
A Tool-Assisted Framework

for Certified Bytecode Verification

Gilles Barthe and Guillaume Dufay

INRIA Sophia-Antipolis, France
{Gilles.Barthe,Guillaume.Dufay}@sophia.inria.fr

Abstract. Bytecode verification is a key security function in several
architectures for mobile and embedded code, including Java, JavaCard,
and .NET. Over the last few years, its formal correctness has been stud-
ied extensively by academia and industry, using general purpose theorem
provers. Yet a recent roadmap on smartcard research [1], and a recent
survey of the field of Java verification [11], point to a severe lack of
methodologies, techniques and tools to help such formal endeavours. In
earlier work, we have developed, and partly automated, a methodology
to establish the correctness of static analyses similar to bytecode verifica-
tion. The purpose of this paper is to complete the automation process by
certifying the different dataflow analyses involved in bytecode verifica-
tion, using the Coq proof assistant. It enables us to derive automatically,
from a reference virtual machine that performs verification at run-time,
and satisfies minimal requirements, a provably correct bytecode verifier.

1 Introduction

Several architectures for mobile and embedded code, including Java, JavaCard,
and .NET, feature a bytecode verifier (BCV), which performs a modular (i.e.
method per method) static analysis on compiled programs prior to their loading,
and rejects potentially insecure programs that may violate type safety, or perform
illegal memory accesses, or not respect the initialization protocol, or yield stack
underflows or overflows, etc.

The bytecode verifier is a key security function in these architectures, and
as such its design and implementation must be correct. Over the last few years,
a number of projects have been successful in proving formally that bytecode
verification is correct, in the sense that it obeys the specification of Sun. Many
of these projects were carried by smartcard industrials in the context of secu-
rity evaluations; for example, Schlumberger Cards and Terminals was recently
awarded an EAL7 Common Criteria1 certificate for their formal models of the
JavaCard platform.

1 The Common Criteria is an international evaluation scheme for the security of IT
products. It features seven evaluation assurance levels (EAL). The highest quality
levels EAL5 to EAL7 impose the use of formal methods for the modelling, specifi-
cation and verification of the product being certified.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 99–113, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



100 Gilles Barthe and Guillaume Dufay

Yet such projects are labour-intensive, hence costly, and can only be con-
ducted by a few experts in formal methods. A recent roadmap on smartcard
research [1], and a recent survey of the field of Java verification [11], point to
a severe lack of methodologies, techniques and tools to conduct cost-effective
security evaluations.

Our work aims at developing tools and libraries that help validate execution
platforms for mobile and embedded code. The research reported here focuses
on specifying and proving the correctness of bytecode verification, following a
methodology that is common to many existing works in the area, see e.g. [2, 4,
5, 16]. The methodology factors the effort into two phases:

– virtual machines specification and cross-validation (VM phase): during this
first phase, one provides the specification of several virtual machines, includ-
ing a defensive virtual machine that manipulates typed values and performs
type-checking at run-time (as well as computations), and abstract virtual
machine that only manipulates types and only performs type-checking. One
also cross-validates these different virtual machines, e.g. one shows that the
abstract virtual machine detects all typing errors that may occur during the
execution of a program on the defensive virtual machine;

– bytecode verification specification and verification (BV phase): during this
second phase, one builds and validates the bytecode verifier, using the ab-
stract virtual machine defined during the VM phase. First, it involves mod-
eling a dataflow analysis – for an unspecified execution function that meets
minimal requirements. Second, it involves proving the correctness of the
analysis; essentially it amounts to showing that the analysis will reject all
programs that go wrong during execution. Third, it involves instantiating
the analysis to the virtual machine defined in the VM phase, using cross-
machine validation to establish that the VM enjoys all properties assumed for
the unspecified execution function in the definition of the dataflow analyses;
the instantiation provides a bytecode verifier, and a proof of its correctness.
Note that different algorithms may be chosen, so as to account for some ad-
vanced features, e.g. subroutines and initialization in the Java and JavaCard
platforms, or to minimize resource usage during verification, see Section 2.

In earlier work, we have been developing Jakarta, an environment which supports
the specification and cross-validation of the virtual machines [3], and offers a high
level of automation for performing the VM phase. In a nutshell, Jakarta con-
sists of a specification language JSL in which virtual machines can be described,
an abstraction engine that transforms virtual machines (e.g. that extracts an
abstract virtual machine from a defensive one), and an interface with theorem
provers, which maps JSL specifications to the prover specification language and
generates automatically correctness proofs for the cross-validation of virtual ma-
chines. We mostly use Jakarta in conjunction with the proof assistant Coq [8],
although prototypes interfaces to Isabelle [18] and PVS [20] exist2.
2 One particular reason for our choice is that French evaluation bodies recommend

the use of Coq or B to carry Common Criteria evaluations at the highest levels.



