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Abstract. We prove that if a finite alphabet of actions contains at least
two elements, then the equational theory for the process algebra BCCSP
modulo any semantics no coarser than readiness equivalence and no finer
than possible worlds equivalence does not have a finite basis. This seman-
tic range includes ready trace equivalence.

1 Introduction

Labeled transition systems constitute a fundamental model of concurrent com-
putation which is widely used in light of its flexibility and applicability. They
model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produce them. Several notions
of behavioral equivalence have been proposed, with the aim to identify those
states of labeled transition systems that afford the same observations. The lack
of consensus on what constitutes an appropriate notion of observable behav-
ior for reactive systems has led to a large number of proposals for behavioral
equivalences for concurrent processes.

Van Glabbeek [8] presented the linear time - branching time spectrum of
behavioral equivalences for finitely branching, concrete, sequential processes. In
this paper we focus on three equivalence relations in this spectrum. Readiness
semantics [22,27] distinguishes a process by its finite traces, where each finite
trace is decorated with the set of initial actions at its ultimate state. In ready
trace semantics [4,26], each finite trace is decorated with the set of initial actions
at all its states. Possible worlds semantics [28] distinguishes a process by the
deterministic processes that can be “ready simulated” by the original process.
In a ready simulation, the sets of initial actions at a simulated and its simulating
state must always be the same. Readiness semantics is coarser than ready trace
semantics (meaning that it distinguishes fewer processes), which in turn is coarser
than possible worlds semantics. Other semantics in the spectrum are based on
(bi)simulation, failures, failure traces, and (completed) traces. Figure 1 depicts
the linear time - branching time spectrum, where a directed edge from one
equivalence to another means that the source of the edge is finer than the target.
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Fig. 1. The linear time - branching time spectrum

Van Glabbeek [8] studied the semantics in his spectrum in the setting of the
process algebra BCCSP, which contains only basic process algebraic operators
from CCS and CSP, but is sufficiently powerful to express all finite synchroniza-
tion trees. Van Glabbeek gave (sound and complete) axiomatizations for seman-
tics in the spectrum, meaning that two closed BCCSP terms can be equated if
and only if they are equivalent.

An axiomatization E is ω-complete when an equation can be derived from E
if (and only if) all its closed instantiations can be derived from E. In applica-
tions dealing with theorem proving, ω-completeness of the underlying equational
theory often facilitates the production of equational derivations; see [13]. In [11]
it was argued that ω-completeness is desirable for the partial evaluation of pro-
grams.

In universal algebra, ω-completeness is referred to as a basis for the equa-
tional theory. The existence of finite bases for algebras is a classic topic of study
in universal algebra (see, e.g., [16]), dating back to Lyndon [14]. Murskĭı [21]
proved that “almost all” finite algebras (namely all quasi-primal ones) are finitely
based, while in [20] he presented an example of a three-element algebra that has
no finite basis. Henkin [12] showed that the algebra of naturals with addition
and multiplication is finitely based, while Gurevic̆ [10] showed that after adding
exponentiation the algebra is no longer finitely based. McKenzie [15] settled
Tarski’s Finite Basis Problem in the negative, by showing that the general ques-
tion whether a finite algebra is finitely based is undecidable.
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Other notable examples of ω-incomplete axiomatizations in the literature are
the λKβη-calculus (see [25]) and the equational theory of CCS [17]. Therefore
laws such as commutativity of parallelism, which are valid in the initial model
but which cannot be derived, are often added to the latter equational theory.
For such extended equational theories, ω-completeness results were presented in
the setting of CCS [19] and ACP [6]. Another negative result, for basic process
algebra with the binary Kleene star, was reported in [2]: semantics no coarser
than completed trace equivalence and no finer than ready simulation equivalence
have no finite (sound and complete) axiomatization, so by default no finite ω-
complete axiomatization.

