
Analyzing Memory Accesses in x86 Executables �

Gogul Balakrishnan and Thomas Reps

Comp. Sci. Dept., University of Wisconsin;
{bgogul,reps}@cs.wisc.edu

Abstract. This paper concerns static-analysis algorithms for analyzing x86 exe-
cutables. The aim of the work is to recover intermediate representations that are
similar to those that can be created for a program written in a high-level lan-
guage. Our goal is to perform this task for programs such as plugins, mobile code,
worms, and virus-infected code. For such programs, symbol-table and debugging
information is either entirely absent, or cannot be relied upon if present; hence,
the technique described in the paper makes no use of symbol-table/debugging
information. Instead, an analysis is carried out to recover information about the
contents of memory locations and how they are manipulated by the executable.

1 Introduction

In recent years, there has been a growing need for tools that analyze executables. One
would like to ensure that web-plugins, Java applets, etc., do not perform any malicious
operations, and it is important to be able to decipher the behavior of worms and virus-
infected code. Static analysis provides techniques that can help with such problems.
A major stumbling block when developing binary-analysis tools is that it is difficult
to understand memory operations because machine-language instructions use explicit
memory addresses and indirect addressing. In this paper, we present several techniques
that overcome this obstacle to developing binary-analysis tools.

Just as source-code-analysis tools provide information about the contents of a pro-
gram’s variables and how variables are manipulated, a binary-analysis tool should pro-
vide information about the contents of memory locations and how they are manipulated.
Existing techniques either treat memory accesses extremely conservatively [4,6,2], or
assume the presence of symbol-table or debugging information [27]. Neither approach
is satisfactory: the former produces very approximate results; the latter uses information
that cannot be relied upon when analyzing viruses, worms, mobile code, etc. Our analysis
algorithm can do a better job than previous work because it tracks the pointer-valued and
integer-valued quantities that a program’s data objects can hold, using a set of abstract
data objects, called a-locs (for “abstract locations”). In particular, the analysis is not
forced to give up all precision when a load from memory is encountered.

The idea behind the a-loc abstraction is to exploit the fact that accesses on the
variables of a program written in a high-level language appear as either static addresses
(for globals) or static stack-frame offsets (for locals). Consequently, we find all the
� Supported by ONR contracts N00014-01-1-{0708,0796} and NSF grant CCR-9986308.

E. Duesterwald (Ed.): CC 2004, LNCS 2985, pp. 5–23, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

6 G. Balakrishnan and T. Reps

statically known locations and stack offsets in the program, and define an a-loc to be the
set of locations from one statically known location/offset up to, but not including the
next statically known location/offset. (The registers and malloc sites are also a-locs.) As
discussed in §3.2, the data object in the original source-code program that corresponds
to a given a-loc can be one or more scalar, struct, or array variables, but can also consist
of just a segment of a scalar, struct, or array variable.

Another problem that arises in analyzing executables is the use of indirect-addressing
mode for memory operands. Machine-language instruction sets normally support two
addressing modes for memory operands: direct and indirect. In direct addressing, the
address is in the instruction itself; no analysis is required to determine the memory
location (and hence the corresponding a-loc) referred to by the operand. On the other
hand, if the instruction uses indirect addressing, the address is typically specified through
a register expression of the form base+ index× scale+offset (where base and index are
registers). In such cases, to determine the memory locations referred to by the operand,
the values that the registers hold at this instruction need to be determined. We present
a flow-sensitive, context-insensitive analysis that, for each instruction, determines an
over-approximation to the set of values that each a-loc could hold.

The contributions of our work can be summarized as follows:

– We describe a static-analysis algorithm, value-set analysis, for tracking the values
of data objects (other than just the hardware registers). Value-set analysis uses an
abstract domain for representing an over-approximation of the set of values that each
data object can hold at each program point. The algorithm tracks address-valued and
integer-valued quantities simultaneously: it determines an over-approximation of the
set of addresses that each data object can hold at each program point; at the same
time, it determines an over-approximation of the set of integer values that each data
object can hold at each program point.

– Value-set analysis can be used to obtain used, killed, and possibly-killed sets for
each instruction in the program. These sets are similar to the sets of used, killed,
and possibly-killed variables obtained by a compiler in some source-code analyses.
They can be used to perform reaching-definitions analysis and to construct data-
dependence edges.

– We have implemented the analysis techniques described in the paper. By combining
this analysis with facilities provided by the IDAPro [17] and CodeSurfer r© [7]
toolkits, we have created CodeSurfer/x86, a prototype tool for browsing, inspecting,
and analyzing x86 executables. This tool recovers IRs from x86 executables that are
similar to those that can be created for a program written in a high-level language.
The paper reports preliminary performance data for this implementation.

The information obtained from value-set analysis should also be useful in decompila-
tion tools. Although the implementation is targeted for x86 executables, the techniques
described in the paper should be applicable to other machine languages.

Some of the benefits of our approach are illustrated by the following example:

Example 1. Fig. 1 shows a simple C program and the corresponding disassembly. Pro-
cedure main declares an integer array a of ten elements. The program initializes the
first five elements of a with the value of part1Value, and the remaining five with
part2Value. It then returns *p array0, i.e., the first element of a.

A diagram of how variables are laid out in the program’s address space is shown in
Fig. 2(a). To understand the assembly program in Fig. 1, it helps to know that

Analyzing Memory Accesses in x86 Executables 7

int part1Value=0;
int part2Value=1;

int main() {
int *part1,*part2;
int a[10],*p array0;
int i;
part1=&a[0];
p array0=part1;
part2=&a[5];
for(i=0;i<5;++i) {

*part1=part1Value;
*part2=part2Value;
part1++;
part2++;

}
return *p array0 ;

}

proc main ;
1 sub esp, 44 ;Adjust esp for locals
2 lea eax, [esp+4] ;part1=&a[0]
3 lea ebx, [esp+24] ;part2=&a[5]
4 mov [esp+0], eax ;p array0=part1
5 mov ecx, 0 ;i=0
L1: mov edx, [4] ;
7 mov [eax], edx ;*part1=part1Value
8 mov edx, [8] ;
9 mov [ebx], edx ;*part2=part2Value
10 add eax, 4 ;part1++
11 add ebx, 4 ;part2++
12 inc ecx ;i++
13 cmp ecx, 5 ;
14 jl L1 ;(i<5)?loop:exit
15 mov edi,[esp+0] ;

16 mov eax, [edi] ;set return value

17 add esp, 44 ;
18 retn ;return *p array0

Fig. 1. A C program that initializes an array.

– The address of global variable part1Value is 4 and that of part2Value is 8.
– The local variables part1, part2, and i of the C program have been removed by

the optimizer and are mapped to registers eax, ebx, and ecx.
– The instruction that modifies the first five elements of the array is “7: mov [eax],
edx”; the one that modifies the last five elements is “9: mov [ebx], edx”.

