A Dependently Typed Ambient Calculus*

Cédric Lhoussaine and Vladimiro Sassone

University of Sussex, UK

Abstract. The Ambient calculus is a successful model of distributed,
mobile computation, and has been the vehicle of new ideas for resource
access control. Mobility types have been used to enforce elementary ac-
cess control policies, expressed indirectly via classification of ambients
in groups by means of ‘group types.” The paper presents a theory of de-
pendent types for the Ambient calculus which allows greater flexibility,
while keeping the complexity away from the programmer into the type
system.

1 Introduction

The work on types for Mobile Ambients [6] (MA), initiated in [7], has intro-
duced some interesting innovations. In particular, it led to natural concepts
of mobility types (cf., e.g. HIB[I2IR]). The common framework proposed so far
in the literature for mobility control relies on groups and group types. Groups
represent collections of ambients with uniform access rights, and policies like
‘n CanMoveTo m’ are expressed by saying, for instance, ‘n belongs to group G
and all ambients of group G can move to m.” These and similar simple con-
straints, such as ‘m accepts ambients of group G, are then enforced statically
by embodying groups in types. This approach’s merit is to simplify consider-
ably the type system. It allows to avoid the difficulties of dependent types, since
it replaces (variable) ambient names with (constant) group names. The loss in
expressiveness and flexibility, however, is self-evident.

This paper generalises the approaches to access control based on groups by
using types explicitly dependent on ambient names, so that policies like ‘n Can-
MowveTo m’ can be expressed directly. The task involves issues of technical com-
plexity, and we believe that our approach contributes significantly to advance
the theory of type-based resource access control in the Ambient calculus. The
guiding principle behind our work is to allow for flexibility in control policies,
while pushing the complexity to the type system. We elaborate further on this
below.

Dependent types vs groups. At the formal level, dependent types are indeed
trickier to work with than groups, as already suggested in [4]. However, they are
very expressive and ultimately, at the programming level, not necessarily more
difficult to use than groups. It may indeed be challenging, if not impossible, to

* Research supported by ‘MyThS: Models and Types for Security in Mobile Distribu-
ted Systems’, EU FET-GC IST-2001-32617.

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 171-[I87 2004.
© Springer-Verlag Berlin Heidelberg 2004



172 C. Lhoussaine and V. Sassone

partition ambient names into groups in order to implement the desired security
policy in complex applications. By referring directly to names, instead, a pro-
grammer avoids a level of indirection, and is less prone to policy specification
errors. The type systems we propose here aim at harnessing the complexity of
dependent types and relegating it to inner working of the type system, so as
to keep the burden off the programmer, and consequently make programs more
robust.

To illustrate the point, let us consider a naive and specialised taxi server
whose intention is to provide a taxi service usable only by ambient n:

TaziServ(n) =V(v taxi: A) (tazi]] | nfin taxi)).

The process creates a new ambient called taxi, with some type A, together with
an ambient n which can move to it. Due to the scoping rules, an external ambient
m[P] can move into the taxi by first moving to n and then escaping it after being
transported to taxi. To avoid this, A must restrict the children allowed of taxi
to, say, only ambient n. Using groups — for instance in the setting of [12], where
an ambient type a : amb[G, mob[G]] assigns group G to a and specifies that G is
the set of groups of those ambients which a is allowed to move to — to prevent
any ambient other than n to occupy the taxi, n must be the only ambient with
a type of the form amb[H, mob[{G} U #]], where G is the group of tazi. This
condition is clearly beyond the control of the TaziServ(n) application, as the
environment may create new names with types that violate it. Making G private
is not a solution, as it forces n to be confined too, so defeating its very purpose.
Indeed, in a term such as (v G) (vn: A) P | Q, with G in A, n can not be passed
to @ (not even via subtyping [12]), as the type of any suitable receiving variable
would contain G.

With dependent types we would simply and directly mention n as a possible
(or perhaps the only) child for tazi. This leads to ambient types of the form
amb[mob[P, C]], where P is the set of names of those ambients allowed to con-
tain tazi and, dually, C is the set of names of those ambients allowed to reside
within tazi. Type A above can be simply amb[mob[{top}, {n}]], where name top
represents the top-level ambient. Yet, the tazi ambient would be guaranteed to
have n and only n as a possible child, with no need for n to be private. Of course,
such simplicity in expressing types comes at the cost of additional complexity
at the type system level. Primarily, we need to enforce consistency between the
type of a parent ambient and those of its children. To exemplify, when a taxi
is created, n receives a new capability to have taxi as its parent; the type of
n — which actually predates the creation of the fresh instance of tazi — must
then be updated accordingly. Observe that in a conventional type system, the
effect of the new name would be confined inside the scope of its definition, and
would certainly not affect the type of n. In our case, however, leaving n’s type
unchanged leads to an unsound system (cf. Example [I).

In order for n to be aware of any additional capability it may acquire over
time, we introduce the pivotal notion of abstract names. Such names are used
only in the derivation of typing judgements, to record potential name creations,
either by a process or by its environment. As it will be clear later, abstract



A Dependently Typed Ambient Calculus 173

names intuitively play the role of group names in their ability to cross the scope
of name restrictions.