A number of positive and negative results regarding finite ω-complete ax-
iomatizations for BCCSP occur in the literature. Moller [19] proved that the fi-
nite axiomatization for BCCSP modulo bisimulation equivalence is ω-complete.
Groote [9] presented a similar result for completed trace equivalence, for trace
equivalence (in case of an alphabet with more than one element), and for readi-
ness and failures equivalence (in case of an infinite alphabet). Blom, Fokkink
and Nain [5] proved that in case of an infinite alphabet, BCCSP modulo ready
trace equivalence does not have a finite (sound and complete) axiomatization.
Aceto, Fokkink and Ingólfsdóttir [3] proved a similar negative result for 2-nested
simulation equivalence, independent of the cardinality of the alphabet.1

Groote [9] explicitly left open the question of ω-complete axiomatizations for
BCCSP modulo readiness and ready trace equivalence in case of a finite (non-
empty) alphabet. The same question for possible worlds equivalence, irrespective
of the cardinality of the alphabet, was posed by van Glabbeek [8].

In case of a singleton alphabet, readiness, ready trace and possible worlds
equivalence coincide with completed trace equivalence. As mentioned before,
there exists a finite ω-complete axiomatization for BCCSP modulo completed
trace equivalence, independent of the cardinality of the alphabet.

In this paper we consider BCCSP with a finite alphabet with more than one
element. We prove for any semantics ∼ no coarser than readiness equivalence
and no finer than possible worlds equivalence, that there is no finite ω-complete
axiomatization for BCCSP modulo ∼. Ready trace semantics is included in this
range (see Figure 1).

The proof of the main theorem of this paper only concerns equations of depth
one. Pivotal for this proof is a special kind of “cover equation” (see Definition
3), from which all sound equations of depth one for BCCSP modulo readiness
equivalence can be derived. For the soundness of the cover equations, modulo
possible worlds semantics, it is essential that the alphabet is finite. Thus we
not only obtain a negative result, but we gain some insight into the equational
theory of readiness, ready trace and possible worlds semantics in the presence
of a finite alphabet.

1 In case of an infinite alphabet, occurrences of action names in axioms should be inter-
preted as variables, as else most of the axiomatizations mentioned in this paragraph
would be infinite.
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Finally, we prove that if the alphabet is infinite, then the (sound and com-
plete) axiomatization for possible worlds semantics is ω-complete. So there is a
striking incompatibility of a finite alphabet and a finite basis. Namely, in case
of an infinite alphabet BCCSP modulo readiness semantics or possible worlds
semantics has a finite basis, while in case of a finite alphabet it only has an
infinite basis.

Groote [9] also asked whether in case of a finite alphabet, BCCSP modulo
failures or failure trace semantics has a finite ω-complete axiomatization. These
questions remain open, for alphabets with more than one element. We note that
the aforementioned cover equations can be derived from the standard axioms
for failures semantics and failure trace equivalence. So there is hope that finite
ω-complete axiomatizations for these semantics do exist.

2 Preliminaries

Syntax of BCCSP. BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions. Open terms t, u can moreover contain variables from a countably infinite
set V (with typical elements w, x, y, z). As binding convention, alternative com-
position and summation bind weaker than prefixing. A (closed) substitution
maps variables in V to (closed) terms. For every term t and substitution σ, the
term σ(t) is obtained by replacing every occurrence of a variable x in t by σ(x).

Transition rules. Intuitively, closed terms represent finite process behaviors,
where 0 does not exhibit any behavior, p + q is the nondeterministic choice
between the behaviors of p and q, and ap executes action a to transform into
p. This intuition is captured, in the style of Plotkin [24], by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

The depth of a term t, denoted by depth(t), is the maximal number of transitions
in sequence that t can exhibit. It is defined by: depth(0) = 0, depth(x) = 0,
depth(t + u) = max{depth(t), depth(u)}, and depth(at) = depth(t) + 1.

