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Abstract. We show how to generate well-founded and stable term
orderings based on polynomial interpretations over the real numbers.
Monotonicity (another usual requirement in termination proofs) can,
then, be gradually introduced in the interpretations to deal with
different applications. For instance, the dependency pairs method for
proving termination of rewriting, and some restrictions of the rewrite
relation which are not monotonic in all arguments of the function
symbols, can benefit from this approach. The latter is the case for
context-sensitive rewriting (CSR), a simple restriction of rewriting
which has been proved useful for describing the semantics of several
programming languages (e.g., Maude) and analyzing the properties of
the corresponding programs. We show how to automatically generate
polynomial interpretations over the real numbers for proving termination
of CSR.
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1 Introduction

Context-sensitive rewriting (CSR [12]) is a simple restriction of rewriting which
can be used to analyze termination of programs of programming languages such
as Maude, OBJ2, OBJ3, and CafeOBJ (see [13] for further details and examples).
In CSR, a replacement map µ discriminates, for each symbol of the signature, the
argument positions µ(f) on which replacements are allowed. This can improve
the termination behavior of programs by pruning (all) infinite rewrite sequences.

Example 1. Consider the TRS R:
nats → adx(zeros) adx(x:y) → incr(x:adx(y))
zeros → 0:zeros incr(x:y) → s(x):incr(y)
hd(x:y) → x tl(x:y) → y

together with µ(:) = µ(s) = ∅ and µ(incr) = µ(adx) = µ(hd) = µ(tl) = {1}
[9, Section 1]. Due to µ(:) = ∅, the infinite rewrite sequence

zeros → 0:zeros → · · ·
is not possible with CSR.
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Termination of rewriting is undecidable and lot of research has been devoted
to develop methods and heuristics to achieve proofs of termination in restricted
cases. Polynomial interpretations and the corresponding reduction orderings [11]
are well-suited to achieve automatic or semiautomatic proofs of termination of
rewriting [3,6,11,14]. The use of polynomial interpretations has been proposed
in [8] as a suitable tool for proving µ-termination, i.e., termination of CSR un-
der a given replacement map µ. In [8], we consider polynomial interpretations
consisting of a polynomial [f ] on k variables for each k-ary symbol f , whose
coefficients are integers. Such polynomials are actually intended to induce map-
pings [f ] : N

k → N ranging on (and returning) non-negative integers. The poly-
nomial interpretations must also be µ-monotonic, i.e., whenever x >N y, we
have [f ](x1, . . . , xi−1, x, . . . , xk) >N [f ](x1, . . . , xi−1, y, . . . , xk) for all symbols
f ∈ F , i ∈ µ(f) and x, y, x1, . . . , xk ∈ N. Then, the interpretation of symbols is
homomorphically extended to terms t (where variable symbols are interpreted
as variables ranging in N) and an ordering > on terms is defined by t > s, if
[t] >N [s] for all x1, . . . , xn ∈ N, where x1, . . . , xn are the variables occurring in
t or s. Now, if l > r for every rule l → r of the TRS R, then R is µ-terminating.

Example 2. Consider the TRS R:
g(x) → h(x) h(d) → g(c)
c → d

together with µ(g) = µ(h) = ∅ [15, Example 1] (see also [9, Example 16]).
By using the results in [8], we prove the µ-termination of R with the following
polynomial interpretation:

[g](x) = x2 − 3x + 4 [c] = 1
[h](x) = x2 − 3x + 3 [d] = 0

The use of negative coefficients in the interpretation is crucial in this example.

The restrictions imposed in [8] for the considered polynomial interpretations
are quite usual; moreover, with the early remarkable exception of [5], the poly-
nomials considered in the literature are further restricted to use non-negative
integer coefficients [3,11,2,16]. This is due to the need to interpret the terms on
a well-founded domain (e.g., (N, >N)). This guarantees that > is a well-founded
ordering on terms, hence suitable for termination proofs.

In this paper we show how to overcome these limitations to use more general
polynomials which are suitable to, e.g., prove termination of CSR.

Example 3. The µ-termination of R in Example 1 can be proved by using the
following polynomial interpretation:

[nats] = 9 [incr](x) = x + 2 x [:] y = 1
2x + 1

2y
[adx](x) = x + 6 [s](x) = 0 [tl](x) = 2x + 1
[zeros] = 2 [hd](x) = 2x + 1 [0] = 0

which, as we will show, can be computed automatically (see Example 10 below).
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The framework described in [8] does not apply to polynomial interpretations
like that of Example 3 where rational coefficients occur in the polynomials. The
main problem is that the set of real (or rational) numbers is not well-founded.
Therefore, a term ordering induced by an interpretation mapping terms into,
e.g., rational numbers is not guaranteed to be well-founded. On the other hand,
the µ-termination of R in Example 1 cannot be proved within the framework
for polynomial termination of CSR given in [8].