The statements that are underlined in Fig. 1 show the backward slice of the pro-
gram with respect to 16 mov eax, [edi]—which roughly corresponds to return
(*p array0) in the source code—that would be obtained using the sets of used, killed,
and possibly-killed a-locs identified by value-set analysis. The slice obtained with this
approach is actually smaller than the slice obtained by most source-code slicing tools.
For instance, CodeSurfer/C does not distinguish accesses to different parts of an array.
Hence, the slice obtained by CodeSurfer/C from C source code would include all of the
statements in Fig. 1, not just the underlined ones. �

The following insights shaped the design of value-set analysis:

– To prevent most indirect-addressing operations from appearing to be possible non-
aligned accesses that span parts of two variables—and hence possibly forging new
pointer values—it is important for the analysis to discover information about the
alignments and strides of memory accesses.

– To prevent most loops that traverse arrays from appearing to be possible stack-
smashing attacks, the analysis needs to use relational information so that the values
of a-locs assigned to within a loop can be related to the values of the a-locs used in
the loop’s branch condition.

– It is desirable for the analysis to perform pointer analysis and numeric analysis
simultaneously: information about numeric values can lead to improved tracking of

8 G. Balakrishnan and T. Reps

part1Value(4)

e
a
x

a[0]

array a

a[4]

p_array0

a[5]

a[9]

e
b
x

part2Value(8)

esp

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

Global

Global+4

Global+8
mem_8

mem_4

AR_main−44

AR_main−40

AR_main−0

AR_main−20

���������
���������
���������
���������

���������
���������
���������
��������������������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

AR_main

var_44

ret_main

var_40

var_20

(a) Data layout (b) Memory-regions

Fig. 2. Data layout and memory-regions for Example 1.

pointers, and pointer information can lead to improved tracking of numeric values.
This appears to be a crucial capability, because compilers use address arithmetic
and indirect addressing to implement such features as pointer arithmetic, pointer
dereferencing, array indexing, and accessing structure fields.

Value-set analysis produces information that is more precise than that obtained via several
more conventional numeric analyses used in compilers, including constant propagation,
range analysis, and integer-congruence analysis. At the same time, value-set analysis
provides an analog of pointer analysis that is suitable for use on executables.

Debray et al. [11] proposed a flow-sensitive, context-insensitive algorithm for ana-
lyzing an executable to determine if two address expressions may be aliases. Our analysis
yields more precise results than theirs: for the program shown in Fig. 1, their algorithm
would be unable to determine the value of edi, and so the analysis would consider
[edi], [eax], and [ebx] to be aliases of each other. Hence, the slice obtained us-
ing their alias analysis would also consist of the whole program. Cifuentes et al. [5]
proposed a static-slicing algorithm for executables. They only consider programs with
non-aliased memory locations, and hence would identify an unsafe slice of the program
in Fig. 1, consisting only of the instructions 16, 15, 4, 2, and 1. (See §9 for a more
detailed discussion of related work.)

The remainder of the paper is organized as follows: §2 describes how value-set anal-
ysis fits in with the other components of CodeSurfer/x86, and discusses the assumptions
that underlie our work. §3 describes the abstract domain used for value-set analysis.
§4 describes the value-set analysis algorithm. §5 summarizes an auxiliary static anal-
ysis whose results are used during value-set analysis when interpreting conditions and
when performing widening. §6 discusses indirect jumps and indirect function calls. §7
presents preliminary performance results. §8 discusses soundness issues. §9 discusses
related work. (Value-set analysis will henceforth be referred to as VSA.)

2 The Context of the Problem

CodeSurfer/x86 is the outcome of a joint project between the Univ. of Wiscon-
sin and GrammaTech, Inc. CodeSurfer/x86 makes use of both IDAPro [17], a dis-
assembly toolkit, and GrammaTech’s CodeSurfer system [7], a toolkit for building

Analyzing Memory Accesses in x86 Executables 9

Binary
Executable

x86
CFGs

Affine
Relations

CFGs

IDAPro

Analysis

Analysis
Affine Relations

+

CFGs

Ckill sets,...

CodeSurfer

Use, Kill, &

Connector Plug−in

Value−set

Fig. 3. Organization of CodeSurfer/x86.

program-analysis and inspection tools. This section describes how VSA fits into the
CodeSurfer/x86 implementation.

The x86 executable is first disassembled using IDAPro. In addition to the disassembly
listing, IDAPro also provides access to the following information:

Statically known memory addresses and offsets: IDAPro identifies the statically
known memory addresses and stack offsets in the program, and renames all oc-
currences of these quantities with a consistent name. We use this database to define
the a-locs.

Information about procedure boundaries: X86 executables do not have information
about procedure boundaries. IDAPro identifies the boundaries of most of the pro-
cedures in an executable.1

Calls to library functions: IDAPro discovers calls to library functions using an algo-
rithm called the Fast Library Identification and Recognition Technology (FLIRT)
[13]. This information is necessary to identify calls to malloc.

IDAPro provides access to its internal data structures via an API that allows users
to create plug-ins to be executed by IDAPro. GrammaTech provided us with a plug-
in to IDAPro (called the Connector) that augments IDAPro’s data structures. VSA is
implemented using the data structures created by the Connector. As described in §5,
VSA makes use of the results of an additional preliminary analysis, which, for each
program point, identifies the affine relations that hold among the values of registers.
Once VSA completes, the value-sets for the a-locs at each program point are used to
determine each point’s sets of used, killed, and possibly-killed a-locs; these are emitted
in a format that is suitable for input to CodeSurfer.

CodeSurfer is a tool for code understanding and code inspection that supports both
a GUI and an API for accessing a program’s system dependence graph (SDG) [16],
as well as other information stored in CodeSurfer’s intermediate representations (IRs).
CodeSurfer’s GUI supports browsing (“surfing”) of an SDG, along with a variety of
operations for making queries about the SDG—such as slicing [16] and chopping [25].
TheAPI can be used to extend CodeSurfer’s capabilities by writing programs that traverse
CodeSurfer’s IRs to perform additional program analyses.

A few words are in order about the goals, capabilities, and assumptions underlying
our work:

1 IDAPro does not identify the targets of all indirect jumps and indirect calls, and therefore the
call graph and control-flow graphs that it constructs are not complete. §6 discusses techniques
for using the abstract stores computed during VSA to augment the call graph and control-flow
graphs on-the-fly to account for indirect jumps and indirect calls.

10 G. Balakrishnan and T. Reps

– Given an executable as input, the goal is to check whether the executable conforms
to a “standard” compilation model—i.e., a runtime stack is maintained; activation
records (ARs) are pushed on procedure entry and popped on procedure exit; each
global variable resides at a fixed offset in memory; each local variable of a procedure
f reside at a fixed offset in the ARs for f ; actual parameters of f are pushed onto
the stack by the caller so that the corresponding formal parameters reside at fixed
offsets in the ARs for f ; the program’s instructions occupy a fixed area of memory,
are not self-modifying, and are separate from the program’s data.

If the executable does conform to this model, the system will create an IR for it. If it
does not conform, then one or more violations will be discovered, and corresponding
error reports will be issued (see §8).

We envision CodeSurfer/x86 as providing (i) a tool for security analysis, and (ii) a
general infrastructure for additional analysis of executables. Thus, in practice, when
the system produces an error report, a choice is made about how to accommodate
the error so that analysis can continue (i.e., the error is optimistically treated as a
false positive), and an IR is produced; if the user can determine that the error report
is indeed a false positive, then the IR is valid.