For a closed term p, I(p) denotes the set of actions a for which there exists
a transition p

a→ p′. A closed term p is deterministic if for each a ∈ I(p) there is
exactly one closed term p′ such that p

a→ p′, and moreover p′ is deterministic.

Definition 1. A closed term p1 is a possible world of a closed term p0 if I(p1) =
I(p0), p1 is deterministic, and for each transition p1

a→ p′
1 there is a transition

p0
a→ p′

0 such that p′
1 is a possible world of p′

0. Two closed terms p and q are
possible worlds equivalent, denoted by p ∼PW q, if they have exactly the same
possible worlds.
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Definition 2. A pair (a1 · · · ak, B) with B ⊆ A and k ≥ 0 is a ready pair of p0

if p0
a1→ p1 · · · ak→ pk with I(pk) = B. Two closed terms p and q are readiness

equivalent, denoted by p ∼R q, if they have exactly the same ready pairs.

Axiomatization. An (equational) axiomatization E for BCCSP(A) is a collection
of equations t ≈ u. We write E � t ≈ u if this equation can be derived from
the equations in E using the standard rules of equational logic, and E � F
if E � t ≈ u for all t ≈ u ∈ F . An axiomatization E is sound modulo an
equivalence ∼ on closed terms if (E � p ≈ q) ⇒ p ∼ q, and it is complete modulo
∼ if p ∼ q ⇒ (E � p ≈ q), for all closed terms p and q. An axiomatization E
is ω-complete if for each equation t ≈ u with E � σ(t) ≈ σ(u) for all closed
substitutions σ, we have E � t ≈ u.

The core axioms A1-4 [17] for BCCSP(A) below are sound and complete mod-
ulo bisimulation equivalence [23], which is the finest semantics in van Glabbeek’s
linear time - branching time spectrum (see Figure 1).

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-2. A
term x or at is a summand of each term x + u or at + u, respectively. We use
summation

∑k
i=1 ti or

∑
i∈{1,... ,k} ti, with k ≥ 0, to denote t1 + · · · + tk, where

the empty sum denotes 0.

Lemma 1. If t ≈ u is sound modulo ∼R, then t and u have the same depth.

Proof. Let σ map each variable in V to 0. Since σ(t) ∼R σ(u), clearly σ(t) and
σ(u) have the same depth. So depth(t) = depth(σ(t)) = depth(σ(u)) = depth(u).

�

3 On Finite Alphabets and Infinite Bases

In this section, we assume that 1 < |A| < ∞.
Let ∼ denote a semantics no coarser than readiness semantics and no finer

than possible worlds semantics. We prove that no finite sound and complete
axiomatization for BCCSP(A) modulo ∼ is ω-complete.

3.1 How the Proof Was Construed

To prove the result mentioned above, we started out with the following infinite
family of equations en for n > |A|:

a(x1 + · · · + xn) +
∑n

i=1 a(x1 + · · · + xi−1 + xi+1 + · · · + xn)

≈ ∑n
i=1 a(x1 + · · · + xi−1 + xi+1 + · · · + xn).
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These equations are sound modulo ∼PW. Namely, it is not hard to see that for
each closed substitution σ, the possible worlds of the summand σ(a(x1+· · ·+xn))
at the left-hand side of σ(en) are included in the possible worlds of the right-hand
side of σ(en).

However, our expectation that the equations en for n > |A| would obstruct
a finite ω-complete axiomatization turned out to be false. Namely, en can be
obtained by (1) applying to en−1 a substitution σ with σ(xi) = xi + xn for
i = 1, . . . , n − 1, and (2) adding the summand a(x1 + · · · + xn−1) at the left-
and right-hand side of the resulting equation. Hence, from e|A|+1 (together with
A1-3) we can derive the en for n > |A|.

Therefore we moved to a more complicated family of equations (see Defi-
nition 7), similar in spirit to the equations en. However, while cancellation of
the summand a(x1 + · · · + xn−1) from en for n > |A| + 1 leads to an equation
that is again sound modulo ∼PW, such a cancellation is not possible for the new
family of equations (see Proposition 3). We prove that they do obstruct a finite
ω-complete axiomatization (see Corollary 1).