Flexibility. The main contribution of this paper is the use of dynamic types to
increase expressiveness, which can be fleshed out as the ability to deploy security
policies at run time. More precisely, we want servers flexible enough to provide
services specialised to each particular client, so leading towards secure, highly
modular programming. In other words, a service specifically provided for client
c1 must be unusable by client cs. Such objectives may be achieved in several
different ways, as for instance by adding special operators to the calculus. In this
paper we stick to the basic primitives of the Ambient calculus and investigate
the issue of personalised services at the level of types.

The taxi server discussed above is not particularly interesting, because it is
hardly a server at all: it does not interact with generic clients, but provides again
and again the same ‘secure’ service to the same client. A brief reflection proves
that if we were to design a ‘true’ server using groups, we would need to exchange
group names, yielding soon a form of (group) dependent types. The type system
we propose for dynamic types is a natural extension of the one we illustrated
above, for mobility only. Namely, we simply require that communications of
ambient names and variables be reflected in the types. For instance, the dynamic
taxi server will have the form:

W) TaxiServ(z) =!(x)(v taxi: amb[mob[{top}, {x}]]) (tazi[] | z[in tazi]).

Communication increases the complexity of the type system, because the rules
need to track information about receivers, too. It makes little sense to type
communication via the usual exchange types, because receiving different names
may lead to orthogonal behavioural and mobility properties. Subtyping does not
help towards a unifying treatment (cf. Example[2). We approach the problem by
tracking the names that may be received at a given variable. This enriches ambi-
ent types which, in addition to a mobility component, acquire a communication
one. A typing assignment n: amb[mob[P,C],com[&, L] ], where £ and L are sets
of ambient names, means that n may be communicated inside any ambient in &,
and dually, that any ambient in £ may be communicated within n. It is impor-
tant to remark that even if such components only carry finite sets, the volume
of information exchanged is in general not bounded: the joint effect of name
creation and the use of abstract names, allows to distribute new communication
capabilities at run time, and communicate infinitely many names.

Plan. The paper proceeds as follows. Section ] presents a simple type system
with dependent types. We focus on mobility, that is the Ambient calculus with
no communication at all. Then, in Section [3, we investigate dynamic types al-
lowing communication of ambient names. For the sake of simplicity, we do not
address the issue of communication of capabilities, even though this can easily
be integrated in our approach.



174 C. Lhoussaine and V. Sassone

2 A Simple Dependent Type System

In the paper we use the standard Ambient calculus with asynchronous, monadic
communication. (We remark that our results do not depend on such choice.)
Syntax and reduction semantics can be found in [6]. In this section we consider
the pure Ambient calculus, that is the calculus restricted to the mobility features.
Communication will be studied in Section

2.1 Types and Definitions

The syntax of types is given in Figure[llwhere N denotes an infinite set of abstract
ambient names and the symbol *x stands for the self-ambient, whose meaning
is explained below. The type cap[P] denotes the type of a capability which can
be exercised within any ambient whose name occurs in P. An ambient type has,
for the moment, just one component: a mobility type. Ambient n with mobility
type mob[P, C] is allowed to be a sub-ambient of all ambients whose name occurs
in P; i.e. P is the set of possible parents of n. Moreover, an ambient is allowed
to occur as sub-ambient of n if its name occurs in C, the set of possible children
of n. We define some useful notations on types:

amb[M]™" = M mob[P,C]" =P mob[P,C]* =C

We use two kinds of typing contexts: abstract contexts (ranged over by =, 6, ...)
and concrete contexts (ranged over by I', A, . .. ), which map respectively abstract
and concrete names to ambient types. We use I to denote either an abstract or
a concrete context. We note by (17, IT") the union of disjoint contexts of the same
kind. According to the informal meaning of types, type assignments in concrete
typing contexts are related to each other. Consider for instance

I = n: amb[mob[P,C] |, m: amb[ mob[(, {n}]],

where the type of m allows it to have n as a child. Coherently, the type of n
should allow n to have m as a parent, i.e. m € P. This can be expressed by the
central notion of context update I'™4) | which updates I" with respect to a fresh
type assignment n : A:

(F, A)(nA) — F(n:A)’A(n:A)

(m : amb[Mg])(™2mPIND — 4 s amb[M], (1)
where
1 . 1 .
M= MOTU{n}lme'Ni, and M= MOiU{n}lfmGNT,
M, otherwise; My.

Context update is pivotal in our type systems to express the typing of name
creation. We define union (resp. inclusion and equality) of types as component-
wise set union (resp. inclusion and equality); the notation nm(A) (resp. an(A))
stands for the set of (abstract) names occurring in A. It is extended to all types
and typing contexts.