In this paper, we use a general technique to obtain stable and well-founded
term orderings by using interpretations of function symbols f as real functions
[f ] : R

k → R (not necessarily polynomials). Then, we show how to ensure
(µ-)monotonicity of such orderings thus making them (µ-)reduction orderings
and suitable for proving (µ-)termination of TRSs (Section 3). We discuss how
to use this methodology as a basis for proving termination of CSR by means of
(more general) polynomial interpretations (Section 4). The framework in [8] can
now be seen as a particular case of the new framework. Our extended class of
polynomial interpretations provides a powerful tool for proving termination of
CSR. For instance, all examples of termination of CSR in [9] (the most recent
paper on the topic) can be proved now by using our polynomial interpretations.
In Section 5, we discuss how to automatically obtain our polynomial interpre-
tations. This is the first time that the automatic generation of direct proofs of
termination of CSR is implemented: We have implemented our technique as
part of the tool mu-term, see

http://www.dsic.upv.es/∼slucas/csr/termination/muterm.

2 Preliminaries

Let N, Z, Q, and R be the sets of natural, integer, rational and real numbers,
respectively; given one of such sets N and z ∈ N , we let Nz = {x ∈ N | x ≥ z}
and N>z = {x ∈ N | x > z}. Given a set A, P(A) denotes the set of all
subsets of A. A binary relation R on a set A is terminating if there is no infinite
sequence a1 R a2 R a3 · · · . Throughout the paper, X denotes a countable set of
variables and F denotes a signature, i.e., a set of function symbols {f, g, . . . },
each having a fixed arity given by a mapping ar : F → N. The set of terms built
from F and X is T (F , X ). Terms are viewed as labelled trees in the usual way.
Positions p, q, . . . are represented by chains of positive natural numbers used to
address subterms of t. We denote the empty chain by Λ. Given positions p, q,
we denote its concatenation as p.q. If p is a position, and Q is a set of positions,
p.Q = {p.q | q ∈ Q}. The set of positions of a term t is Pos(t). The subterm
at position p of t is denoted as t|p and t[s]p is the term t with the subterm at
position p replaced by s. The symbol labelling the root of t is denoted as root(t).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F , X ),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the
right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of rewrite
rules. A term t ∈ T (F , X ) rewrites to s (at position p), written t

p→R s (or just
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t → s), if t|p = σ(l) and s = t[σ(r)]p, for some rule ρ : l → r ∈ R, p ∈ Pos(t)
and substitution σ. A TRS is terminating if → is terminating.

2.1 Context-Sensitive Rewriting

A mapping µ : F → P(N) is a replacement map (or F-map) if ∀f ∈ F , µ(f) ⊆
{1, . . . , ar(f)} [12]. The set of µ-replacing positions Posµ(t) of t ∈ T (F , X ) is:
Posµ(t) = {Λ}, if t ∈ X and Posµ(t) = {Λ} ∪

⋃
i∈µ(root(t)) i.Posµ(t|i), if t �∈ X .

In context-sensitive rewriting (CSR [12]), we (only) contract replacing redexes:
t µ-rewrites to s, written t ↪→µ s, if t

p→R s and p ∈ Posµ(t).

Example 4. Consider R and µ as in Example 1. Then, we have:
hd(zeros) ↪→µ hd(0:zeros) ↪→µ 0

Since 1.2 �∈ Posµ(hd(0:zeros)), redex zeros cannot be further µ-rewritten in
hd(0:zeros).

A TRS R is µ-terminating if ↪→µ is terminating.

3 Algebras over the Reals and Reduction Orderings

An ordering > on a set A is well-founded if it admits no infinite chain a1 >
a2 > · · · > an > · · · . Given a mapping f : Ak → A and i ∈ {1, . . . , k}, we
say that > is monotonic on the i-th argument of f if, whenever x > y, we have
f(x1, . . . , xi−1, x, . . . , xk) > f(x1, . . . , xi−1, y, . . . , xk) for all x, y, x1, . . . , xk ∈
A. The problem of proving termination of a TRS is equivalent to finding a well-
founded, stable, and monotonic (strict) ordering > on terms (i.e., a reduction
ordering) which is compatible with the rules of the TRS, i.e., such that l > r for
all rules l → r of the TRS. Here, monotonic means that, for all k-ary symbol f
and i ∈ {1, . . . , k}, > is monotonic on the i-th argument of f , when f is viewed
as a mapping f : T (F , X )k → T (F , X ). Stable means that, whenever t > s, we
have σ(t) > σ(s) for all terms t, s and substitutions σ.