3.2 Cover Equations

We introduce the class of cover equations (see Definition 3), and show that they
are sound modulo ∼PW. We prove that each equation that involves terms of
depth ≤ 1 and that is sound modulo ∼R can be derived from the cover equations.
Moreover, if such an equation contains no more than k summands at its left-
and right-hand side, then it can be derived from cover equations containing no
more than k summands at their left- and right-hand sides (see Theorem 1).

In the remainder of this section, terms are considered not only modulo A1,2,
but also modulo A3,4. By abuse of notation, we let a finite set X ⊂ V denote the
term

∑
x∈X x. From now on, X, Y, Z (possibly subscripted) denote finite subsets

of V .

Definition 3. A term
∑

i∈I aYi is a cover of aX if:

1. ∀Z ⊆ X with |Z| < |A|, ∃i∈I (Z ⊆ Yi ⊆ X); and

2. ∀Z ⊆ X with |Z| = |A|, ∃i∈I (Z ⊆ Yi).

This is denoted by
∑

i∈I aYi � aX. We say that aX +
∑

i∈I aYi ≈ ∑
i∈I aYi is

a cover equation.

Example 1.
∑n

i=1 a(x1 + · · · + xi−1 + xi+1 + · · · + xn) � a(x1 + · · · + xn) for
n > |A|. Hence the equations in Section 3.1 are cover equations.

If |X| < |A|, then by Definition 3.1, t � aX implies that aX is a summand
of t. So the only interesting cover equations are the ones where |X| ≥ |A| (cf.
Definition 7).

We proceed to prove that the cover equations are sound modulo ∼PW.

Proposition 1. If t � aX, then aX + t ≈ t is sound modulo ∼PW.
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Proof. Let σ be an arbitrary closed substitution. It suffices to show that the
possible worlds of σ(aX) are also possible worlds of σ(t). Let t =

∑
i∈I aYi, and

let ap be a possible world of σ(aX). Then p is a possible world of σ(X). So by
Definition 1: I(p) = I(σ(X)); p has exactly |I(σ(X))| summands, one summand
bpb for each b ∈ I(σ(X)); and for each b ∈ I(σ(X)) there is an xb ∈ X such
that σ(xb)

b→ qb and pb is a possible world of qb. Let Z = {xb | b ∈ I(σ(X))}.
Then I(σ(Z)) = I(σ(X)). Clearly p is a possible world of σ(Z). Note that
|Z| ≤ |I(σ(X))|. We consider two cases.

1. |I(σ(X))| < |A|.
By Definition 3.1, Z ⊆ Yi ⊆ X for some i ∈ I. Then I(σ(Yi)) = I(σ(X)), so
p is a possible world of σ(Yi). Thus ap is a possible world of σ(t).

2. |I(σ(X))| = |A|.
By Definition 3, Z ⊆ Yi for some i ∈ I. Then I(σ(Yi)) = A = I(σ(X)), so p
is a possible world of σ(Yi). Thus ap is a possible world of σ(t).

Concluding, the possible worlds of σ(aX) are also possible worlds of σ(t). �

We proceed to prove that each sound equation t ≈ u modulo ∼R where t and u
have depth 1 and contain no more than k summands, can be derived from the
cover equations with |I| ≤ k (see Theorem 1). First we present some notations.

Definition 4. Ck = {aX +
∑

i∈I aYi ≈ ∑
i∈I aYi | ∑

i∈I aYi � aX ∧ |I| ≤ k}
for k ≥ 0.

Definition 5. R1 denotes the set of equations t ≈ u with depth(t) = depth(u) ≤
1 that are sound modulo ∼R.

Notation. S(t) denotes the number of distinct summands of term t.

