A by is not constant False, so we
assign the estimated value 1 to that state. Thus, the symbolic pattern database
will partition a set of states according to their estimated value. Our invariant
model checking algorithm is therefore guided by the symbolic pattern database
in its search for an error in the concrete system. In Figure ] we show the dif-
ference in the search tree with and without heuristic guiding. In this figure we
label the states in the guided algorithm by a pair consisting of the number of
actual and estimated transitions (resp.).

4.3 Guided Invariant Model Checking Algorithm

The guided algorithm is shown in Figure[d. In contrast to the standard algorithm
InvarCheck, the guided algorithm takes a homomorphic abstraction function
H as input in addition to the concrete transition system.
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Procedure GuidedInvarCheck ((S,7, So,G), H)
if (InvarCheck((H(S), H(T), H(So), H(G)) = NoErrorFound)
return NoFErrorFound
P < construct(H(S), H(T), H(So), H(G))
SearchQueue < (0,0, So)
Closed < False
while (SearchQueue # ¢)
(g, h, F) + SearchQueue.pop()
if (F A G # False)
return ErrorFound
10 Closed < Closed V F
11 F «+ Image(T, F) A Closed
12 Queuelmage(P, F, g+ 1)
13 return NoErrorFound

0~ O U WND -

Ne)

Procedure Queuelmage (P, Img, Cost)
n «+ |P|
while (n > 0)
I < b, N1Img
if (I # ¢)
SearchQueue < (Cost,n, I)
Img < ImgnT
if (Img = ¢) return
n<+<mn-—1
SearchQueue < (Cost, 00, 1)

© 00 1O U W

Fig. 5. The guided invariant checking algorithm that uses a pattern database.

In line 1, an abstract model is constructed using the abstraction function H
and standard InvarCheck is called to prove the invariant. If this succeeds, then
the invariant is true in the concrete system (as discussed in Section [2). If this
fails, the algorithm then constructs a symbolic pattern database (line 3) accord-
ing to the abstract function H (as discussed in Section B)). SearchQueue in line
4 is a priority queue used to determine which state(s) should be explored first.
The element of the queue is a 3-tuple, (g, h, S) where g is the actual number of
transitions to S from the initial state, h is estimated number of transitions to
a goal (error) state and S is a BDD representing a set of states. When deter-
mining which element should be dequeued for further exploration, SearchQueue
considers f = g + h as the priority key and pops the element with minimum f.
In lines 5-13, the heuristic search algorithm A* [23]24] is adapted to symbolically
explore the state space in the concrete model.

The difference between the guided algorithm and InvarCheck is that when-
ever the image of the frontier, F', is computed, we employ the symbolic pattern
database to partition this image and assign each sub-image with a heuristic eval-
uation before we push it back to the search queue. This is shown in procedure
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Queuelmage in Figure [ Given a set of states, Img, this procedure iterates
through every item b; in P, and checks whether there exists a subset I of I'mg,
such that H(G) can be reached from H(I) in the abstract system (line 3 of
procedure Queuelmage). Note that if the Img cannot be partitioned by P, we
simply push it back to the search queue with heuristic evaluation oo (line 9).

We prove that the guided algorithm GuidedInvarCheck is both correct
and optimal.

Theorem 1 (Correctness). Given a transition system (S,T,Sy, G) and a
homomorphic abstraction H, and let R, and R; be the indication returned
from GuidedInvarCheck((S,T, Sy,G), H) and InvarCheck(S,T, Sy, G) re-
spectively. Then Ry < R;.

Proof. As InvarCheck and GuidedInvarCheck both use state space explo-
ration, if GuidedInvarCheck detects an error, so will InvarCheck, and vice
versa. If there is no error in the system, InvarCheck will explore all reachable
states (the fixed point) and report NoErrorFound. In this case, we have to
prove GuidedInvarCheck also explores all reachable states. This is detected
by the Closed set that stores all states explored by GuidedInvarCheck. When
all reachable states have been explored, Image(T, F') AClosed (line 11) will be an
empty set, so nothing is pushed into the search queue. Hence, the search queue
will eventually become empty and NoErrorFound will be returned. Thus, in all
cases the two algorithms will return the same result, i.e. R, & R;.

An important outcome of the model checking technique is that it can provide
the counterexamples (or witnesses in the case of existential properties), showing
why the property is violated. A counterexample, or error trace, is a path starting
at the initial state of the concrete system and leading to an error state. Given a
transition system M = (S, T, Sy, G), we define an error trace as follows.