A Dependently Typed Ambient Calculus 175

Ambient (concrete) names n,m,... € N Abstract names n,m, ... € N
Capability types K ::= cap[P] Mobility types M, N ::= mob[P,(C]
Ambient types A ::= amb[M] where P,C C N UNU {x}
Fig. 1. Types
A € Types(I',O,a 'r°U:K,vV: K
upes ) (VAMB) (VPFX)
I'r®a: A rr°uv:K
I'r®a:Aja;: Ay A™T C AT 1 <i<np r'+®a: A P C AmPt
(VOur) — (VIN)
I'+° outa: cap[{a1,... ,an}] I't®ina: cap[P]
I'+®a: A a;: A; Ameb . Ameb 1<4i<
(VOPEN)
I'+° opena: cap[{ai,...,an}]
Ir'r5°p res€q:4 beAm™' - rr©:=7p
- _ (Awp)  praeg O o (Rer)
I'+5€ a[P] @ rrZep
re3°p I+2%V:capla rr31%29 p L3258
= — pla) (PFX) = — = Q (PAR)
rez°vp 51529 p

r=d n: A{n/y} -5/ p

— (RES)
r F':A’:"Q (vn: A) P

Fig. 2. Simple Type System
2.2 The Type System
Our type system deals with typing judgements for values and processes, that is
rePv:r and IS9P,

where T is either an ambient or a capability type. The first judgement reads
as “V has type T with respect to the concrete context I' and the abstract
context @.” In the second one, ambient name a stands for the ambient where
P is running, which we call the current location of P. In other words, P is
guaranteed to be well-typed if run in a. Abstract contexts = and © are used
to account for potential name creations: those arising from P are registered in
the local abstract context =, those performed by the environment appear in
the external abstract context ©. The role of such contexts is to “internalise” (a
dynamic notion of) group names, which move from being part of the language
to being a inner mechanism of the type system.



176 C. Lhoussaine and V. Sassone

Example 1. Let

TaziServ(n) =!(v tazi: A) (tazi]] | n[in tazi]), for A = amb[mob[{top},{n}]].

Let @ = n[inn | m[outn.outn]]. We study the system P = TaziServ(n) | Q,
which we assume running in some ambient named top. The server TaziServ(n)
creates an ambient taxi whose type allows it to accept only n as a child. The
scope (or “visibility”) of taxi is (tazi[] | nlin tazi]). We assume that @ is an
ambient n which may move in an ambient of the same name n and contains a
child ambient m, willing to escape twice out n. Thus, m must be allowed to run
at the same level of n, and a type system should ensure that any possible parent
for n is also a possible one for m. This leads to an assignment like I" below.

top amb| mob[D, {r, m}]] top: amb[ mobl0, {n, m, tazi}] ]

Ir= n:amb[mob[{top,n},{n,m}]] A=

m : amb[ mob[{top,n}, 0] ] m : amb[mob([{top, n}, 0]],

[
n: amb[ mob[{top, n, tazi}, {n, m}]]
[
tazi: amb[ mob[{top}, {n}]]

In (taxi]] | n[in taxi]), ambient n gains access to tazi by means of name creation,
viz. taxi, and the type assignment must evolve to A above (which actually is
of the form I'*a#4) tq2i: A). However, running P may obviously lead to m
becoming a child of taxi, thus violating the specification expressed by the type
of taxi. So, P must be considered ill-typed. A naive approach would however try
to typecheck (tazi] | n[intazi]) (against A) and @ (against I') independently,
and therefore accept P. Indeed, from @Q’s point of view, taxi does not exist (it is
bound in TaziServ(n)), and @ behaves well. From the viewpoint of TaziServ(n),
although tazi exists, the specification given by its type is respected: ambient
n is allowed to move into tazi. Considering TaziServ(n) and @ as stand-alone
processes prevents from realising that their interaction may lead to a breach of
the intended access policy. ad

Example [[] motivates the use of abstract contexts. They are a means to
record the new capabilities which may potentially arise from name creations
performed in external processes. Since such names are bound, they cannot be
referred to by name in typing contexts: we use abstract names to represent them.
The typechecking of process ) in Example [[ must then be carried out with an
external abstract context © = taxi: A, representing the potential creation of a
name of type A, and an empty local abstract context, as Q@ does not create names.
In other words, we are led to prove I I—?;? Q. From I' and ©, we can deduce a
more informative type for n, viz. its global type amb[ mob[{top, n,taxi}, {n,m}]],
which states that n is allowed to run within top, n and some ambient taxi, to
be created by its environment and whose actual name we do not known yet.
(We stress that the name taxi is just a placeholder; the information that leads to
the global type is carried by A.) Since m does not appear in O, its global type
remains amb[mob[{top, n}, ?]], and we can conclude that @ is ill-typed. Indeed,
there exists a possible parent of n which is not a possible one for m, namely taxi.



A Dependently Typed Ambient Calculus 177

We define the symmetric type II[a] of a name a with respect to a typing
context IT, as amb[mob[P,C]], where P ={8 | a € H(,B)’mw} and C = {0 |
a € (B},

Definition 1. The global type of a name « with respect to typing contexts I’
and O is defined as

I'la) UB[a ifaeN
g 0)(a) = o

O(a){a/x}UB[a] if a €N
We define Types(I',0,a) = {gt(I";0)(a)}. (We use a singleton set here for uni-
formity with next section.) Turning back to the previous discussion, one can
verify that indeed

gt(I"; ©)(n) = amb[mob[{top, n, taxi}, {n, m}]].
The notion of symmetric type leads to the definition of symmetric typing contet.

Definition 2. A concrete typing context I" is said symmetric if I'(n) = I'[n],
for all n € nm(I").