Reduction orderings can be obtained by giving appropriate interpretations to
the function symbols of the signature. Given a signature F , an ordered F-algebra,
is a triple (A, FA, >A), where A is a set, FA is a set of mappings fA : Ak → A
for each f ∈ F where k = ar(f), and >A is a (strict) ordering on A. For a
given valuation mapping α : X → A, the evaluation mapping [α] : T (F , X ) →
A is inductively defined by [α](x) = α(x) if x ∈ X and [α](f(t1, . . . , tk)) =
fA([α](t1), . . . , [α](tk)) for x ∈ X , f ∈ F , t1, . . . , tk ∈ T (F , X ). Then, we can
define an ordering > on terms given by t > s if and only [α](t) >A [α](s), for all
α : X → A. If >A is well-founded, then > also is [16, Section 6.2.1].

In this paper we are interested in using real functions over real numbers to
define reduction orderings. We say that A = (A, FA) is an F-algebra over the
reals if A ⊆ R. Given m ∈ R and A ⊆ R, we say that fA : Ak → A is m-bounded
if fA(x1, . . . , xk) ≥ m for all x1, . . . , xk ∈ A. If there exists m ∈ R such that, fA

is m-bounded for all f ∈ F , then we say that A = (A, FA) is m-bounded. The
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order (Rm, >R) is not well-founded for any m ∈ R. However, as in [10], given
δ ∈ R>0, we use the following (strict) ordering on the set of real numbers:

∀x, y ∈ R, x >δ y if and only if x − y ≥R δ

Thus, we have the following.

Theorem 1. Let F be a signature, A ⊆ R, m ∈ R, A = (A, FA) be an m-
bounded F-algebra, and δ ∈ R>0. Then, the relation >δ on terms given by

t >δ s ⇔ ∀α : X → A, [α](t) − [α](s) ≥ δ

is a well-founded and stable (strict) ordering on T (F , X ).

In order to use an ordering >δ (induced by an m-bounded algebra) for proving
termination of rewriting, we have to further ensure that >δ is monotonic. The
following example shows the use of Theorem 1 to prove termination of TRSs.

Example 5. Consider the following TRS R [16, Example 6.2.22]:
f(f(x)) → f(g(f(x)))
and the 0-bounded algebra (A, FA), where A = R0, fA(x) = 
x� + 1

2

and gA(x) = �x (here, 
x� is the least integer above –or equal to– x and �x is
the integer part of x). Note that >1 is monotonic: if t >1 s, then [α](t) ≥ [α](s)+1
for all valuations α : X → A; hence, since �x+1 = �x+1 and 
x+1� = 
x�+1,
we have [α](f(t)) − [α](f(s)) = 
[α](t)� − 
[α](s)� ≥ 
[α](s) + 1� − 
[α](s)� = 1.
Similarly, [α](g(t))− [α](g(s)) = �[α](t)−�[α](s) ≥ �[α](s)+1−�[α](s) = 1.
Thus, by Theorem 1, >1 is a reduction ordering. On the other hand, we have:

[α](f(f(x))) = 

α(x)� + 1
2� + 1

2 = 
α(x)� + 3
2 , and

[α](f(g(f(x)))) = 
�(
α(x)� + 1
2 )� + 1

2 = 
α(x)� + 1
2 .

Therefore:

[α](f(f(x))) − [α](f(g(f(x)))) = 
α(x)� +
3
2

− (
α(x)� +
1
2
) = 1

Then, f(f(x)) >1 f(g(f(x))) and R is terminating.

The following theorem provides a sufficient condition for ensuring monotonicity
of >δ: monotonicity of >δ in the i-th argument of a function symbol f comes
when an increment of (at least) δ in the i-th argument of fA increases in (at
least) δ the output of the function fA (for each fixed tuple of arguments).

Theorem 2. Let F be a signature, A ⊆ R, m ∈ R, and δ ∈ R>0. Let
A = (A, FA) be an m-bounded F-algebra, f ∈ F and 1 ≤ i ≤ ar(f). If fA

is differentiable in its i-th argument and ∂fA(x1,... ,xi,... ,xar(f))
∂xi

≥ 1, then >δ is
monotonic in the i-th argument of f .

The following example shows the necessity of requiring ∂fA(x1,... ,xi,... ,xar(f))
∂xi

≥ 1
in Theorem 2.
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Example 6. Consider the following TRS:
a → c(a)

Let A = R0. Consider the 0-bounded F-algebra (A, {aA, cA}), where aA = 2 and
cA(x) = 1

2x. According to Theorem 1 the ordering >1 induced by this algebra is
well-founded and stable. The order, however, is not monotonic in the argument
of c: we have [α](a) = 2 and [α](c(a)) = 1, for all α : X → A, i.e.,

a >1 c(a)

However, [α](c(c(a))) = 1
2 , i.e., c(a) �>1 c(c(a)). Note that ∂cA

∂x = 1
2 �≥ 1.

Regarding the choice of δ when using Theorems 1 and 2, Example 5 also shows
that this choice matters: for instance, > 1

2
is not compatible with R in Example

5; on the other hand, > 3
2

is not monotonic. In this paper we will always use
δ = 1.