– The analyzer does not care whether the program was compiled from a high-level
language, or hand-written in assembly. In fact, some pieces of the program may
be the output from a compiler (or from multiple compilers, for different high-level
languages), and others hand-written assembly.

– In terms of what features a high-level-language program is permitted to use, VSA
is capable of recovering information from programs that use global variables, local
variables, pointers, structures, arrays, heap-allocated storage, pointer arithmetic,
indirect jumps, recursive procedures, and indirect calls through function pointers
(but not runtime code generation or self-modifying code).

– Compiler optimizations often make VSA less difficult, because more of the compu-
tation’s critical data resides in registers, rather than in memory; register operations
are more easily deciphered than memory operations.

– The major assumption that we make is that IDAPro is able to disassemble a program
and build an adequate collection of preliminary IRs for it. Even though (i) the CFG
created by IDAPro may be incomplete due to indirect jumps, and (ii) the call-
graph created by IDAPro may be incomplete due to indirect calls, incomplete IRs
do not trigger error reports. Both the CFG and the call-graph will be fleshed out
according to information recovered during the course of VSA (see §6). In fact, the
relationship between VSA and the preliminary IRs created by IDAPro is similar
to the relationship between a points-to-analysis algorithm in a C compiler and the
preliminary IRs created by the C compiler’s front end. In both cases, the preliminary
IRs are fleshed out during the course of analysis.

3 The Abstract Domain

The abstract stores used during VSA over-approximate sets of concrete stores. Abstract
stores are based on the concepts of memory-regions and a-locs, which are discussed first.

3.1 Memory-Regions

Memory addresses in an executable for an x-bit machine are x-bit numbers. Hence, one
possible approach would be to use an existing numeric static-analysis domain, such as

Analyzing Memory Accesses in x86 Executables 11

intervals [8], congruences [14], etc., to over-approximate the set of values (including
addresses) that each data object can hold. However, there are several problems with
such an approach: (1) addresses get reused, i.e., the same address can refer to different
program variables at runtime; (2) a variable can have several runtime addresses; and (3)
addresses cannot be determined statically in certain cases (e.g., memory blocks allocated
from the heap via malloc).

Even though the same address can be shared by multiple ARs, it is possible to distin-
guish among these addresses based on what procedure is active at the time the address
is generated (i.e., a reference to a local variable of f does not refer to a local variable
of g). VSA uses an analysis-time analog of this: We assume that the address-space of a
process consists of several non-overlapping regions called memory-regions. For a given
executable, the set of memory-regions consists of one region per procedure, one region
per heap-allocation statement, and a global region. We do not assume anything about
the relative positions of these memory-regions. The region associated with a procedure
represents all instances of the procedure’s runtime-AR. Similarly, the region associated
with a heap-allocation statement represents all memory blocks allocated by that state-
ment at runtime. The global region represents the uninitialized-data and initialized-data
sections of the program.

Fig. 2(b) shows the memory-regions for the program from Fig. 1. There is a single
procedure, and hence two regions: one for global data and one for the AR of main.

The analysis treats all data objects, whether local, global, or in the heap, in a fashion
similar to the way compilers arrange to access variables in local ARs, namely, via an
offset. We adopt this notion as part of our concrete semantics: a “concrete” memory
address is represented by a pair: (memory-region, offset). (Thus, the concrete semantics
already has a degree of abstraction built into it.) As explained below, an abstract memory
address will track possible offsets using a numeric abstraction.

For the program from Fig. 1, the address of local variable p array0 is the pair
(AR main,-44), and that of global variable part2Value is (Global,8).

At the enter node of a procedure P, register esp points to the start of the AR of P.
Therefore, the enter node of a procedure P is considered to be a statement that initializes
esp with the address (AR P, 0). A call on malloc at program point L is considered to be
a statement that assigns the address (malloc L, 0).

3.2 A-Locs

Indirect addressing in x86 instructions involves only registers. However, it is not suffi-
cient to track values only for registers, because registers can be loaded with values from
memory. If the analysis does not also track an approximation of the values that memory
locations can hold, then memory operations would have to be treated conservatively,
which would lead to very imprecise data dependences. Instead, we use what we call the
a-loc abstraction to track (an over-approximation of) the values of memory locations.

An a-loc is roughly equivalent to a variable in a C program. The a-loc abstraction is
based on the following observation: the data layout of the program is established before
generating the executable, i.e., the compiler or the assembly-programmer decides where
to place the global variables, local variables, etc. Globals will be accessed via direct
operands in the executable. Similarly, locals will be accessed via indirect operands with
esp (or ebp) as the base register, but a constant offset. Thus, examination of direct and
indirect operands provides a rough idea of the base addresses and sizes of the program’s

12 G. Balakrishnan and T. Reps

variables. Consequently, we define an a-loc to be the set of locations between two such
consecutive addresses or offsets.

For the program from Fig. 1, the direct operands are [4] and [8]. Therefore, we have
two a-locs:mem 4 (for addresses4..7) and mem 8 (for addresses8..11).Also, theesp/ebp-
based indirect operands are [esp+0], [esp+4], and [esp+24]. These operands are
accesses on the local variables in theAR of main. On entry tomain,esp=(AR main,0);
the difference between the value of esp on entry to main and the value of esp at these
operands is -44. Thus, these memory references correspond to the offsets -44, -40, and
-20 in the memory-region for AR main. This gives rise to three more a-locs: var 44,
var 40, and var 20. In addition to these a-locs, an a-loc for the return address is also
defined; its offset in AR main is 0.

Note that var 44 corresponds to all of the source-code variable p array0. In con-
trast, var 40 and var 20 correspond to disjoint segments of array a[]: var 40 corre-
sponds to a[0..4]; var 20 corresponds to a[5..9].

Similarly, we have one a-loc per heap-region. In addition to these a-locs, registers
are also considered to be a-locs.

Offsets of an a-loc: Once the a-locs are identified, the relative positions of these
a-locs in their respective regions are also recorded. The offset of an a-loc a in a region
rgn will be denoted by offset(rgn, a). For example, for the program from Fig. 1,
offset(AR main,var 20) is -20.

Addresses of an a-loc: The addresses that belong to an a-loc a can be represented
by a pair (rgn, [offset, offset + size − 1]), where rgn represents the memory region to
which it belongs to, offset is the offset of the a-loc within the region, and size is the size
of the a-loc. A pair of the form [a, b] represents the set of integers {x|a ≤ x ≤ b}. For
the program from Fig. 1, the addresses of a-loc var 20 are (AR main, [−40,−21]). The
size of an a-loc may not be known for heap a-locs. In such cases, size = ∞.