Symmetric typing context formalises the notion of “consistency” of a typing
context. It ensures that a name n has a type allowing m as a child of n if
and only if m itself has a type allowing n as a parent. It also guarantees that
a typing context is “complete,” i.e. that any name occurring in it has a type
assignment. In the following we will assume all concrete typing contexts to be
symmetric, and all abstract contexts to be “complete” for abstract names, that
is dom(©) = an(O).

Symmetric typing replicates parenthood information both in children and in
parents types. Nevertheless, both components of mobility types are necessary
to give sufficient access control in the presence of name creation. We remark
that comparable mechanisms play in groups based approaches via the assign-
ment of names to groups. Using the types of to exemplify, recall that G
in n:amb[G, mob[G]] is the set of groups of ambients allowed as parents of n.
Therefore, assigning n to G to has the effect of determining the children allowed
of n: namely, those ambients whose mobility component contains G.

Let us now comment on the rules of the Figure Bl starting with the judge-
ments for values. We look at the rules from conclusions to premises. A judgement
I U:T,V:T' stands for I' = U:T and I' - V: T'. Axiom (VAMB) sim-
ply gives the global type of a name, while (VPFX) asserts that the prefix U.V
has the capability type K if both U and V have such type. In order to type a
out a performed in some ambient a;, (VOUT) checks that the possible parents of
a are allowed for a; (for i € {1,...,n}). Rule (VIN) typechecks the capability
of ambient b (a member of P) to move to ambient a. This is allowed if b is a
possible child of a. Finally, (VOPEN) states that some ambient a; can open a
if both the allowed parents and children of a are allowed for a;, i € {1,... ,n}.
This ensures that whatever happens to a; because of the capabilities inherited
from a via the open is compatible with its specification.



178 C. Lhoussaine and V. Sassone

A process is always typed with respect to a current location. Process a[P] is
well-typed in ambient b (rule AMB) if b is allowed as a’s parent and P is well-
typed in a. Process 0 is always well-typed with local abstract context empty.
Process V.P is well-typed in a if P is well-typed in @ and V is a capability that
can be exercised in a. In order to type a parallel composition of processes (rule
(PAR)), the local abstract context must be split in two parts: in the typing of
each component one of these remains local, the other becomes external.

Rule (RES) deserves a close analysis. The typing of (vn: A) P requires the
local abstract context to assign type A to some abstract name (here n). The rule
consumes such assignment, and P is then typed with its concrete typing context
updated with n’s typing. We apply the substitution {n/x} to A, where x is an
“alias” for the self ambient (n here). This is necessary, since in the conclusion n
cannot occur in A. Indeed, we make the usual assumption that a bound name
does not occur in the typing contexts and in the current location (which here
means n # a). Finally, the substitution {n/n} is applied to the local abstract
context, as types in = may refer to n. This would be the case of, e.g., the term

(vn:amb[mob[{top},0]]) (v m: amb[mob[{n},0]]) P

typed with the local abstract context n:amb[mob[{top},d]], m: amb[mob[{n}, 0]].

In Rule (REP) we assume that o is an abstract renaming. By this we mean
an injective substitution whose domain is the set of abstract names occurring in
Z and whose codomain is a set of fresh abstract names. In other words, if ¢ is an
abstract renaming, then Zo is a fresh copy of =. Process |P can be seen as an
infinite parallel composition of copies of P. Therefore, typing ! P is equivalent to
typing P in an environment which can provide new capabilities as P can. These
are represented by the local abstract context of !P, which explains why we add
a copy of the local abstract context to the external one. It is easy to prove that
one copy is sufficient.

It is worth remarking that there are behavioural properties which are express-
ible with groups but not with this system of dependent types. This is because in
the present system, name creation assigns types which may only refer to names
already in the scope of the created name. For instance, in

(vn: A)P|(vm:A)Q

m (resp. n) can not occur in A (resp. A’). This means that n and m will not be
able to interact. With group types one may use group names shared by m and
n, i.e. whose scope contains both names. The extension of the type system to
dynamic types introduced in the next section circumvents the problem by the
usual mechanisms of scope extrusion in name passing calculi. Indeed, in order
for m to give (and acquire) new capabilities to n, we send n to m, which then
may refer in A’ to the received name.

3 Dynamic Types

As illustrated in the previous section, name creation is itself a means to dynam-
ically change ambient capabilities. In the type system, abstract names are used



A Dependently Typed Ambient Calculus 179

Abstract variables x,y, ... € X Capability types K ::= cap[P]
Mobility types M, N ::= mob[P,C] Communication types C ::= com[E, L]
Ambient types A := amb[M, C| Variable types B ::= var[B]

where P,C CNUNUXUXU{x} and B,&,LCNUNU {x}

Fig. 3. New types for communication

to track the relevant changes outside the actual scope of the name. New names
may refer directly in their types to known ambient names. For instance, the taxi
server