3.1 Polynomial Interpretations

A monomial in k variables over R is a function F : R
k → R defined by

F (x1, . . . , xk) = a xr1
1 · · ·xrk

k for some real number a �= 0 and non-negative inte-
gers r1, . . . , rk. The number a is called the coefficient of the monomial;

∑k
i=1 ri

is the degree of the monomial. If r1 = r2 = · · · = rk = 0, then the monomial is
called a constant. A polynomial in k variables over R is the sum of finitely many
monomials in k variables over R. The set of polynomials over a set {x1, . . . , xn}
of n distinct variables is denoted by R[x1, . . . , xn].

The use of polynomials in termination proofs is normally restricted to

1. polynomials P with non-negative integer coefficients (i.e., P ∈ N[x1, . . . , xn],
see, e.g., [3,11,2,16]) or

2. polynomials P with real coefficients which are either zero or greater than or
equal to 1 (i.e., P ∈ R1[x1, . . . , xn], see, e.g., [5,6,14]).

In the first case, well-foundedness of the induced orderings on terms comes for
free due to the use of a well-founded domain (N, >N); the use of non-negative in-
teger coefficients for the polynomials guarantees monotonicity of the ordering ([2,
Section 5.3],[16, Proposition 10]). Given a polynomial interpretation (N, FN, >N),
the corresponding reduction ordering > is given as follows: for t, s ∈ T (F , X )
(as usual, we write [f ] for the polynomial associated to f),

t > s ⇔ ∀xi ∈ N, [t] > [s]

where [x] = x if x ∈ X and [f(t1, . . . , tk)] = [f ]([t1], . . . , [tk]). Note that (as
usual) we write [t] instead of [α](t) since the variables are interpreted as them-
selves (ranging on numbers) and a universal quantification is assumed for each
variable.

Proposition 1. Let F be a signature and FN be a polynomial interpretation
such that [f ] : N

k → N for each k-ary symbol f ∈ F . Let > be the ordering on
terms induced by (N, FN, >N) and >1 be the ordering induced by the 0-bounded
algebra (N, FN). Then, > = >1.
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Proposition 1 proves that the orderings induced by the polynomial interpreta-
tions in the usual sense correspond to the ordering >1 induced by the polynomial
interpretation viewed as a 0-bounded algebra over N.

In the second case above, monotonicity is still guaranteed by the use of non-
negative (and ≥ 1) coefficients and well-foundedness is guaranteed (for finite
signatures) if the polynomials P in R1[x1, . . . , xn] additionally have the subterm
property: P (x1, . . . , xk) > xi for all 1 ≤ i ≤ k (see [5]).

4 Polynomial Interpretations for Context-Sensitive
Rewriting

Termination of CSR is fully captured by the so-called µ-reduction orderings
[15], i.e., well-founded, stable orderings > which are µ-monotonic, i.e., for all
f ∈ F and i ∈ µ(f), > is monotonic in the i-th argument of f . Then, a TRS
R = (F , R) is µ-terminating if and only if there is a µ-reduction ordering >
which is compatible with the rules of R, i.e., for all l → r ∈ R, l > r [15,
Proposition 1].

Of course, µ-reduction orderings can also be defined by means of m-bounded
F-algebras over the reals. Well-foundedness and stability of >δ is already ensured
by Theorem 1. In this sense, Proposition 1 proves that the orderings induced by
the polynomial interpretations in [8] correspond to the ordering >1 induced by
the polynomial interpretation viewed as a 0-bounded algebra over N.

Example 7. Consider the following TRS R:
0 - y → 0 0 ÷ s(y) → 0
s(x) - s(y) → x - y s(x) ÷ s(y) → if(x≥y,s((x-y)÷s(y)),0)
x ≥ 0 → true if(true,x,y) → x
0 ≥ s(y) → false if(false,x,y) → y
s(x) ≥ s(y) → x ≥ y

together with µ(if) = µ(÷) = µ(s) = {1} and µ(f) = ∅ for any other symbol
f [9, Example 49]. The µ-termination of R can be proved by using the ordering
>1 induced by the following polynomial interpretation (N, FN), where FN is:

x [-] y = x + 1 [true] = 0
[0] = 0 [false] = 1

[s](x) = x + 3 x [÷] y = x2 + x + 1
x [≥] y = x + 2 [if](x, y, z) = xz + x + y + 1