3.3 Abstract Stores

An abstract store must over-approximate the set of memory addresses that each a-loc
holds at a particular program point. As described in §3.1, every memory address is a pair
(memory-region, offset). Therefore, a set of memory addresses in a memory region rgn
is represented as (rgn, {o1, o2, . . . , on}). The offsets o1, o2, . . . , on are numbers; they
can be represented (i.e., over-approximated) using a numeric abstract domain, such as
intervals, congruences, etc. We use a reduced interval congruence (RIC) for this purpose.
A reduced interval congruence is the reduced cardinal product [9] of an interval domain
and a congruence domain. For example, the set of numbers {1,3,5,9} can be over-
approximated as the RIC (2Z+1)∩ [0, 9]. Each RIC can be represented as a 4-tuple: the
tuple (a,b,c,d) stands for a×[b, c]+d, and denotes the set of integers {aZ+d|Z ∈ [b, c]}.2

For instance, {1, 3, 5, 9} is over-approximated by the tuple (2, 0, 4, 1), which equals {1,
3, 5, 7, 9}.

An abstract store is a value of type a-loc → (memory-region → RIC). For concise-
ness, the abstract stores that represent addresses in an a-loc for different memory-regions
will be combined together into an r-tuple of RICs, where r is the number of memory
regions. Such an r-tuple will be referred to as a value-set. Thus, an abstract store is a
map from a-locs to value-sets: a-loc → RICr. For instance, for the program from Fig. 1,

2 Because b is allowed to have the value −∞, we cannot always adjust c and d so that b is 0.

Analyzing Memory Accesses in x86 Executables 13

at statement 7, eax holds the addresses of the first five elements of main’s local array,
and thus the abstract store maps eax to the value-set (⊥, 4[0, 4] − 40).

We chose to use RICs because, in our context, it is important for the analysis to
discover alignment and stride information so that it can interpret indirect-addressing
operations that implement either (i) field-access operations in an array of structs, or (ii)
pointer-dereferencing operations.

When the contents of an a-loc a is not aligned with the boundaries of a-locs, a
memory access on *a can fetch portions of two a-locs; similarly, a write to *a can
overwrite portions of two a-locs. Such operations can be used to forge new addresses.
For instance, suppose that the address of a-loc x is 1000, the address of a-loc y is 1004,
and the contents of a is 1001. Then *a (as a 4-byte fetch) would retrieve 3 bytes of x
and 1 byte of y.

This issue motivated the use of RICs because RICs are capable of representing certain
non-convex sets of integers, and ranges (alone) are not. Suppose that the contents set
of a is {1000, 1004}; then *a (as a 4-byte fetch) would retrieve x or y. The range
[1000, 1004] includes the addresses 1001, 1002, and 1003, and hence *[1000, 1004]
(as a 4-byte fetch) could result in a forged address. However, because VSA is based on
RICs, {1000, 1004} is represented exactly, as the RIC 4[0,1]+1000. If VSA were based
on range information rather than RICs, it would either have to try to track segments of
(possible) contents of data objects, or treat such dereferences conservatively by returning
�, thereby losing track of all information.

Value-sets form a lattice. The following operators are defined for value-sets. All
operators are pointwise applications of the corresponding RIC operator.

– (vs1 � vs2): Returns true if the value-set vs1 is a subset of vs2, false otherwise.
– (vs1 	 vs2): Returns the intersection (meet) of value-sets vs1 and vs2.
– (vs1
 vs2): Returns the union (join) of value-sets vs1 and vs2.
– (vs1∇vs2): Returns the value-set obtained by widening vs1 with respect to vs2, e.g.,

if vs1 = (10, 4[0, 1]) and vs2 = (10, 4[0, 2]), then (vs1∇vs2) = (10, 4[0,∞]).
– (vs�c): Returns the value-set obtained by adjusting all values in vs by the constant

c, e.g., if vs = (4, 4[0, 2] + 4) and c = 12, then (vs � c) = (16, 4[0, 2] + 16).
– ∗(vs, s): Returns a pair of sets (F, P). F represents the set of “fully accessed” a-

locs: it consists of the a-locs that are of size s and whose starting addresses are in
vs. P represents the set of “partially accessed” a-locs: it consists of (i) a-locs whose
starting addresses are in vs but are not of size s, and (ii) a-locs whose addresses are
in vs but whose starting addresses and sizes do not meet the conditions to be in F .

– RemoveLowerBounds(vs): Returns the value-set obtained by setting the lower
bound of each component RIC to −∞. For example, if vs = ([0, 100], [100, 200]),
then RemoveLowerBounds(vs)= ([−∞, 100], [−∞, 200]).

– RemoveUpperBounds(vs): Similar to RemoveLowerBounds, but sets the upper
bound of each component to ∞.

To represent the abstract store at each program point efficiently, we use applicative
dictionaries, which provide a space-efficient representation of a collection of dictionary
values when many of the dictionary values have nearly the same contents as other
dictionary values in the collection [26,21].

14 G. Balakrishnan and T. Reps

4 Value-Set Analysis (VSA)

This section describes the value-set analysis algorithm. VSA is an abstract interpretation
of the executable to find a safe approximation for the set of values that each data object
holds at each program point. It uses the domain of abstract stores defined in §3. The
present implementation of VSA is flow-sensitive and context-insensitive.3

VSA has similarities with the pointer-analysis problem that has been studied in great
detail for programs written in high-level languages. For each variable (say v), pointer
analysis determines an over-approximation of the set of variables whose addresses v can
hold. Similarly, VSA determines an over-approximation of the set of addresses that each
data object can hold at each program point. The results of VSA can also be used to find
the a-locs whose addresses a given a-loc a contains. On the other hand, VSA also has
some of the flavor of numeric static analyses, where the goal is to over-approximate the
integer values that each variable can hold. In addition to information about addresses,
VSA determines an over-approximation of the set of integer values that each data object
can hold at each program point.

4.1 Intraprocedural Analysis

This subsection describes an intraprocedural version of VSA. For the time being, we
will consider programs that have a single procedure and no indirect jumps. To aid in
explaining the algorithm, we adopt a C-like notation for program statements. We will
discuss the following kinds of instructions, where R1 and R2 are two registers of the
same size, and c, c1, and c2 are explicit integer constants:

R1 = R2 + c R1 ≤ c
*(R1 + c1) = R2 + c2 R1 ≥ R2

R1 = *(R2 + c1) + c2

Conditions of the last two forms are obtained from the predecessor(s) of conditional
jump instructions that affect condition codes.

The analysis is performed on a CFG for the procedure. The CFG consists of one node
per x86 instruction; the edges are labeled with the instruction at the source of the edge. If
the source of an edge is a conditional, then the edge is labeled according to the outcome of
the conditional. For instance, the edge 14→L1 will be labeled ecx<5, whereas the edge
14→15 will be labeled ecx≥5. Once we have the CFG, an abstract store is obtained for
each program point by abstract interpretation [8]. Sample transformers for various kinds
of edges are listed in Fig. 4. Each transformer takes an abstract store and returns a new
abstract store. Because eachAR region of a procedure that may be called recursively—as
well as each heap region—potentially represents more than one concrete data object,
assignments to their a-locs must be modeled by weak updates, i.e., the new value-set
must be unioned with the existing one, rather than replacing it (see case two of Fig. 4).
Furthermore, unaligned writes can modify parts of various a-locs (which could possibly
create forged addresses). In case 2 of Fig. 4, such writes are treated safely by setting the
values of all partially modified a-locs to �. Similarly, case 3 treats a load of a potentially
forged address as a load of �.