(v tazi: amb[mob[{top}, {n}]]) (taz[] | n[in tazi])

creates a name tazi which may have n as a child. At the same time, the type of
n is enriched with the capability to have taxi as a parent. This process, however,
is restricted in that it provides a private taxi for one and only one ambient,
namely n. By enabling communication of ambient names, types in name creation
constructs may also refer to a received name, so boosting the dynamic aspects
of the calculus. This allows, for instance, to write a generic taxi server which
dynamically provides private taxis for any ambient whose name is received by a
communication:

DTazxiServ =!(z)(v tazi: amb[ mob[{top}, {x}]]) (taxzi]] | z[in taxi]),

Such an increase in dynamic adaptation, and therefore in expressiveness, comes
with a corresponding increase in the complexity of the typing system. There are
two reasons:

> firstly, types may now refer to ambients indirectly, via variables;

> secondly, upon communication a variable may become instantiated by a
name or by another, thus leading to different capabilities, that is different ac-
cess control policies. Moreover, such policies are not necessarily comparable,
which, for instance, makes subtyping useless.

Example 2. Let DTaziServ be as above, and consider P = (n) | (m) |
DTaziServ. Process P may evolve to either

Py = (n) | tazi]] | m[intaxi] | DTaziServ or P = (m) | tazi[] | n[in tazi] | DTaziServ

according to whether DTaziServ receives m or n. As regards to the type assigned
to taxi, in Py only m — that is the received name — is allowed to go inside taxi,
whereas in P, only n is. Such situations are orthogonal and thus incomparable:
in the first one, m acquires a new capability (‘CanMoveTo’ taxi) and n remains
unchanged, whereas in the second it is the other way around. This means that
the type system will have to deal with all possible communications. ad

Example 2 suggests that an ambient name may have different possible types
depending on the communications that may happen.



180 C. Lhoussaine and V. Sassone

3.1 New Types and Definitions

The needed additional types are given in Figure Bl where X is an infinite set of
abstract variables. Ambient types have now two components: one for mobility,
which remains unchanged, and one for communication. Following our “symmetric
style” for types, a communication type consists of two sets of names: an external
one, £, which describes the ambients where the name in object may be communi-
cated, and a local one, £, which describes the names which may be communicated
within the object ambient. For instance, if n has type amb[M, com[{m}, {o}]],
then n can be exchanged inside m, and o can be communicated inside n; two
terms which satisfy such specification are: m[(n)] and n[(o)].

A variable type is the set of ambients where a variable may be bound. For
instance, in n[(z)P] the variable  may have type var[{n}]. Because we deal with
an ambient calculus with the open capability, a variable may of course be bound
in several places. Variable x in

nf(o1) [ openm | m[(02) | (x)P]

may be bound in n or in m, depending on whether m is opened before x is bound
or not. The type of z in the term above must therefore be var[{m,n}].

We remark that, contrary to usual type systems, but as in [I], we do not use
the so-called exchange types, which build on the notion of “topic of conversation”
permitted within a given ambient. This is a particular type (modulo subtyping)
which all processes within that ambient agree to exchange. Indeed, suppose that
n is an ambient whose exchange type is A, and m; and ms have type A. Then,
the term

n[(ma) | (ma) | (z: A)P)]

would be well-typed. However, if an external process gives a new capabilities to
my via name creation, then (mi) may become ill-typed. An instance of this is
the following term.

(v o:amb[mob[{m1}, 0], CT) Q | n[(m1) | (ma) | (z: A)P]

Here, (ms) is still well-typed, but (m;) is manifestly not. In fact, after scope
extrusion, m; has not anymore type A, but A enriched with the capability to
admit o as a child, which leads to a type error when trying to bind x to m;. Our
type system does not feature uniform exchange types, but it allows in principle
to bind a variable to names which may have completely different types. This
also leads to an increase in expressiveness.

Assuming the set of communicable ambient names to appear in types may at
first appear to give a very restricted form of communication, where only finitely
many names can be communicated in a given ambient. Due to the dynamic
nature of types, this is actually not the case: name creation can give new com-
munication capabilities to existing ambients. For instance, if ambient n has a
communication type com|[(), {o}] — that is, only o0 may be sent in n — the creation
of name m with communication type com[{n},{] gives n the new capability to



A Dependently Typed Ambient Calculus 181

have m has communicable ambient. Combining name creation with replication
leads to potentially infinite communicable names in a given ambient.

Finally, we remark that variable and communication types, contain only am-
bient names and no variables. This means that communication is forbidden inside
ambients created using a received name, as in (x)z[P]. We embraced such re-
striction for the sake of simplicity: allowing variables in such types is possible,
at the price of a more complex definition of the set of types (Definition [[]) and
of additional side conditions in the type system’s rules.

We introduce notations for communication types corresponding to those
given for mobility types in ({). We define amb[M, C]<°™ = C, and then CT, C*
and (I, A)™4) where (z: B)(™4) = 2: B, as obvious. The notion of symmetric
type is extended to communication types straightforwardly.

No variable occurs in symmetric types, therefore the notion of symmetric
typing context must be defined accordingly.

Definition 3. A concrete typing context I is symmetric if, for all n € nm(I"),
we have I'(n) — (XU X) = I'[n].

Here I'(n) — (XU &) denotes the type of n in I" with all variables removed.
Definition [ of global types for ambient names remains unchanged; we complete
it below for variables.