Our framework strictly includes [8]. For instance, we show that [8] does not
suffice for proving µ-termination of R in Example 1: Note that the polynomial
interpretation [:] of ‘:’ must contain a monomial axmyn with m ∈ N, a, n ∈ N1;
otherwise, the rule tl(x:y) → y cannot be oriented. In this case, however, the
rule zeros → 0:zeros cannot be oriented. This is managed in our framework by
giving ‘:’ a polynomial interpretation whose second (non-replacing) parameter
contributes as half of its value. This permits to deal with recursive calls in right-
hand sides (as in the rule zeros → 0:zeros) whilst sufficient information is
still kept to be used in left-hand sides (as in the rule tl(x:y) → y).
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Example 8. Consider the following non-terminating TRS R:
sel(0,x:y) → x from(x) → x:from(s(x))
sel(s(x),y:z) → sel(x,z)

and µ(:) = µ(s) = µ(from) = {1} and µ(sel) = {1, 2} [12, Example 5]. This
TRS can be proved µ-terminating by using the ordering >1 induced by the
1-bounded algebra given by (Q1, FQ1), where FQ1 is the following polynomial
interpretation:

[0] = 1 [from](x) = 2x + 2 x [:] y = x + 1
4y

[s](x) = 2x [sel](x, y) = x2y + 1

Note that >1 is µ-monotonic: since x, y ≥ 1, by Theorem 2, we have

∂[s]
∂x = 2 ≥ 1 ∂[sel]

∂x = 2xy ≥ 1 ∂[:]
∂x = 1

∂[from]
∂x = 2 ≥ 1 ∂[sel]

∂y = x2 ≥ 1

We finish this section with a last motivating example:

Example 9. Consider the following TRS R borrowing the well-known Toyama’s
example:

c → a f(a,b,x) → f(x,x,x)
c → b

together with µ(f) = {1, 3}. The following ‘polynomial’ interpretation (Q1, FQ1),
where FQ1 is:

[f](x, y, z) = x + xy−1 + zy−1 + z = (xy+z)+(x+yz)
y [a] = 2

[c] = 3 [b] = 1

can be used to formally prove the µ-termination of R. The µ-reduction ordering
>1 induced by this algebra is compatible with the rules of R:

[f(a,b,x)] − [f(x,x,x)] = 2x + 4 − (2x + 2) = 2 ≥ 1
[c] − [a] = 3 − 2 = 1 ≥ 1
[c] − [b] = 3 − 1 = 2 ≥ 1

Regarding µ-monotonicity of >1, we use Theorem 2:

∂[f]
x = 1 + y−1 ≥ 1 ∂[f]

z = 1 + y−1 ≥ 1

We can also prove that R is simply µ-terminating (see [8, Section 3]): since
x, y, z ≥ 1, we have

[f(x,y,z)] − [x] = xy−1 + zy−1 + z ≥ 1
[f(x,y,z)] − [z] = x + xy−1 + zy−1 ≥ 1

When considering µ′(f) = {2, 3}, the proof of (simple) µ′-termination of R is
similar.
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5 Automatic Proofs of Termination of CSR Using
Polynomials

Polynomial interpretations are well-suited to mechanize the proofs of termina-
tion. A proof of termination of a TRS is transformed into the problem of solving
a set of constraints over the coefficients of a polynomial interpretation for the
symbols of the TRS [11]. We are especially interested in proving µ-termination of
TRSs by using polynomial interpretations. According to Theorems 1 and 2, the
set of constraints is then obtained by requiring the polynomial interpretations
to satisfy the following restrictions: for all f ∈ F ,
1. 0-boundedness: [f ](x1, . . . , xk) ≥ 0 for all x1, . . . , xk ≥ 0.
2. µ-monotonicity: ∂[f ](x1,... ,xi,... ,xk)

∂xi
≥ 1 for all i ∈ µ(f).

3. Compatibility with the rules of the TRS: l >1 r for all l → r ∈ R.

For practical reasons, we also restrict the polynomials that we consider to have
rational (although possibly negative) coefficients. Thus, [f ] ∈ Q[x1, . . . , xk] and
[f ] : Q

k
0 → Q0 for each k-ary symbol f ∈ F . This limitation (and other limita-

tions which are introduced below) is motivated by the use of the CiME system
[4] to solve the set of constraints that we obtain. CiME is only able to solve Dio-
phantine inequations yielding non-negative integers as solutions. As we will see
below, the use of rational numbers is easily made compatible with this limitation.
The choice of 0-bounded polynomial interpretations and that of the ordering >1
(i.e., m = 0 and δ = 1 in Theorem 1) is arbitrary.

The following result imposes some general restrictions on the structure of
(m-bounded) polynomials containing negative coefficients.
Proposition 2. Let P ∈ R[x1, . . . , xk] be m-bounded for some m ∈ R and
ar1···rk

xr1
1 · · ·xrk

k be a monomial in P . If ar1···rk
< 0, then, for all i ∈ {1, . . . , k}

satisfying ri > 0, there is a monomial ar′
1···r′

k
x

r′
1

1 · · ·xr′
k

k in P satisfying ar′
1···r′

k
>

0 and r′
i > ri.

Thus, if we want to have a negative coefficient for a monomial which is first
degree in a given variable xi, we need to have a monomial of higher degree in
xi having a positive coefficient. Otherwise, m-boundedness (which is required in
Theorem 1) cannot be achieved.