3 In the near future, we plan to extend the implementation to have a degree of context-sensitivity,
using the call-strings approach to interprocedural dataflow analysis [29].

Analyzing Memory Accesses in x86 Executables 15

Label on e Transfer function for edge e
R1=R2+c let (R2 �→ vs) ∈ e.Before

e.After := e.Before − [R1 �→ ∗] ∪ [R1 �→ vs � c]
*(R1+c1)=R2+c2 let [R1 �→ vsR1], [R2 �→ vsR2] ∈ e.Before, (F, P) = ∗(vsR1 � c1, s),

tmp = e.Before − {[a �→ ∗] | a ∈ P ∪ F} ∪ {[p �→ �] | p ∈ P}, and
Proc be the procedure containing the statement

if (|F | = 1 and |P | = 0 and
(Proc is not recursive) and (F has no heap objects)) then

e.After := (tmp ∪ {[v �→ vsR2 � c2] | v ∈ F}) // Strong update
else // Weak update

e.After := (tmp ∪ {[v �→ (vsR2 � c2)
 vsv] | v ∈ F, [v �→ vsv] ∈ e.Before})
R1= *(R2+c1)+c2 let (R2 �→ vsR2) ∈ e.Before and (F, P) = ∗(vsR2 � c1, s)

if |P | = 0 then
let vsrhs =

⊔{vsv|v ∈ F, [v �→ vsv] ∈ e.Before}
e.After := e.Before − [R1 �→ ∗] ∪ [R1 �→ (vsrhs � c2)]

else
e.After := e.Before − [R1 �→ ∗] ∪ [R1 �→ �]

R1 ≤ c let [R1 �→ vsR1] ∈ e.Before and vsc = ([−∞, c],�, . . . ,�)
e.After := e.Before − [R1 �→ ∗] ∪ [R1 �→ vsR1 	 vsc]

R1 ≥ R2 let [R1 �→ vsR1], [R2 �→ vsR2] ∈ e.Before and vslb = RemoveUpperBounds(vsR2)
e.After := e.Before − [R1 �→ ∗] ∪ [R1 �→ vsR1 	 vslb]

Fig. 4. Transfer functions for VSA. (In cases 2 and 3, s represents the size of the dereference
performed by the instruction.)

The abstract store for the entry node consists of the information about the initialized
global variables and the initial value of the stack pointer (esp).

The abstract domain has infinite ascending chains. Hence, to ensure termination,
widening needs to be performed. Widening needs to be carried out at at least one node
of every cycle in the CFG; however, the node at which widening is performed can affect
the accuracy of the analysis. To choose widening points, our implementation of VSA
uses techniques from [3].

Example 2. For the program from Fig. 1, the abstract store for the entry node of main
is {esp �→ (⊥, 0), mem 4 �→ (0,⊥), mem 8 �→ (1,⊥)}.

The fixpoint solution of VSA for instruction 7 is {esp �→ (⊥,−44), mem 4 �→ (0,⊥
), mem 8 �→ (1,⊥), eax �→ (⊥, 4[0,∞] − 40), ebx �→ (⊥, 4[0,∞] − 20), var 44
�→ (⊥,−40), ecx �→ ([0, 4],⊥)} and that of instruction 16 is {esp �→ (⊥,−44), mem 4
�→ (0,⊥), mem 8 �→ (1,⊥), eax �→ (⊥, 4[1,∞]−40), ebx �→ (⊥, 4[1,∞]−20), var 44
�→ (⊥,−40), ecx �→ ([5, 5],⊥), edi �→ (⊥,−40)}.

Note that the value-sets obtained by the analysis can be used to discover the
data dependence that exists between instructions 7 and 16. At instruction 7, eax
�→ (⊥, 4[0,∞]−40), and thus ∗(eax�0, 4) returns the possibly-killed set as {var 40,
var 20, ret main}. Similarly, at instruction 16, ∗(esp � 8, 4) returns the use set
as {var 40}. Reaching-definitions analysis based on this information reveals that in-
struction 16 is data dependent on instruction 7. Similarly, reaching-definitions analysis
reveals that instruction 16 is not data dependent on 9.

Note that the a-loc ret main is also included in the set of a-locs accessed through
eax at instruction 7. This is because the analysis was not able to determine an upper
bound for eax. Observe that eax is dependent on the loop variable ecx. We discuss in
§5 how the implemented system actually finds upper or lower bounds for variables that
are dependent on the loop variable. �

16 G. Balakrishnan and T. Reps

4.2 Interprocedural Analysis

Let us now consider procedure calls, but for now ignore indirect jumps and calls. Inter-
procedural analysis presents new problems because the formals of a procedure and the
actuals of a call need to be identified. This information is not directly available in the
disassembly because parameters are typically passed on the stack in the x86 architec-
ture. Further, the instructions that push the actual parameters on the stack need not occur
immediately before the call. Example 3 will be used to explain the interprocedural case.

Example 3. Fig. 5 shows a program with two procedures, main and initArray (see
also Fig. 6). Procedure main has an integer array a, which is initialized by calling
initArray. After initialization, main returns the second element of array a. �

Fig. 5. Interprocedural example

Actual Parameters and Register Saves.
In an x86 program, stack operations like
push/pop implicitly modify some locations
in the AR of a procedure (say P). These
locations correspond to the actual param-
eters of a call and to those used for register
spilling and caller-saved registers.The loca-
tions accessed by push/pop instructions are
not explicitly found as esp/ebp-relative
addresses, and so the algorithm that iden-
tifies a-locs will not introduce a-locs for the
memory locations accessed by these stack
operations; consequently, we introduce ad-
ditional a-locs, which we call extended a-
locs, for memory locations that are implic-
itly accessed by such stack operations. To
do this, the smallest sp delta for P is
determined. This represents the maximum
limit to which the stack can grow in a single
invocation of P. (The stack can grow deeper
due to calls made by P; however, these op-
erations are not relevant because we are concerned merely with identifying the size of
the AR for P.) If we are unable to find a finite minimum, the analysis issues a report. If
there is a finite minimum, then extended a-locs are added to the AR on 4-byte boundaries
to fill the space between the lowest local a-loc and the minimum sp delta.

������
������
������
������

������
������
������
������
������������
������������
������������
������������

ret_initArray

arg_4

arg_0

AR_initArray+0

AR_initArray+8

AR_initArray+4

AR_initArray

AR_main−44

AR_main−40

AR_main−48

AR_main−0

AR_main−20

AR_main−52

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
��������������������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���������
���������
���������

���������
���������
���������

AR_main

var_44

ext_48

ret_main

var_40

var_20

ext_52

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

Global

Global+4

Global+8
mem_8

mem_4

Fig. 6. Memory-regions

Formal Parameters. On entry to a procedure, esp
points to the return address, and the parameters to the
procedure are the bytes beyond the return address (in
the positive direction). Hence the offsets for the for-
mal parameters will be positive. Hence, a-locs with
positive offsets are considered to be the formal pa-
rameters.