A Tool-Assisted Framework for Certified Bytecode Verification 101

The purpose of this paper is to complement our earlier work by providing
a modular framework for performing the BV phase. Starting from an abstract
notion of virtual machine on which we only impose minimal assumptions, we
build a parametric bytecode verifier that encompasses a large class of algorithms
for bytecode verification, and show the algorithm to be correct in the sense that
it will reject programs that may go wrong. One novelty of our framework is to
provide a high-level proof that it is sound to perform bytecode verification on
a method per method basis. Another novelty is to provide a generic bytecode
verifier that can be instantiated to several analysis including standard analyses
that only accept programs with monomorphic subroutines, set-based analyses
that accept programs with polymorphic subroutines, as well as other analyses
for which no formal correctness proof was previously known. From a more global
perspective, the combination of our framework for bytecode verification with
the Jakarta toolset yields an automated procedure to derive a certified bytecode
verifier from a reference defensive virtual machine; the procedure is applicable to
many settings, and has been successfully used to certify the JavaCard platform.
We return to these points in the conclusion.

Contents of the Paper. The remaining of the paper is organized as follows. We
begin in Section 2 with a brief introduction to Coq and its module system,
and with a brief overview of bytecode verification. We proceed in Section 3
with the basic definitions and constructions underlying bytecode verification.
Section 4 and Section 5 are respectively devoted to formalizing and certifying a
parameterized verification algorithm and compositional techniques that justify
the method-per-method verification suggested by Sun. In Section 6, we show
how the framework may be instantiated to different analyses. We conclude in
Section 7 with related work, a general perspective on our results thus far, and
directions for further research.

2 Preliminaries

2.1 Principles and Algorithms of Bytecode Verification

Bytecode verification [9, 17] is a static analysis that is performed method per
method on compiled programs prior to their loading. Its aim is to reject programs
that violate type safety, perform illegal memory accesses, do not respect the
initialization protocol, yield stack underflows or overflows, etc.

The most common implementation of bytecode verification is through a
dataflow analysis [13] instantiated to the abstract virtual machine that oper-
ates at the type level. The underlying algorithm relies on a history structure,
storing the computed abstract states for each program point, and on an uni-
fication function on states. Then, starting from the initial state for a method,
it computes a fixpoint with the abstract execution function. If the error state
does not belong to the resulting history structure then bytecode verification is
successful.



102 Gilles Barthe and Guillaume Dufay

In the standard algorithm, called monovariant analysis, the history structure
only stores one state for each program point and the unification function unifies,
performing a join on the JavaCard type lattice, the computed state (resulting
from one step of abstract execution) and the stored state. Unfortunately, this
algorithm does not accept polymorphic subroutines (subroutines called from
different program points). To handle such subroutines, the history structure must
contain a set of states for each program point. For the polyvariant analysis, the
unification function adds the computed state to the corresponding set from the
history structure. This technique needs much more memory than monovariant
analysis, however, it is possible to perform state unification rather than set
addition in most cases. This last technique, called hybrid analysis (as described
in [7, 12]), offers the best compromise between memory consumption, precision
and efficiency.

Our framework also deals with lightweight bytecode verification [19], a special
kind of verification that can fit and run in chips used for smart cards, but due
to space constraints details are omitted.

2.2 The Coq Proof Assistant

Coq [8] is a general purpose proof assistant which is based on the Calculus of
Inductive Constructions, and which features a very rich specification language
and a higher-order predicate logic. However, we only use neutral fragments of
the specification language and the logic, i.e. fragments which are common to
several proof assistants, including Isabelle and PVS. More precisely, we use first-
order logic with equality, first-order data types, structural recursive definitions,
record types, but no dependent types – except in the definition of gfp, but such
a function is also definable in Isabelle and PVS. Furthermore, Coq underlying
logic is intuitionistic, hence types need not have a decidable equality. For the
sake of readability, and because it is specific to Coq, we gloss over this issue in
our presentation3.

Modules. Our framework makes an extensive use of the interactive ML-style
modules that were recently integrated to Coq [6]. Hence we briefly review the
syntax for modules. The keyword Module Type introduces the declaration of a
type of a module, and is followed by its name, a collection a Parameter and
Axiom declarations giving its signature, and it is closed by the keyword End.
A module type can also include (and, in a certain sense, extend) other module
types with the keyword Declare Module. A module type is implemented using
the keyword Module (the module type it satisfies is specified after the nota-
tion <:). As usual, the module must fulfill the signature of the module type it
implements. Note that other modules can be given as parameters of a module.
Finally, constructions of a module can be accessed outside the module using the
dot notation of qualified names or directly with the keyword Import followed
by the module name.
3 Although our framework addresses decidability by making appropriate assumptions

in modules, we omit such assumptions in this paper.