Definition 6. Rk
1 = {t ≈ u ∈ R1 | S(t) ≤ k ∧ S(u) ≤ k} for k ≥ 0.

Notation. A = {a1, . . . , a|A|}.

We present part of the proof of Theorem 1 as a separate lemma, as this lemma
will be re-used in the proof of Proposition 4.

Lemma 2. If t ≈ u ∈ R1, then t and u contain exactly the same summands
x ∈ V and aX with |X| < |A|.
Proof. Let x ∈ V be a summand of t. We define σ(x) = a1a10 and σ(y) = 0 for
y �= x. Then (a1a1, ∅) is a ready pair of σ(t), so it must be a ready pair of σ(u).
Since depth(u) ≤ 1, this implies that x is a summand of u.

Let aX be a summand of t where X = {x1, . . . , xk} with k < |A|. We define
σ(xi) = ai0 for i = 1, . . . , k and σ(y) = ak+10 for y �∈ X. Then (a, {a1, . . . , ak})
is a ready pair of σ(t), so it must be a ready pair of σ(u). Since depth(u) ≤ 1,
this implies that aX is a summand of u.

By symmetry, each summand x ∈ V and aX with |X| < |A| of u is also a
summand of t. �
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Theorem 1. Ck � Rk
1 for k ≥ 0.

Proof. Let t ≈ u ∈ Rk
1 . Consider a summand aX of t with |X| ≥ |A|. We prove

that a subset of the summands of u form a cover of aX.

1. Let Z = {z1, . . . , zk} ⊆ X with k < |A|.
We define σ(zi) = ai0 for i = 1, . . . , k, σ(x) = 0 for x ∈ X\Z and σ(y) =
a|A|0 for y �∈ X. The ready pairs of σ(aX) must also be ready pairs of σ(u).
Since depth(u) ≤ 1, this implies that there is a summand aY of u with
Z ⊆ Y ⊆ X.

2. Let Z = {z1, . . . , z|A|} ⊆ X.
We define σ(zi) = ai0 for i = 1, . . . , |A| and σ(y) = 0 for y �∈ Z. The ready
pairs of σ(aX) must also be ready pairs of σ(u). Since depth(u) ≤ 1, this
implies that there is a summand aY of u with Z ⊆ Y .

Concluding, in view of Definition 3, u = u′ + u′′ with u′ � aX. Since S(u′) ≤
S(u) ≤ k, we have aX + u′ ≈ u′ ∈ Ck. So Ck � aX + u ≈ u.

By Lemma 2, each summand x ∈ V and aX with |X| < |A| of t is a summand
of u. Moreover, Ck � aX + u ≈ u for each summand aX of t with |X| ≥ |A|.
Hence, Ck � t + u ≈ u.

By symmetry, also Ck � t + u ≈ t. So Ck � t ≈ t + u ≈ u. �

3.3 Cover Equations a1Xn + tn ≈ tn for n ≥ |A|
We now turn our attention to a special kind of cover equation a1Xn + tn ≈ tn
for n ≥ |A|, where tn contains n+1 summands (see Definition 7 and Proposition
2). If a term u is obtained by eliminating one or more summands from tn,
then a1Xn + u ≈ u is not sound modulo ∼R (see Proposition 3); moreover,
if a summand of a term v is not a summand of a1Xn + tn, then tn ≈ v is
not sound modulo ∼R (see Proposition 4). These two facts together imply that
a1Xn + tn ≈ tn cannot be derived from Cn (see Theorem 2). Theorems 1 and
2 form the corner stones of the proof of Corollary 1, which contains the main
result of this paper.

Definition 7. Let n ≥ |A|. Let x1, . . . , xn, w|A|, . . . , wn be distinct variables in
V . Let X|A|−1 and Xn denote {x1, . . . , x|A|−1} and {x1, . . . , xn}, respectively.
We define that tn denotes the term

a1X|A|−1 +
|A|−1∑

i=1

a1(Xn\{xi}) +
n∑

i=|A|
a1(X|A|−1 ∪ {xi, wi}).