At a call on a procedure that has k formals, the last
k extended a-locs represent the actual parameters.

Analyzing Memory Accesses in x86 Executables 17

Fig. 6 shows the extended a-locs for procedure main and the formal parameters for
procedure initArray for the program in Example 3.

Handling of Calls and Returns. The interprocedural algorithm is similar to the in-
traprocedural algorithm, but analyzes the supergraph of the executable. In the super-
graph, each call site has two nodes: a call node and an end-call node. The only successor
of the call node is the entry node of the called procedure and the only predecessor of the
end-call node is the exit node of the procedure called by the corresponding call node.
The call→entry and the exit→end-call edges will be refereed to as linkage edges. Nodes,
edges and edge-transformers for all other instructions are similar to the intraprocedural
CFG.

The transformer for the call→entry edge assigns actuals to formals and also changes
esp to reflect the change in the current AR. First the join of the abstract stores at the
call-sites of P is computed; then the value-set of esp in the newly computed value is
set to (⊥, . . . , 0, . . . ,⊥), where the 0 occurs in the slot for P. In addition, each formal
parameter Formali is initialized as follows:

(F c
i , P c

i) = ∗(asc[esp] � (offset(AR P, Formali) − 4), Si)

asenter P[Formali] =






� # if
⋃

c∈callsites(P)

P c
i �= φ

⊔

c∈callsites(P),v∈F c
i

asc[v] # otherwise

where asc is the abstract store at call-site c of P and Si is the size of Formali. That
is, the value-set for a formal on entry is the join of the value-sets of the corresponding
actuals at the callers. The offset of the actual in the AR of the caller is determined from
the offset of the formal parameter. In the fixpoint solution for Example 3, the abstract
store for the enter node of initArray is: {mem 4 �→ (0,⊥,⊥), mem 8 �→ (1,⊥,⊥),
arg 0 �→ (⊥,−40,⊥), arg 4 �→ (5,⊥,⊥), eax �→ (⊥,−40,⊥), esp �→ (⊥,⊥, 0),
ext 48 �→ (5,⊥,⊥), ext 52 �→ (⊥,−40,⊥) }. The regions in the value-sets are listed
in the following order: (Global, AR main, AR initArray).

The transformer for the exit→end-call edge ordinarily restores the value-set of esp to
the value before the call. This corresponds to the normal case when the callee restores the
value of esp to the value before the call. However, in some procedures the callee does
not restore esp. For instance, alloca allocates memory on the stack by subtracting
some number of bytes from esp. VSA takes care of those changes in esp that are
just additions/subtractions to the initial value when it can determine that the change is
always some constant amount. In such cases, esp is restored to the value before the call
plus/minus the change. If VSA cannot determine that the change is a constant, then it
issues an error report.

5 Affine Relations

Recall that in Example 2, VSA was unable to find finite upper bounds for eax at in-
struction 7 and ebx at instruction 9. This causes ret main to be added to the possibly-
killed sets for instructions 7 and 9. This section describes how our implementation of

18 G. Balakrishnan and T. Reps

VSA obtains improved results, by identifying and then exploiting integer affine relations
that hold among the program’s registers, using an interprocedural algorithm for affine-
relation analysis due to Müller-Olm and Seidl [19]. The algorithm is used to determine,
for each program point, all affine relations that hold among an x86’s 8 registers. More
details about the algorithm can be found in [19].

An integer affine relation among variables ri (i = 1 . . . n) is a relationship of the form
a0 +

∑n
i=1 airi = 0, where the ai (i = 1 . . . n) are integer constants. An affine relation

can also be represented as an (n+1)-tuple, (a0, a1, . . . , an). There are two opportunities
for incorporating information about affine relations: (i) in the interpretation of conditional
instructions, and (ii) in an improved widening operation. Our implementation of VSA
incorporates both of these uses of affine relations.

At instruction 14 in the program in Fig. 1, eax, esp, and ecx are all related by the
affine relation eax = (esp+ 4 × ecx) + 4. When the true branch of the conditional jl
L1 is interpreted, ecx is bounded on the upper end by 4, and thus the value-set ecx at L1
is ([0, 4],⊥). (A value-set in which all RICs are ⊥ except the one for the Global region
represents a set of pure numbers, as well as a set of global addresses.) In addition, the
value-set for esp at L1 is (⊥,−44). Using these value-sets and solving for eax in the
above relation yields

eax = (⊥, −44) + 4 × ([0, 4], ⊥) + 4 = (⊥, −44) + 4 × [0, 4] + 4 = (⊥, 4[0, 4] − 40).

In this way, a sharper value for eax at L1 is obtained than would otherwise be possible;
Such bounds cannot be obtained for loops that are controlled by a condtion that is not
based on indices; however, the analysis is still safe in such cases.

Halbwachs et al. [15] introduced the “widening-up-to” operator (also called limited
widening), which attempts to prevent widening operations from “over-widening” an
abstract store to +∞ (or −∞). To perform limited widening, it is necessary to associate
a set of inequalities M with each widening location. For polyhedral analysis, they defined
P∇MQ to be the standard widening operation P∇Q, together with all of the inequalities
of M that satisfy both P and Q. They proposed that the set M be determined by the
linear relations that force control to remain in the loop. Our implementation of VSA
incorporates a limited-widening algorithm, adapted for reduced interval congruences.
For instance, suppose that P = (x �→ 3[0, 2] + 5), Q = (x �→ 3[0, 3] + 5), and
M = {x ≤ 28}. Ordinary widening would produce (x �→ 3[0, +∞] + 5), whereas
limited widening would produce (x �→ 3[0, 7] + 5). In some cases, however, the a-loc
for which VSA needs to perform limited widening is a register r1, but not the register that
controls the execution of the loop (say r2). In such cases, the implementation of limited
widening uses the results of affine-relation analysis—together with known constraints on
r2 and other register values—to determine constraints that must hold on r1. For instance,
if the loop back-edge has the label r2 ≤ 20, and affine-relation analysis has determined
that r1 = 4 ∗ r2 always holds at this point, then the constraint r1 ≤ 80 can be used for
limited widening of r1’s abstract store.

The performance evaluation in §7 uses a version of affine-relation analysis that
models the restoration of callee-save registers across calls. (At present, certain technical
difficulties preclude a similar treatment of caller-save registers. We have also not yet
implemented a check to determine that the code obeys the calling conventions for caller-
save and callee-save registers.)

Analyzing Memory Accesses in x86 Executables 19

Table 1. Running times and storage requirements for VSA and affine-relation analysis.

Program Procedures Instructions Malloc
sites

Indirect
jumps Calls

Indirect
calls

Memory
usage
(MB)

Value-
set

analysis
(sec.)