Definition 4. The global type of a variable a with respect to typing contexts I’
and O is defined by

gt(I"; 0)(a) = {gm U 6la] ZZ E )2(6

The global type of a variable is the ambient type constructed from the capa-
bilities the variable is given by typing contexts. In case of an abstract variable,
only the abstract context provides the information, as no abstract variable occurs
in the concrete context.

We finally define the local type of a name, as the usual notion of type provided
by a typing context.

Definition 5. The local type of a name « with respect to typing contexts I" and
O is defined by

I'(@) if o € dom(I")
MI;0)(a) =4 O(a) if a € dom(O)

undefined otherwise.

For B = var[B], we usually identify B and B writing, for instance, o« € B instead
of o € B.



182 C. Lhoussaine and V. Sassone

for any «, if t(I";©)(«) = B then a € B iff a; € B

't a: Aas: A, Ameb C pmob Acm = A%m Vi€ {1,...n}
(VOPEN’)
I'+© opena: cap[{ai,...,an}]
Lo:BrZl=/hep a€B r=°v:A a€ A~mt
(InrUT) (OupruT)
I EEBE© (@)p rEYe ()

Fig. 4. Revised typing system and additional ones for communication

3.2 Revised Typing System

The type system for the calculus with communication of ambient names is ob-
tained from Figure Pladding rules (INPUT) and (OUPUT) for communication in
Figure[d and replacing (VOPEN) with (VOPEN’).

Rule (VOPEN’) has two new conditions. The first verifies that the commu-
nication type is the same in the opened ambient and in the enclosing one. The
condition on the top line checks that variables may be bound in the opened
ambient if and only if they may in the opening one. Rule (INPUT) is similar to
(RES): we pick up an abstract variable from the local abstract context whose
type contains the current location. We do not perform any context update, since
such updates only concern ambient names. Finally, rule (OuTPUT) says that we
can send the value V inside a if that is allowed by the type of V.

The most significant revision is in the definition of Types(I,©,a), which is
not anymore just a singleton, since names may now have several types. This
means that any typing derivation with an axiom (VAMB) as a premise has to
be read as: “for all types A such that I' € a: A.” Before we give the formal
definition of Types(I',©,a), let us focus on an example to gather some intuition.

Example 3. Let us consider a non-replicated version of the taxi server of Ex-
ample 2] but with the new communication types:

DTaziServy = (x)(v taxi: amb[M, C]) (tazi]] | x[in taxi]),

with M = mob[{top}, {z}] and C = com|[(, }]. Let P = (n) | (m) | DTaxiServy,
and suppose to work with the following typing context which assigns types to
the free ambient names:

n: Ay,
I = m: A,
top: amb[mob[(, {m, n}],com[d, {m,n}]],

where

A,, = amb[mob[{top}, {m}],com[{top}, 0]]
A,,, = amb[mobl[{top, n}, 0], com[{top}, 0] ].

Here, n and m can be communicated in top, and have top as a parent. Moreover,
n may have m as child and, consequently, m may have n as parent. One can verify



A Dependently Typed Ambient Calculus 183

that I" is symmetric. In order to type DTaziServ; we need an abstract context
which assigns variable type var[{top}] to an abstract variable, say x, because x
may be bound in top. Also, it has to assign an ambient type A to an abstract
ambient name, say taxi. Type A has to match amb[M, C], but we cannot directly
use the latter, since M contains x which is initially bound. However, we can refer
to the abstract name x, meant to correspond to x. Therefore the abstract context
is

Z = x:var[{top}], taxi: amb[N, C1,

for N = mob[{top}, {x}]. It is easy to check that the proof of I" =9 DTaziServ,

top
l_(a,@

leads to the judgement A 0 (tazi]] | x[in tazi]), by application of the rules

(INpuT) and (RES), where

n:A,,
m: Ap,
A=< top:amb[mob|(), {m,n, tazi}],com[d, {m,n}]],
x: var[{top}],
taxi: amb|[ mob[{top}, {x}], com[d, 0] ].
In (tawi]] | z[tazi]), x is an ambient whose global ambient type is

A, = Alz] = amb[ mob[{tazi}, 0], com[(, 0] ].

This is actually the least type assignable to x, since x is intended to be instan-
tiated by an ambient name. Indeed, £ may be bound to n or m, which means
that the global types it may possibly assume include

A, U A, = amb[mobl[{top, tazi}, {m}], com[{top},0]],
if n is received for z, and
A, U A, = amb[mob([{top, tazi,n}, 0], com[{top}, 0]],

if m is received for x. Type A,UA,, is possible for n in the scope of the restriction.
Indeed, if n is received, then the newly created ambient tazi gives to n — the
received name — the capability to be its child. Outside the scope of the restriction,
a possible type for n is rather

Z[x] U A,, = amb[mobl[{top, taxi}, {m}],com[{top}, 0] ].

Since taxi is not visible, we have to refer to its abstract representative taxi.
Inspecting the various possibilities, we are therefore led to consider the following
sets of possible ambient types.