Proposition 2. tn � a1Xn for n ≥ |A|.
Proof. Let Z ⊆ Xn with |Z| < |A|. We need to find a summand a1Y of tn with
Z ⊆ Y ⊆ Xn. We distinguish two cases.

1. Z ⊆ X|A|−1. Then Z ⊆ X|A|−1 ⊆ Xn.



190 W. Fokkink and S. Nain

2. Z �⊆ X|A|−1. Then Z ⊆ Xn\{xi} ⊆ Xn for some 1 ≤ i < |A|.
Let Z ⊆ Xn with |Z| = |A|. We need to find a summand a1Y of tn with Z ⊆ Y .
We distinguish two cases.

1. X|A|−1 ⊂ Z. Then Z ⊆ X|A|−1 ∪ {xi, wi} for some |A| ≤ i ≤ n.
2. X|A|−1 �⊂ Z. Then Z ⊆ Xn\{xi} for some 1 ≤ i < |A|. �

Proposition 3. Let n ≥ |A|. If the summands of u are a proper subset of the
summands of tn, then a1Xn + u ≈ u is not sound modulo ∼R.

Proof. Suppose that all summands of u are summands of tn, but that some
summand a1Y of tn is not a summand of u. We consider the three possible
forms of Y , and for each case give a closed substitution σ such that some ready
pair of σ(a1Xn) is not a ready pair of σ(u).

1. Y = X|A|−1.
We define σ(xi) = ai0 for i = 1, . . . , |A| − 1, σ(xi) = 0 for i = |A|, . . . , n,
and σ(y) = a|A|0 for y �∈ Xn. Then the ready pair (a1, {a1, . . . , a|A|−1}) of
σ(a1Xn) is not a ready pair of σ(u).

2. Y = Xn\{xj} for some 1 ≤ j < |A|.
We define σ(xi) = ai0 for i = 1, . . . , j − 1, j +1, . . . , |A|, σ(xi) = 0 for i = j
and i = |A| + 1, . . . , n, and σ(y) = aj0 for y �∈ Xn. Then the ready pair
(a1, {a1, . . . , aj−1, aj+1, . . . , a|A|}) of σ(a1Xn) is not a ready pair of σ(u).

3. Y = X|A|−1 ∪ {xj , wj} for some |A| ≤ j ≤ n.
We define σ(xi) = ai0 for i = 1, . . . , |A| − 1, σ(xj) = a|A|0, and σ(y) = 0
for y �∈ X|A|−1 ∪ {xj}. Then the ready pair (a1, {a1, . . . , a|A|}) of σ(a1Xn)
is not a ready pair of σ(u). �

Proposition 4. Let n ≥ |A|. If tn ≈ u is sound modulo ∼R, then each summand
of u is a summand of a1Xn + tn.

Proof. Let tn ≈ u be sound modulo ∼R. By Lemma 1, depth(u) = 1. By Lemma
2, u does not have summands x ∈ V , so clearly each summand of u is of the form
a1Y . If |Y | < |A|, then by Lemma 2, a1Y is a summand of tn. Let |Y | ≥ |A|; we
prove that a1Y is a summand of a1Xn + tn.

First we prove that Y ⊆ Xn ∪{wi | i=|A|, . . . , n}. Suppose, towards a contra-
diction, that there is a y ∈ Y \(Xn∪{wi | i=|A|, . . . , n}). We define σ(y) = a10,
and σ(z) = 0 for z �= y. The ready pair (a1, {a1}) of σ(a1Y ) is not a
ready pair of σ(tn), contradicting that tn ≈ u is sound modulo ∼R. Hence,
Y ⊆ Xn ∪ {wi | i = |A|, . . . , n}.

To prove that a1Y is a summand of a1Xn + tn, we consider two cases.