Affine-
relation
analysis

(sec.)
javac 36 3555 1 0 133 79 51 76 29
cat (2.0.14) 123 3892 1 3 138 4 42 9 26
cut (2.0.14) 129 4329 2 3 182 4 48 7 42
grep (2.4.2) 245 16808 18 4 654 6 102 117 75
gcc (2.96) 252 22984 8 3 1048 4 232 108 295
tar (1.13.19) 581 47739 11 21 2553 29 258 220 156
awk (3.1.0) 595 69927 84 33 3669 152 623 1017 1011
winhlp32 (5.0.2195.2014) 1018 108380 0 10 6002 1005 737 1712 1290

6 Indirect Jumps and Indirect Calls

The supergraph of the program will not be complete in the presence of indirect jumps
and indirect calls. Consequently, missing jump and call edges need to be inserted during
VSA. For instance, suppose that VSA is interpreting an indirect jump instruction J1:
jmp 1000[eax*4], and let the current abstract store at this instruction be {eax �→
([0, 9],⊥, . . . ,⊥). Edges need to be added from J1 to the instructions whose addresses
could be in memory locations {1000, 1004, . . . , 1036}. If the addresses {1000, 1004,
. . . , 1036} refer to the read-only section of the program, then the addresses of the
successors of J1 can be read from the header of the executable. If not, the addresses
of the successors of J1 in locations {1000, 1004, . . . , 1036} are determined from the
current abstract store at J1. Due to possible imprecision in VSA, it could be the case
that VSA reports that the locations {1000, 1004, . . . , 1036} have all possible addresses.
In such cases, VSA proceeds without adding new edges. However, this could lead to an
under-approximation of the value-sets at program points. Therefore, the analysis issues
a report to the user whenever such decisions are made. We will refer to such instructions
as unsafe instructions. Another issue with using the results of VSA is that an address
identified as a successor of J1 might not be the start of an instruction. Such addresses
are ignored, and the situation is reported to the user.

Indirect calls are handled similarly, with a few additional complications.

– A successor instruction identified by the method outlined above may be in the middle
of a procedure. In such cases, the analysis reports this to the user.

– The successor instruction may not be part of a procedure that was identified by
IDAPro. This is due to the limitations of IDAPro’s procedure-finding algorithm:
IDAPro does not identify procedures that are called exclusively via indirect calls.
In such cases, VSA can invoke IDAPro’s procedure-finding algorithm explicitly, to
force a sequence of bytes from the executable to be decoded into a sequence of
instructions and spliced into the IR for the program. (At present, this technique has
not yet been incorporated in our implementation.)

7 Performance Evaluation

Table 1 shows the running times and storage requirements of our prototype implemen-
tation for analyzing a set of Win32 and Linux/x86 programs; the program version is

20 G. Balakrishnan and T. Reps

Table 2. Comparison of 3 variants of VSA.

Program No VSA VSA Crude VSA
javac 21597 52884 54996
cat (2.0.14) 17932 32826 33632
cut (2.0.14) 23116 37834 39116
grep (2.4.2) 123293 201584 217003
gcc (2.96) 320089 5921020 5970559
tar (1.13.19) 644518 4088659 4305446

shown in parentheses. As a temporary expedient, calls to library functions are treated
during analysis as identity transformers. The analyses were performed on a Pentium-4
with a clock speed of 3.06GHz, equipped with a physical memory of 4GB and running
Windows 2000. (The per-process address space was limited to 2GB.)

To contrast the capabilities of VSA with analysis algorithms that treat memory ac-
cesses very conservatively—i.e., if a register is assigned a value from memory, it is
assumed to take on any value—we compared it with a version of VSA, called crude
VSA, that always sets the value-sets for all non-register a-locs to �. Table 2 shows the
number of flow-dependence edges obtained with three methods: (i) without using VSA
at all (which causes dependences to be missed); (ii) with VSA; and (iii) with crude VSA.

8 Soundness Issues

Soundness would mean that value-set analysis would identify used, killed, and possibly-
killed sets that would never miss any data dependence, although they might cause spu-
rious dependences to be reported. This is a lofty goal; however, it is not clear that a tool
that achieves this goal would have practical value. There are less lofty goals that do not
meet this standard—but may result in a more practical system. In particular, we may not
care if the system is sound, as long as it can provide warnings about the situations that
arise during the analysis that threaten the soundness of the results. This is the path that
we are following in our work.

Here are some of the cases in which the analysis can be unsound, but where the
system generates a report about the nature of the unsoundness:

– The program is vulnerable to a buffer-overrun attack. This can be detected by iden-
tifying a point at which there can be a write past the end of a memory-region.

– The control-flow graph and call-graph may not identify all successors of indirect
jumps and indirect calls. Report generation for such cases is discussed in §6.

– A related situation is a jump to a code sequence concealed in the regular instruction
stream; the alternative code sequence would decode as a legal code sequence when
read out-of-registration with the instructions in which it is concealed. The analysis
could detect this situation as an anomalous jump to an address that is in the code
segment, but is not the start of an instruction.

– With self-modifying code, the control-flow graph and call-graph are not available for
analysis. The analysis can detect the possibility that the program is self-modifying
by identifying an anomalous jump or call to a modifiable location.

Analyzing Memory Accesses in x86 Executables 21

9 Related Work

There is an extensive body of work on analyzing executables. The work that is most
closely related toVSA is the alias-analysis algorithm for executables proposed by Debray
et al. [11]. The basic goal of their algorithm is similar to that ofVSA: for them, it is to find
an over-approximation of the set of values that each register can hold at each program
point; for us, it is to find an over-approximation of the set of values that each (abstract)
data object can hold at each program point, where data objects include memory locations
in addition to registers. In their analysis, a set of addresses is approximated by a set of
congruence values: they keep track of only the low-order bits of addresses. However,
unlike our algorithm, their algorithm does not make any effort to track values that are
not in registers. Consequently, they lose a great deal of precision whenever there is a
load from memory.

Cifuentes and Fraboulet [5] give an algorithm to identify an intraprocedural slice of
an executable by following the program’s use-def chains. However, their algorithm also
makes no attempt to track values that are not in registers, and hence cuts short the slice
when a load from memory is encountered.

Past work on decompiling assembly code to a high-level language is also related to
our goals [6,4,20]. However, that work has also not done much to address the problem
of recovering information about memory accesses.

The idea of inferring the layout of a program’s data structures based on the access
patterns in the program is similar to the idea behind theAggregate Structure Identification
(ASI) algorithm of Ramalingam et al. [24]. However, ASI cannot be applied to x86 code
without having the results of VSA already in hand: ASI requires points-to, range, and
stride information; however, this information is not available for an x86 executable until
after VSA. The good news is that ASI can be applied after VSA to refine the program’s a-
locs, which can allow some clients of value-set analysis—such as dependence analysis—
to compute more precise results. We plan to use ASI in conjunction with the results of
value-set analysis in future work.

Xu et al. [31] also created a system that analyzed executables in the absence of
symbol-table and/or debugging information. The goal of their system was to establish
whether or not certain memory-safety properties held in SPARC executables. Initial
inputs to the untrusted program were annotated with typestate information and linear
constraints. The analyses developed by Xu et al. were based on classical theorem-proving
techniques: the typestate-checking algorithm used the induction-iteration method [30]
to synthesize loop invariants and Omega [23] to decide Presburger formulas. In contrast,
the goal of the system described in the present paper is to recover information from
an x86 executable that permits the creation of intermediate representations similar to
those that can be created for a program written in a high-level language. VSA uses
abstract-interpretation techniques to determine used, killed, and possibly-killed sets for
each instruction in the program.