(1) Outside the scope of tazi:

Types(I',Z,n) ={ An, A, UEX]} and Types(I,=,m) = {An, An UZ[X] };
(2) Inside the scope of tawi:
Types(A,0,n) = { A,, A, U Alz] }, Types(A,0,m) = { A, Ay U Alz] }
and  Types(A,0,z) ={A, UA,, A, UA,, }.O



184 C. Lhoussaine and V. Sassone

3.3 Estimating the Set of Possible Types

In this section we give the formal estimate of the set of possible types for name a
with respect to chosen typing contexts. As illustrated by ExampleB] the possible
types of an ambient name n are given by its global type merged with those of
the variables n might instantiate. Consider the term

R=1n) | (m) | (@)P | (5)Q.

and suppose that n and m have respectively global types A, and A,,. Then, n
may instantiate variables x and y with global types, say, A, and A, respectively.
The possible types of n are, therefore, A,,, A, UA,, A, UA, and A, UA, UA,.
The latter corresponds to the case in which n instantiates both x and y. The
possible types of m are A,,, A, UA;, Ay UA,, and A,,, UA;UA,. (Observe that
the latter is actually impossible, since m may instantiate at most one variable;
it is an approximation error introduced by our estimation of possible types.)
Symmetrically, the possible types for x are A, UA,,, A, UA,,, A;,UA,UA, and
Ay UA, UA,,.

We first define the set of names which a given name may possibly instantiate
or be instantiated by. To this aim we use binary relations over names. Intuitively,
if a name « can instantiate a variable 3, then the pair («, ) is in one such a
relation. We focus exclusively on so-called binding relations, which only depend
on types and typing contexts. Basically, this amounts to saying that « is related
to @ if [ is a variable which might be bound in some ambient where o may be
communicated, as formalised by the definition below.

Definition 6. The binding relation with respect to typing contexts I" and © is
Bind(I';0) = { (a, ) | gt(I';©)(a) = A and gt(I'; ©)(B8) = B with A/ 3N B #£ D 1

Observe that Bind(I',©) is actually a subset of (NUN) x (XU X). Indeed,
due to our restrictions, the global (ambient) type of a variable is always empty —
more precisely, it is always com[(), §]. It follows that a variable cannot be related
to another variable.

Relying on binding relations, we can estimate which variables may be instan-
tiated by a given ambient name, and which ambient names may instantiate a
given variable.

Vars(I';0; ) = { | (a, ) € Bind(I'; ) };
Ambs(I';0;a) = {3 | (B,a) € Bind(I';0) }.

We use the notation A>T, for 7 a set of ambient types, to denote the set
{AUB|BeT}, and A* T for {A}UADBT.

Definition 7. The set Types(I';©;a) of possible types for a with respect to
typing contexts I and © is defined by

Types(I; O; ) = gt(I';O)(a) b* {gt(F;@)(ﬁ) | B € Vars(I';0; «) }, if a € NUN, and

Types(I'; ©; ) = U gt(I'; ©) () > Types(I'; ©; 3), ifae XUX.
BEAmbs(I';0;0)



A Dependently Typed Ambient Calculus 185

Observe that the constraints on our typing rules are expressed essentially
as type inclusion constraints. Therefore, we do not really need to consider all
the possible types of an ambient name. In practice, as well as in proofs, it is
more convenient the use notions of maximum and minimum types which are
respectively the union and the intersection of all possible types. Due to space
limitation, we leave to the reader to reformulate our rules in such terms. For
instance, rule (VAMB) can be removed, whilst (VIN) is rewritten by replacing
A (standing for all possible types for a) by the minimum type for a.

The main result of this paper is a ‘Subject Reduction’ theorem for the type
systems we introduced. Write I" -, P if there exist some abstract contexts =
and O such that I' =€ P, it can be expressed as follows.

Theorem 1 (Subject Reduction). If I'+,, P and P — @, then I' -, Q.

4 Conclusion, Related and Future Work

The paper proposed a type system to describe access control policies and related
behavioural properties of processes in the Ambient calculus. Whilst all type
systems in the literature make use of groups to describe such properties [412]g],
ours is based on dependent types. Despite an additional complexity in building
typing derivations, our system has simple, natural types which may make policy
specifications easier, and, therefore, simplify the programming task.

The major technical device of our approach is the novel notion of abstract
names, which mimic the role of groups internally to typing derivations. More
precisely, they keep track of — and dynamically embody in an ambient’s type
— any new capability that the ambient may gain during its lifespan. Abstract
names are, in a sense, a dynamic notion of group, made internal to the type
system rather than part of the language.

We showed how to extend a basic system to deal with communication of
ambient names. The resulting type system is, we believe, the main contribution
of this paper. It allows modular, per-client programming and is, to the best of
our knowledge, the first one dealing at such a level with dynamic specifications
of security policies in the ambient calculus. Communication types come together
with a noticeable increase of complexity of typing derivations in the system.
Indeed, when typing a communication, one has to consider all ambient names
that can possibly instantiate a given variable. However, only a finite number of
names are necessary for the proofs, and the notions of maximum and minimum
types simplify the matter considerably.

We plan to study in future work the question of decidability of type check-
ing, as a positive answer would make our type system usable in practice. We
conjecture that it should be possible to devise a type checking algorithm, for the
following reasons.