Of course, the difficulty of the procedure also depends of the complexity of
the polynomials that we use for this. In the literature, there are two classes of
polynomials which are well-suited for automatization of termination proofs: lin-
ear [11] and simple-mixed [14] interpretations. Being the simplest ones, we use
linear polynomial interpretations to discuss and exemplify how to proceed for au-
tomatically proving termination of CSR by using (or more precisely generating)
polynomial interpretations.

5.1 Using Linear Polynomial Interpretations

A polynomial P ∈ R[x1, . . . , xn] is linear, if P = anxn +an−1xn−1 + · · ·+a1x1 +
a0. According to the previous discussion, we are going to use polynomial inter-
pretations (Q0, FQ0). Note that, according to Proposition 2, negative coefficients
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are not allowed in linear polynomial interpretations. Moreover, the independent
coefficient a0 cannot be negative if ai �= 0 for some 1 ≤ i ≤ k; otherwise, the
interpretation would not be m-bounded for any m ∈ R.

The following proposition justifies that, for the purpose of proving termina-
tion of CSR by using a linear polynomial interpretation inducing an ordering
>δ for some δ ∈ R>0, we also have to eventually ensure that, for all f ∈ F ,
0 ≤ ai < 1 whenever i �∈ µ(f).

Proposition 3. Let F be a signature, A ⊆ R, δ ∈ R>0, and (A, FA) be a linear
polynomial interpretation for F . Then, >δ is monotonic in the i-th argument of
f ∈ F if and only if ai ≥ 1, where [f ] = akxk + ak−1xk−1 + · · · + a1x1 + a0.

Hence, following the previous discussion and results we assume that each k-ary
symbol f ∈ F is interpreted as a linear polynomial [f ] = akxk + ak−1xk−1 +
· · · + a1x1 + a0 where

1. a0 ∈ N,
2. ai ∈ N1 if i ∈ µ(f) and
3. ai = pi

qi
if i �∈ µ(f), where pi ∈ N, qi ∈ N1 and pi < qi. Here, Proposition 3 is

used to adopt an heuristic: since non-replacing arguments are not restricted
to be greater than or equal to 1, we permit the use of rational coefficients ai

and, in fact, we impose 0 ≤ ai < 1 to (try to) reduce the search space. Note
that, in [8], the only possibility would be ai = 0.

The following example shows how these ideas work in practice: we describe how
to prove the polynomial µ-termination of R in Example 1.

Example 10. Consider R and µ as in Example 1. The symbols of the signature
are interpreted as linear polynomials:

[nats] = a0 [incr](x) = f1x + f0
[adx](x) = b1x + b0 [s](x) = g1x + g0
[zeros] = c0 [hd](x) = h1x + h0
x [:] y = d10x + d01y + d00 [tl](x) = i1x + i0

[0] = e0

where, according to Proposition 3, we further assume that d10 = p10
q10

and d01 =
p01
q01

for natural numbers p10 < q10 and p01 < q01. Analogously, for [s] we let
g1 = p1

q1
for natural numbers p1 < q1. All other coeficients are natural numbers.

Now, we use Theorems 1 and 2 to generate a set of constraints over the
unknown coefficients. First we note that, since CiME solves the indeterminate
coefficients ai, bi, . . . , pi, qi, . . . in N, the 0-boundedness of each polynomial is
immediately guaranteed. Regarding µ-monotonicity and compatibility with the
rules of the TRS, we have the following:

1. Constraints due to µ-monotonicity. In general, we use Theorem 2; here
(where linear interpreations are assumed) Proposition 3 can be used instead:
(a) ∂[adx]

∂x = b1 ≥ 1 (c) ∂[hd]
∂x = h1 ≥ 1

(b) ∂[incr]
∂x = f1 ≥ 1 (d) ∂[tl]

∂x = i1 ≥ 1
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2. Constraints due to compatibility with rules (use Theorem 1 with >1):
a) Compatibility with the rule nats → adx(zeros):

a0 − (b1c0 + b0) ≥ 1 ⇔

a0 − b1c0 − b0 ≥ 1

b) Compatibility with the rule zeros → 0:zeros:

c0 − d10e0 − d01c0 − d00 ≥ 1 ⇔

q10q01c0 − q01p10e0 − q10p01c0 − q10q01d00 ≥ q10q01

Note that we have used the definition of d10 and d01 as rational num-
bers d10 = p10

q10
and d01 = p01

q01
to transform the first constraint into an

equivalent one where only the components of the fractions are present.
c) Compatibility with the rule incr(x:y) → s(x):incr(y):

f1(d10x + d01y + d00) + f0 − (d10(g1x + g0) + d01(f1y + f0) + d00) ≥ 1

In these cases, we collect the coefficients accompanying each variable
x1, . . . , xk to obtain a constraint