Several people have developed techniques to analyze executables in the presence of
additional information, such as the source code, symbol-table information, or debugging
information [18,2,1,27]. Analysis techniques that assume access to such information are
limited by the fact that it must not be relied on when dealing with programs such as
viruses, worms, and mobile code (even if such information is present).

Dor et al. [12] present a static-analysis technique—implemented for programs writ-
ten in C—whose aim is to identify string-manipulation errors, such as potential buffer

22 G. Balakrishnan and T. Reps

overruns. In their work, a flow-insensitive pointer analysis is first used to detect pointers
to the same base address; integer analysis is then used to detect relative-offset relation-
ships between values of pointer variables. The original program is translated to an integer
program that tracks the string and integer manipulations of the original program; the in-
teger program is then analyzed to determine relationships among the integer variables,
which reflect the relative-offset relationships among the values of pointer variables in
the original program. Because they are primarily interested in establishing that a pointer
is merely within the bounds of a buffer, it is sufficient for them to use linear-relation
analysis [10], in which abstract stores are convex polyhedra defined by linear inequali-
ties of the form

∑n
i=1 aixi ≤ b, where b and the ai are integers, and the xi are integer

variables.
In our work, we are interested in discovering fine-grained information about the struc-

ture of memory-regions. As already discussed in §3.3, it is important for the analysis to
discover alignment and stride information so that it can interpret indirect-addressing
operations that implement field-access operations in an array of structs or pointer-
dereferencing operations. Because we need to represent non-convex sets of numbers,
linear-relation analysis is not appropriate. xFor this reason, the numeric component of
VSA is based on reduced interval congruences, which are capable of representing certain
non-convex sets of integers.

Rugina and Rinard [28] have also used a combination of pointer and numeric analysis
to determine information about a program’s memory accesses. There are several reasons
why their algorithm is not suitable for the problem that we face: (i) Their analysis assumes
that the program’s local and global variables are known before analysis begins: the set of
“allocation blocks” for which information is acquired consists of the program’s local and
global variables, plus the dynamic-allocation sites. (ii) Their analysis determines range
information, but does not determine alignment and stride information. (iii) Pointer and
numeric analysis are performed separately: pointer analysis is performed first, followed
by numeric analysis; moreover, it is not obvious that pointer analysis could be intertwined
with the numeric analysis that is used in [28].

Our analysis combines pointer analysis with numeric analysis, whereas the analyses
of Rugina and Rinard and Dor et al. use two separate phases: pointer analysis followed
by numeric analysis. An advantage of combining the two analyses is that information
about numeric values can lead to improved tracking of pointers, and pointer information
can lead to improved tracking of numeric values. In our context, this kind of positive
interaction is important for discovering alignment and stride information (cf. §3.3).
Moreover, additional benefits can accrue to clients of VSA; for instance, it can happen
that extra precision will allow VSA to identify that a strong update, rather than a weak
update, is possible (i.e., an update can be treated as a kill rather than as a possible kill;
cf. case two of Fig. 4). The advantages of combining pointer analysis with numeric
analysis have been studied in [22]. In the context of [22], combining the two analysis
only improves precision. However, in our context, a combined analysis is needed to
ensure safety.

References

1. J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, Y. Lavoie, and N. Tawbi. Static
detection of malicious code in executable programs. Int. J. of Req. Eng., 2001.

Analyzing Memory Accesses in x86 Executables 23

2. J. Bergeron, M. Debbabi, M.M. Erhioui, and B. Ktari. Static analysis of binary code to isolate
malicious behaviors. In WETICE, pages 184–189, 1999.

3. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Int. Conf. on Formal
Methods in Prog. and their Appl., Lec. Notes in Comp. Sci. Springer-Verlag, 1993.

4. C. Cifuentes and A. Fraboulet. Interprocedural data flow recovery of high-level language
code from assembly. Technical Report 421, Univ. Queensland, 1997.

5. C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables. In Int.
Conf. on Softw. Maint., pages 188–195, 1997.

6. C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language translation. In
Int. Conf. on Softw. Maint., pages 228–237, 1998.

7. CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.
8. P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc.

2nd Int. Symp. on Programming, pages 106–130. Dunod, Paris, France, 1976.
9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Princ. of Prog. Lang., 1977.
10. P. Cousot and R. Cousot. Automatic discovery of linear restraints among variables of a

program. In Princ. of Prog. Lang., pages 84–97, 1978.
11. S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In Princ. of Prog.

Lang., pages 12–24, 1998.
12. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically detecting all

buffer overflows in C. In Prog. Lang. Design and Impl., pages 155–167, 2003.
13. Fast library identification and recognition technology, DataRescue sa/nv, Liège, Belgium,

http://www.datarescue.com/idabase/flirt.htm.
14. P. Granger. Static analysis of arithmetic congruences. Int. J. of Comp. Math., 1989.
15. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear

relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.
16. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. Trans.

on Prog. Lang. and Syst., 12(1):26–60, January 1990.
17. IDAPro disassembler, http://www.datarescue.com/idabase/.
18. J.R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In Prog. Lang.

Design and Impl., pages 291–300, 1995.
19. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In

Princ. of Prog. Lang., 2004.
20. A. Mycroft. Type-based decompilation. In European Symp. on Programming, 1999.
21. E.W. Myers. Efficient applicative data types. In Princ. of Prog. Lang., pages 66–75, 1984.
22. A. Pioli and M. Hind. Combining interprocedural pointer analysis and conditional constant

propagation. Tech. Rep. RC 21532(96749), IBM T.J. Watson Research Center, March 1999.
23. W. Pugh. The Omega test:A fast and practical integer programming algorithm for dependence

analysis. In Supercomputing, pages 4–13, 1991.
24. G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application to

program analysis. In Princ. of Prog. Lang., pages 119–132, 1999.
25. T. Reps and G. Rosay. Precise interprocedural chopping. In Found. of Softw. Eng., 1995.
26. T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for language-

based editors. Trans. on Prog. Lang. and Syst., 5(3):449–477, July 1983.
27. X. Rival. Abstract interpretation based certification of assembly code. In Int. Conf. on Verif.,

Model Checking, and Abs. Int., 2003.
28. R. Rugina and M.C. Rinard. Symbolic bounds analysis of pointers, array indices, and accessed

memory regions. New York, NY. ACM Press.
29. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Much-

nick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

30. N. Suzuki and K. Ishihata. Implementation of an array bound checker. In Princ. of Prog.
Lang., pages 132–143, 1977.

31. Z. Xu, B. Miller, and T. Reps. Safety checking of machine code. In Prog. Lang. Design and
Impl., pages 70–82, 2000.

	Introduction
	The Context of the Problem
	The Abstract Domain
	Memory-Regions
	A-Locs
	Abstract Stores

	Value-Set Analysis (VSA)
	Intraprocedural Analysis
	Interprocedural Analysis

	Affine Relations
	Indirect Jumps and Indirect Calls
	Performance Evaluation
	Soundness Issues
	Related Work