1. wi ∈ Y for some |A| ≤ i ≤ n.
Suppose, towards a contradiction, that there is a y ∈ Y \(X|A|−1∪{xi, wi}).
We define σ(y) = a10, σ(wi) = a20, and σ(z) = 0 for z �∈ {y, wi}. The ready
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pair (a1, {a1, a2}) of σ(a1Y ) is not a ready pair of σ(tn), contradicting that
tn ≈ u is sound modulo ∼R.
Suppose, towards a contradiction, that there is an x ∈ (X|A|−1∪{xi, wi})\Y .
Note that wi ∈ Y implies x �= wi. We define σ(x) = a10, σ(wi) = a20, and
σ(z) = 0 if z �∈ {x, wi}. The ready pair (a1, {a2}) of σ(a1Y ) is not a ready
pair of σ(tn), contradicting that tn ≈ u is sound modulo ∼R.
Hence, Y = X|A|−1 ∪ {xi, wi}.

2. Y ⊆ Xn.
Since |Y | ≥ |A|, there is a Z = {z1, . . . , z|A|−1} ⊆ Y with Z �= X|A|−1.
We define σ(zi) = ai0 for i = 1, . . . , |A| − 1, σ(y) = 0 for y ∈ Y \Z, and
σ(z) = a|A|0 for z �∈ Y . The ready pair (a1, {a1, . . . , a|A|−1}) of σ(a1Y ) must
be a ready pair of σ(tn), which implies that there is a summand a1Y

′ of tn
with Z ⊆ Y ′ ⊆ Y ⊆ Xn. Since Z �= X|A|−1, it follows that Y ′ = Xn\{xi}
for some 1 ≤ i < |A|. Hence, either Y = Xn or Y = Xn\{xi} for some
1 ≤ i < |A|.

Concluding, each summand of u is a summand of a1Xn + tn. �

The following example shows that Proposition 4 would fail if |A| = 1.

Example 2. Let |A| = 1 and n = 1. Note that t1 = a10 + a1(x1 + w1) and
a1X1 = a1x1. Since |A| = 1, a10 + a1(x1 + w1) ≈ a1w1 + a10 + a1(x1 + w1) is
sound modulo ∼R. However, a1w1 is not a summand of a1x1 +a10+a1(x1 +w1).

Theorem 2. Cn
� a1Xn + tn ≈ tn for n ≥ |A|.

Proof. Suppose, towards a contradiction, that there is a derivation of a1Xn+tn ≈
tn using only equations in Cn: a1Xn + tn = u0 ≈ u1 ≈ · · · ≈ uj = tn for some
j ≥ 1. By Lemma 1, u1, . . . , uj have depth 1. Since u0 = a1Xn +tn, uj = tn, and
the equations in Cn are of the form aY + v ≈ v, there must be a 1 ≤ i ≤ j such
that ui−1 = a1Xn +ui and a1Xn is not a summand of ui. Since tn ≈ ui is sound
modulo ∼R, Proposition 4 implies that all summands of ui are summands of tn.
Since a1Xn + ui ≈ ui is sound modulo ∼R, Proposition 3 implies that ui = tn.
Hence, a1Xn + tn ≈ tn can be derived using a single application of an equation
a1Y + v ≈ v ∈ Cn. Then σ(Y ) = Xn and σ(v) + w = tn for some substitution σ
and term w. Since a1Xn + σ(v) ≈ σ(v) is sound modulo ∼R and σ(v) + w = tn,
Proposition 3 implies that σ(v) = tn. However, a1Y + v ≈ v ∈ Cn implies
S(v) ≤ n, and v does not contain summands from V , so clearly S(σ(v)) ≤ n.
This contradicts the fact that S(σ(v)) = S(tn) = n + 1.