Akxk + · · · + A1x1 + A0 ≥ B

Then, since x1, . . . , xk ≥ 0, we express this constraint as

Ak ≥ 0 ∧ · · · ∧ A1 ≥ 0 ∧ A0 ≥ B

For the constraint above, we obtain

q1f1p10 − p10p1 ≥ 0 ∧ f1p01 − p01f1 ≥ 0 ∧
q10q01f1d00 + q10q01f0 − q01p10g0 − q10p01f0 − q10q01d00 ≥ q10q01

d) Compatibility with the rule adx(x:y) → incr(x:adx(y)):

b1(d10x + d01y + d00) + b0 − (f1(d10x + d01(b1y + b0) + d00) + f0) ≥ 1 ⇔

b1p10 − f1p10 ≥ 0 ∧ b1p01 − f1p01b1 ≥ 0 ∧
q01b1d00 + q01b0 − f1p01b0 − q01f1d00 − q01f0 ≥ q01

e) Compatibility with the rule hd(x:y) → x:

h1(d10x + d01y + d00) + h0 − x ≥ 1 ⇔

h1p10 − q10 ≥ 0 ∧ h1p01 ≥ 0 ∧ h1d00 + h0 ≥ 1

f) Compatibility with the rule tl(x:y) → y:

i1(d10x + d01y + d00) + i0 − y ≥ 1 ⇔

i1p10 ≥ 0 ∧ i1p01 − q01 ≥ 0 ∧ i1d00 + i0 ≥ 1
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3. Constraints due to the rational coeficients

(a) q10 > p10 (b) q01 > p01 (c) q1 > p1

Now, this set of constraints can be solved as a set of Diophantine inequations
using the CiME system. We (automatically) obtain the solution of this set of
constraints, thus yielding the following polynomial interpretation1:

[nats] = 9 [incr](x) = x + 2 x [:] y = 1
2x + 1

2y
[adx](x) = x + 6 [s](x) = 0 [tl](x) = 2x + 1
[zeros] = 2 [hd](x) = 2x + 1 [0] = 0

which proves the µ-termination of R.

We have implemented our technique as part of the tool mu-term. mu-term
uses CiME as an external tool for solving the Diophantine inequations obtained
with our technique. The polynomial interpretation in Example 10 can be au-
tomatically obtained with mu-term. We refer the reader to the WWW site of
mu-term for obtaining further details about it.

5.2 Simple-Mixed Polynomial Interpretations

A polynomial P ∈ R[x1, . . . , xn] is simple-mixed iff all exponents are not greater
than 1 or n = 1 and P = a2x

2
1 + a0 [14]. Note that, according to Proposition 2

and the discussion following it in Section 5.1, simple-mixed polynomials used in
our interpretations cannot contain negative coefficients. The following example
shows the use of simple-mixed polynomial interpretations.

Example 11. Consider the following TRS R [15, Example 5]:
if(true,x,y) → x f(x) → if(x,c,f(true))
if(false,x,y) → y

together with µ(f) = {1} and µ(if) = {1, 2}. Now we first conjecture a simple-
mixed polynomial interpretation (Q0, FQ0) for F . Again, we can use mu-term
to automatically prove the µ-termination of R. We obtain:

Proof of termination for CS-TRS Ex5_Zan97:

[f](X) = 3.X + 2
[if](X1,X2,X3) = X1.X3 + X1 + X2 + 1
[c] = 0
[true] = 0
[false] = 1

Now we prove that linear interpretations do not work in this case. Assume that
there is a linear interpretation (Q0, FQ0) and some δ > 0 such that >δ is a
µ-reduction ordering which is compatible with the rules of R. Such an inter-
pretation includes a polynomial [if](x, y, z) = ax + by + cz + d interpreting if,
1 We use version 2.0 of the CiME system.
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where a, b ≥ 1 to guarantee that >δ is µ-monotonic for any δ > 0 (Proposition
3). Moreover, c ≥ 1; otherwise, compatibility of >δ with the second rule for if
would be impossible. Also, the interpretation of f would be [f](x) = mx + n,
where m ≥ 1 (due to µ(f) = {1}). Then, by Proposition 3, >δ would be, in fact,
monotonic, hence a reduction ordering which is compatible with the rules of R.
However, being R non-terminating, no reduction ordering can be compatible
with the rules of R.

Example 11 also shows that (in contrast to the usual approaches which use N1
(or N2) and R1, see [3,11,14,16]) the use of 0 for interpreting symbols is crucial
for some applications. This claim is justified by the following proposition.

Proposition 4. Let F be a signature, A ⊆ R1, δ ∈ R>0, and (A, FA) be a
polynomial interpretation for F . If [f ] contains a monomial a xr1

1 · · ·xri
i · · ·xrk

k

with ri ≥ 1 and a ≥ 1, then, >δ is monotonic in the i-th argument of f ∈ F .