Definition 4. An error trace is a finite path, ™ = Sg, 81, ...,8n, tn M, where
so € So, sn = G and (s;,8i+1) € T (i € [0,n — 1]). The length of this path,
denoted L(m), is the number of states along the path, i.e. L(w) =n+ 1.

Generally, the shorter the length of the error trace, the easier it is for human be-
ings to interpret it. Because InvarCheck corresponds to a breadth-first forward
search, it will determine the minimum-length error trace. The following theorem
ensures that GuidedInvarCheck detects the minimum error trace as well.

Theorem 2 (Optimality). Let M = (S, T, Sy, G) be a transition system and
H be a homomorphic abstraction. Let m; and my be the error traces detected by
InvarCheck and GuidedInvarCheck respectively. Then L(mg) = L(m;).

Proof. The proof of the theorem can be established by proving that Guided-
InvarCheck detects the shortest path from the initial state sg to a goal state
sq = G. Note that the state space exploration algorithm in GuidedInvarCheck
is adapted from the heuristic search algorithm A*. If the lower bound heuristic
is used, the algorithm guarantees the path is shortest (minimum cost) [23/24].
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So we need to prove the symbolic pattern database heuristic is a lower bound.
According to lemmal[I] for any path m = sq, s1,. .., s, in the concrete system and
its corresponding path 7 = sy, 1, ..., s, in the abstract system, c¢,, > cg,. Thus
the symbolic pattern database heuristic is a lower bound and L(n,) = L(m;).

We could of course use more than one symbolic pattern database to guide the
algorithm. Let M = (S, T, Sy, G) be a transition system and Hy, Hy, ..., Hp_1
be homomorphic abstractions. We hence can construct k& symbolic pattern
databases. When partitioning the image in the procedure Queuelmage, we
search all symbolic pattern databases to find the largest heuristic estimated
value for the sub-image. This will make the heuristic estimation more accu-
rate and guide the search more efficiently, but it also increases the computation
complexity. Because all H; are homomorphic abstractions, every symbolic pat-
tern database is still a lower bound heuristic. Using multiple symbolic pattern
database will therefore preserve the optimality of the algorithm. Note that if
multiple pattern databases are used, the error trace will have the same length
as the trace detected by using a single pattern database. Using multiple pattern
databases instead of a single pattern database would involve a straightforward
extension to the GuidedInvarCheck algorithm.

5 Experimental Evaluation

To determine the effectiveness of guiding, we have implemented our algorithm
in the model checker, NuSMV [4]. For the purpose of comparison, we modify
the so-called ad hoc algorithm in NuSMV [ to test for the existence of an error,
as shown in Figure Bl Experiments are carried out in a machine running Linux
with an Intel 933Hz CPU and 512MB RAM.

In this work, we did not use any input variable ordering. The abstraction
method we use is to make some Boolean variables invisible. Note that because
our approach does not involve any refinements, we require that the abstraction
not to be too coarse. In general, the criteria to select an abstraction granularity is
that it should be feasible to construct the symbolic pattern database in a small
amount of time with maximum depth. The relation between the granularity
(“abstractness”) of the abstraction and the accuracy of the resulting heuristic
has been studied by Prieditis and Davis in 1995 [25]. In this work, we set the
threshold for the construction to be 60 seconds. If the construction cannot finish
within 60 seconds, we have to abandon the abstraction and choose another more
abstract system.

The two benchmark circuits we use in this paper were published in David L.
Dill’s thesis [26]. Since we focus on error detection, we use two “buggy” designs
for our evaluation. The first circuit family is called a tree arbiter circuit, which
is used to enforce mutual exclusion among users accessing shared resources.

2 In NuSMV, safety properties can be checked by using either standard fixed point
evaluation algorithm, or an “ad hoc” algorithm which computes the set of reachable
states and intersects it with the set of error states.
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The basic element of this circuit family is the arbiter cell, which implements
the mutual exclusion between two users. For more than two users, cells can be
connected to form a tree-like structure. The bottom level cells are connected
to users and the top cell to the shared resource. The request signal from a
user propagates upwards from the bottom level of the tree, and if the shared
resource is granted to the user, the acknowledgement propagates downwards
only to the user who requested it. The second circuit family, distributed mutual
exclusion ring (DME), is used to implement mutual exclusion as well. Instead of
forming a tree-like structures, DME cells are connect as a ring. Mutual exclusion
is implemented by passing a token in the cell ring. In this work, we construct
interleaving finite models for these circuits and check the invariant that no two
users receive an acknowledgement simultaneously. The results of our experiment
is shown in Table