Concluding, Cn
� a1Xn + tn ≈ tn. �

3.4 The Main Result

Corollary 1. Let E be a finite axiomatization that is sound and complete for
BCCSP(A) modulo an equivalence ∼ that is no coarser than readiness semantics
and no finer than possible worlds semantics. If 1 < |A| < ∞, then E is not ω-
complete.
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Proof. Suppose, towards a contradiction, that E is ω-complete. By Propositions
2 and 1, a1Xn + tn ≈ tn for n ≥ |A| is sound modulo ∼PW, so also modulo ∼.
Then these equations can be derived from E. Let E1 denote the equations in E
of depth ≤ 1. Clearly, E1 � a1Xn + tn ≈ tn for n ≥ |A| (cf. Lemma 1).

Choose an n ≥ |A| such that S(t) ≤ n and S(u) ≤ n for each t ≈ u ∈ E1.
Since E1 is sound modulo ∼, so also modulo ∼R, it follows that E1 ⊆ Rn

1 . By
Theorem 1, Cn � E1. This implies that Cn � a1Xn + tn ≈ tn, which contradicts
Theorem 2.

Concluding, E is not ω-complete. �

4 On Infinite Alphabets and Finite Bases: Possible
Worlds

In case of an infinite alphabet, the equational theory of BCCSP modulo readiness
semantics has a finite basis [9], while the equational theory of BCCSP modulo
ready trace semantics does not have a finite basis [5]. In this section we prove
that, in case of an infinite alphabet, the equational theory of BCCSP modulo
possible worlds semantics has a finite basis.

Let |A| = ∞. From now on, we interpret occurrences of action names in
axioms as variables (of type action), as else axiom A5 for BCCSP modulo possible
worlds semantics given below would actually denote infinitely many axioms. To
emphasize this interpretation, action names in axioms are written as α, β instead
of a, b.

The axiomatization consisting of A1-4 together with

A5 α(βx + βy + z) ≈ α(βx + z) + α(βy + z)

is sound and complete for BCCSP modulo possible worlds semantics (see [28]).
We prove that A1-5 are ω-complete. The proof strategy, which is based on

giving semantics to open terms, is rather standard (cf. [1,7,18]), so we only
provide a sketch of the proof.

Theorem 3. If |A| = ∞, then the axiomatization A1-5 is ω-complete.

Proof. Terms are considered modulo A1,2 (so no longer modulo A3,4). The op-
erational semantics for closed terms in Section 2 is extended to open terms by
adding a transition rule for variables:

x
x→ 0

Furthermore, possible worlds semantics (see Definition 1) is extended to open
terms. First we define I(t) for open terms t: it denotes the set of actions a and
variables x for which there exists a transition t

a→ t′ or t
x→ t′, respectively. A

term t1 is a possible world of a term t0 if I(t1) = I(t0), t1 is deterministic, and
for each transition t1

a→ t′1 or t1
x→ t′1, respectively, there is a transition t0

a→ t′0
or t0

x→ t′0, respectively, such that t′1 is a possible world of t′0. We write t ∼o
PW u,

if t and u have exactly the same possible worlds. Without proof we observe the
following three facts.
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(A) t ∼o
PW u if and only if σ(t) ∼PW σ(u) for all closed substitutions σ.2

(B) The term rewriting system

α(βx + βy + z) → α(βx + z) + a(βy + z)
x + x → x
x + 0 → x

is terminating, meaning that it does not give rise to infinite reductions of
BCCSP terms.

(C) If t ∼o
PW u, then the normal forms of t and u, with respect to the term

rewriting system above, can all be equated by A1,2.

Finally, suppose σ(t) = σ(u) can be derived from A1-5 for all closed substitu-
tions σ. By the soundness of A1-5 modulo ∼PW, σ(t) ∼PW σ(u) for all closed
substitutions σ. By (A), t ∼o

PW u. By (B), t and u can be reduced to normal
forms t′ and u′, respectively, using the rewrite rules. By (C), t′ ≈ u′ can be
derived from A1,2. Hence, t ≈ t′ ≈ u′ ≈ u can be derived from A1-5. �
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