> The use of abstract contexts is not a concern: for a typeable term P, it is
easy to provide (algorithmically or “by hand”), an abstract context ©, such



186 C. Lhoussaine and V. Sassone

that I' 9% P for some I' and n. Indeed, O is essentially the collection of
bound names in P.

> Communication is quite hard to manage “manually” because it requires the
synthesis of several global types. However, given variable types and commu-
nication types, it does not seem difficult to design an algorithm that does
the job.

Because processes are typed against an environment — represented by the
external abstract contexts — our type system is not compositional, in that I" -, P
and I' , @ does not imply I b, P | Q. This may be problematic in the
framework of open (or partially typed) systems which have to deal with the
arrival of unknown agents. Thus, the following questions arises: if I" = 0 pis
provable, does a class exist of external abstract contexts © such that I' =€ P ?
Such a class would determine the environments which make P typeable. Another
question concerns the design of a type inference algorithm, which is a crucial
component in open systems, where information coming from external sources
cannot always be trusted. As studied in [I1] for D, dependent types call for a
very accurate treatment, which would certainly be required for our type system
as well. Such challenging questions are topics of our current and future research.

Related work. Beside the already mentioned work on groups [4J128], which
provided direct inspiration for our research, related work includes [I4lI0]. These
papers introduce dynamic and dependent types for a distributed = calculus,
and study their impact on behavioural semantics. A difficulty arises in [14] with
referring to bound names created in external processes, at all analogous to the
one we tackled here with the introduction of abstract names. As a matter of fact,
it is pointed out in loc. cit. as the main limitation of their work. The problem has
been addressed in [13], completely independently of our work, using existential
types. There appear to be analogies between Yoshida’s existential types and our
approach, although at this stage it is difficult to assess them in the details.

Since our type system works linearly on internal abstract contexts, and clas-
sically on external ones, the closest match appears to be with Yoshida’s linear
type discipline. However, while we conjecture we can reformulate local abstract
names with (some form of) existential types, it looks as though they cannot pro-
vide a notion corresponding to our external abstract contexts. But such contexts
are the keystones of our work. They allow, in particular, a correct treatment of
parallel composition and replication (cf. Figure [2), where it is not always the
case that if P is correct, so is P | P or, a fortiori, !P. We plan to investigate this
matter further.

Concerning typing systems for the ambient calculus, [1] uses dependent types
for communication in order to achieve advanced type polymorphism of the sort
usually encountered in lambda calculi. Types in loc. cit. track — like ours — all
messages exchanged, and not rely on topics of conversation. They are also used
to bound the nesting of ambients.



A Dependently Typed Ambient Calculus 187

We conclude by observing that, as pointed out in there are intriguing

connections between groups and channels and binders of the flow analysis, as
in [2[9]. Indeed, our approach has a lot to share with control flow analysis, and
we believe our work can shed further light on such connections.

References

1.

10.

11.

12.

13.

14.

T. Amtoft and J. Wells. Mobile processes with dependent communication types
and singleton types for names and capabilities. Technical Report 2002-3, Kansas
State University, 2002.

. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis for the =

calculus with applications to security. Information and Computation, 168:68-92,
2001.

M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In TACS’01, volume
2215 of Lecture Notes in Computer Science, pages 38—63. Springer, 2001.

. L. Cardelli, G. Ghelli, and A. Gordon. Ambient groups and mobility types. In

International Conference IFIP TCS, volume 1872 of Lecture Notes in Computer
Science, pages 333-347. Springer, 2000.

L. Cardelli, G. Ghelli, and A. Gordon. Secrecy and group creation. In CONCUR 00,
volume 1877 of Lecture Notes in Computer Science, pages 365-379. Springer, 2000.
L. Cardelli and A. Gordon. Mobile ambients. In FOSSACS’98, volume 1378 of
Lecture Notes in Computer Science, pages 140-155. Springer, 1998.

L. Cardelli and A. Gordon. Types for mobile ambients. In POPL’99, pages 79-92.
ACM Press, 1999.

M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, and 1. Salvo. M3: Mobility types
for mobile processes in mobile ambients. In CAT’03, volume 78 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2003.

P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and security.
In Proceedins of ASIAN’00, volume 1961 of LNCS, pages 199-214. Springer-Verlag,
2000.

M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access
and mobility control in distributed systems. In FOSSACS’03, Lecture Notes in
Computer Science. Springer, 2003.

C. Lhoussaine. Type inference for a distributed w-calculus. In ESOP’03, volume
2618 of Lecture Notes in Computer Science, pages 253-268. Springer, 2003.

M. Merro and V. Sassone. Typing and subtyping mobility in boxed ambients. In
CONCUR’02, volume 2421 of Lecture Notes in Computer Science, pages 304-320.
Springer, 2002.

N. Yoshida. Channel dependent types for higher-order mobile processes. In
POPL’04, 2004. To appear.

N. Yoshida and M. Hennessy. Assigning types to processes. In LICS’00, pages
334-345, 2000.



	Introduction 
	A Simple Dependent Type System 
	Types and Definitions 
	The Type System 

	Dynamic Types 
	New Types and Definitions 
	Revised Typing System 
	Estimating the Set of Possible Types 

	Conclusion, Related and Future Work 