Table 2. Experimental Results for the tree arbiter and DME

InvarCheck GuidedInvarCheck
Circuits |Depth|BDD vars|Total nodes|CPU time (s)|Total nodes|CPU time (s)
tree-arb 7| 20 50 322,452 1.340 47,778 2.357
tree-arb 9| 20 64 483,286 2.300 634,783 3.120
tree-arb 11| 21 78 1,249,438 6.360 560,439 2.440
tree-arb 13| 21 92 5,593,886 13.590 450,156 2.520
tree-arb 15| 24 106 161,297,839 4759.000 4,262,998 19.290
tree-arb 17| 24 120 — > 6 hours| 7,323,386 35.260
tree-arb 19| 24 134 — > 6 hours| 7,922,396 34.930
dme 06 26 114 — > 6 hours| 3,316,858 18.240
dme 08 30 152 — > 6 hours| 93,794,232 1137.000

Note that all error traces detected by our method have exactly the same
length as detected by standard InvarCheck in NuSMV. For each circuit, we
experimented with a few invariants and only report those errors with depth more
than 20, because short error traces can be easily detected by both algorithms
regardless of model size. We also report the number of BDD variables used to
encode each model to reflect the size of the system. The memory use of the two
algorithms is reflected in the total nodes allocated by the BDD engine that is
contained in NuSMV. The hyphens in the table are for those experiments that
did not terminate within (a randomly chosen) 6 hours.

For the tree arbiter circuits, GuidedInvarCheck can easily handle up to
19 cells, whereas InvarCheck cannot handle more than 15 cells in less than 6
hours. Note that there is a time-line cross-over in the table between 9 and 11
cells. For smaller circuits, InvarCheck can detect errors faster than Guided-
InvarCheck. For larger circuits, the performance of InvarCheck deteriorates
rapidly, while the time taken by GuidedInvarCheck remains quite constant.
This occurs because in systems with a low level of concurrency, BDD-based
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breadth-first search is more efficient than guided search. As described in Sec-
tion [43], GuidedInvarCheck also needs to partition the image (BDD slicing)
and this introduces some overhead as well. For systems with a high level of
concurrency, BDD-based breadth-first search is dominated by huge BDD com-
putations, whereas guided search partitions large BDDs into smaller ones, and
only explores promising states, thereby avoiding the exponential growth in the
size of the BDDs.

We only experimented with 2 of the circuits in the DME family as In-
varCheck could not cope with circuits that had more than 6 cells in the avail-
able time. GuidedInvarCheck could however handle up to 8 cells with an error
depth of 30. For larger circuits, we need to resort to manipulating the variable
ordering to improve the performance.

The experimental results indicate that the guided approach can outperform
standard model checking by several orders of magnitude, in both time and re-
quired memory. As expected, GuidedInvarCheck not only detects the errors
much quicker than InvarCheck, but also found the shortest error traces.

6 Conclusions and Future Work

In this paper, we have presented a symbolic model checking algorithm that
combines homomorphic abstraction and guided search techniques. We introduce
a mechanism called symbolic pattern databases to provide a heuristic to guide the
model checker. The pattern databases represent the relaxed system and associate
each state of the system with a heuristic value (i.e., the estimated number of
transitions to an error state). This is required by the underlying heuristic search
algorithm to partition the states and guide the search.

The guided search is of course only used when an error is detected in the
abstract system. In essence we double-dip on the abstraction: the abstraction
reduces the size of the state space directly, but also indirectly as a result of
the guided search. There is no need for further abstraction refinements in this
work, although embedding guided search in an iterative abstraction-refinement
approach would make interesting further work.

It is important to note that guided model checking algorithms like ours are
designed for debugging, and not verification. For systems that have no errors,
the guided approach does not have any conceptual advantage over conventional
model checking algorithms. However, the guided method does slice large BDDs,
which reduces the sizes of the BDDs substantially. Although pattern databases
are memory-based heuristics, the use of BDDs to represent them also helps to
counter any potential size problem, and make a seamless integration with sym-
bolic model checking possible. In this work, we only use BDDs to store symbolic
pattern database (the abstracted state space). An interesting next step would
be to determine whether other alternative data structures, such as algebraic
decision diagrams (ADDs) and multi terminal BDDs (MTBDDs), have better
performances than BDDs.
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While the guided algorithm is fully automated, we still require human inter-
action to determine the level of abstraction. In this work, we only implement one
method of constructing an abstraction. The improvement that we have found
using guided model checking is of course expected: what sets this work apart is
the way we have derived the heuristic. Using our approach, the quality of the
heuristic will be dependent on the quality of the user-constructed abstraction
rather than the application domain. Our next step is to investigate how the way
that the abstraction is constructed affect efficiency of the guidance algorithm in
practice.
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