For instance, without interpreting true as 0, the µ-termination of R in Example
11 cannot be proved by using the same interpretations for f and if.

5.3 Polynomials with Negative Coefficients

The polynomials in the previous sections do not admit negative coefficients in
any monomial. According to Proposition 2, if we want to use negative coefficients
in some monomials (as, e.g., in Example 2), we have to consider, at least, the
following class of polynomials.
Definition 1 (2-simple-mixed polynomial). A polynomial P ∈ R [x1, . . . ,
xn] is 2-simple-mixed iff each monomial ar1···rk

xr1
1 · · ·xrk

k satisfy either:
1. ri ∈ {0, 1} for all i ∈ {1, . . . , k} or
2. ri = 2 for some i ∈ {1, . . . , k} and rj = 0 for all j ∈ {1, . . . , k} − {i}.

Note that simple-mixed polynomials are also 2-simple mixed. The polynomials
used in Example 2 are 2-simple mixed. The following result can be used to
guarantee 0-boundedness of a quadratic polynomial:

Proposition 5. Let P (x) = Ax2 + Bx + C. Then, P (x) ≥ 0 for all x ≥ 0 if
and only if either
1. A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0 or
2. A > 0 ∧ B < 0 ∧ 4AC − B2 ≥ 0.

Example 12. Consider the following TRS R:
f(x,g(x),y) → f(y,y,y) b → c
g(b) → c

together with µ(f) = {3} [9, Example 24]. The µ-termination of R can be proved
by using the ordering >1 induced by:

[f](x, y, z) = x2 − 2xy + y2 + z [b] = 1
[g](x) = x + 1 [c] = 0

In the near future, we plan to furnish mu-term with the ability to automatically
generate proofs of µ-termination by using polynomials with negative coefficients.
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6 Conclusions

We have shown how to obtain stable and well-founded term orderings by us-
ing a given interpretation of function symbols as real functions, not necessarily
polynomials (Theorem 1). We have shown how to further obtain (µ-)reduction
orderings, which can be used for proving (µ-)termination of TRSs (Theorem 2).
This provides a new technique for proving termination of rewriting (Example 5)
and a basis for proving termination of CSR by means of very general polynomial
interpretations which can be characterized by:

1. The use of rational coefficients (as in Examples 3 and 8),
2. The use of negative coefficients (as in Example 2), and
3. The use of negative exponents2 (as in Example 9).

These mechanisms allow us to avoid monotonicity for the non-replacing argu-
ments of symbols (where this is not necessary). We also stress that the use of
rational, negative coefficients, and negative exponents (and the lack of mono-
tonicity in some arguments) disallows the use of most of the standard results for
guaranteeing well-foundedness of the induced ordering on terms. For instance, in
contrast to the unrestricted case (see [5]), the µ-subterm property [8, Definition
2] does not guarantee well-foundedness of a term ordering [8, Example 3]. For-
tunately, Theorems 1 and 2 provide a good framework for defining µ-reduction
orderings.

Regarding their use in proofs of termination of (unrestricted) rewriting, the
methods presented here can also be helfpul when monotonicity is not a crucial
requirement for the use of term orderings. This is the case of the dependency
pairs method, [1] where non-monotonic (but well-founded and stable) orderings
can be used in proofs of termination as part of a reduction pair (see [7]).

The framework in [8] can now be seen as a particular case of the new frame-
work (Proposition 1). Our extended class of polynomial interpretations provides
quite a powerful tool for proving termination of CSR. For instance, all examples
of termination of CSR in [9] (the most recent paper on the topic) have been
proved terminating now by using polynomial interpretations (see Examples 2,
3, 7, 12, and [8, Example 10]). We have described how to automatically obtain
our polynomial interpretations. We have implemented our techniques (linear
and simple-mixed interpretations of Sections 5.1 and 5.2) as part of the tool
mu-term.

6.1 Future Work

From a theoretical point of view, the class of reduction orderings >δ induced
by an m-bounded algebra over the reals should be further investigated. The
exact role of m and δ has to be clarified. Another interesting question concerns
completeness of the approach: is every terminating TRS compatible with one
of such orderings? If not, what are the limitations of the approach? Example
2 Of course, we should more properly speak about polynomial fractions in this case.
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5 shows that the technique applies to a non-simply terminating TRS (see [16,
Proposition 6.3.26(iv)]); thus, what would be the position of these orderings in
a termination hierarchy possibly extending that of [16, Section 6.3]?

Regarding the practical use of these orderings, we plan to investigate new
families of real functions which are well-suited for automatization purposes. We
will focus on those functions which can also be used to prove termination of
CSR, by introducing mechanisms for loosing monotonicity in some arguments.
In particular, in this paper we did not pay any attention to formalize the use of
polynomial fractions. This could be a first starting point.

Acknowledgements. I thank Bernhard Gramlich and the anonymous referees
for their comments and suggestions.
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