A Tool-Assisted Framework for Certified Bytecode Verification 103

Notations. The type of propositions is Prop, and the type of data is Set. The
types predicate A and relation A respectively denote the set of predicates
and binary relations over a type A.

We conclude with some basic definitions used throughout the paper. Given
A : Set, <A: (relation A), f : A→A and P : (predicate A), we let ≤A

denote the reflexive closure of <A and define

(monotone <A f) ≡ ∀a,a’:A.(a <A a’) →((f a) ≤A (f a’))

(decreases <A f) ≡ ∀a:A.((f a) ≤A a)

(down_closed <A P) ≡ ∀a,a’:A.(a <A a’)→(P a’)→(P a)

Finally we let (well_founded <A) state that the relation <A is well founded,
i.e. that there is no infinite decreasing chain.

3 Bytecode Verification as a Fixpoint Computation

We favour a definition that abstracts away from implementation details, and
define a bytecode verifier as a predicate that rejects programs that may go wrong.

Definition 1.

– A transition system with error (TSE) is given by a type state of states, an
execution relation exec over states, and a set err of error states. Formally,

Module Type TSE.
Parameter state : Set.
Parameter exec : (relation state).
Parameter err : (predicate state).
End TSE.

We say that a state a of a given TSE is bad, written bad a, if it can reach
an error state by successive transitions of the execution relation.

– A bytecode verifier over a module tse of type TSE is given by a predicate
check that rejects all bad states. Formally, the module BCV of bytecode veri-
fiers extends the module TSE as follows4:

Module Type BCV.
Declare Module tse: TSE. Import tse.
Parameter check : (predicate state).
Axiom ∀ a:state.(check a) →¬(bad a).
End BCV.

The standard way to build a bytecode verifier is to endorse the type of states with
a well-founded order for which execution is decreasing (to guarantee termina-
tion), and such that error states are downwards closed. If furthermore execution
is deterministic, one can compute for every state a, the greatest fixpoint b below
a; then it is sufficient to check that b is not an error state to conclude that a is
not bad.
4 Coq modules provide names for axioms, so that these axioms can later be used in

proofs. For readability we omit names of axioms in our module declarations.



104 Gilles Barthe and Guillaume Dufay

Definition 2. A fixpoint structure with errors (FSE) is given by the module

Module Type FSE.
Parameter state : Set.
Parameter exec : state → state.
Parameter err : (predicate state).
Parameter <state : (relation state).

Axiom (well_founded <state).
Axiom (decreases <state exec).
Axiom (monotone <state exec).
Axiom (down_closed <state err).
End FSE.

We can define a module functor satisfying, from a module of type FSE, the type
of the module BCV:

Module FSE2BCV [fse:FSE] <: BCV.

To do so, we first define for every state a of a FSE the greatest fixpoint gfp a

below it as

gfp a =

{
a if exec a = a

gfp (exec a) otherwise

Then, we define check a as ¬(err_state (gfp a)). As execution is monotone
and gfp a is the greatest fixpoint below a, it is clear that such a checking is
sufficient to guarantee that a is not a bad state.

4 A Parameterized Bytecode Verifier

In this section, we construct a parameterized bytecode verifier that rejects pro-
grams that may go wrong when executed with an abstract virtual machine. We
start with the definition of the latter.

Definition 3. An abstract virtual machine (AVM) is given by an ordered type
of states state endorsed with a downwards closed set of errors err, a type
of locations loc, an execution function exec, a successor function succs that
computes the successors of a state and an enumeration locs of the locations of
the program. Formally,

Module Type AVM.
Parameter state : Set.
Parameter <state : (relation state).
Parameter err : (predicate state).
Parameter loc : Set.
Parameter succs : loc → state → (list loc).
Parameter locs : (list loc).
Parameter exec : loc → state → state.

Axiom (down_closed <state err).
End AVM.



A Tool-Assisted Framework for Certified Bytecode Verification 105

Bytecode verification relies on stackmaps, i.e. functions that associate to every
program point a history structure. History structures can be seen as an abstrac-
tion of the mathematical set notion.

Definition 4. The module type History_Struct of history structures is pa-
rameterized by a carrier set A5 and given a type constructor hist, a projector
function hist_unit, an extension hist_less of an order on A, an decreasing
iterator hist_foldr and a membership predicate ∈hist on which we define an
existential predicate ∃hist. Formally,

Module Type History_Struct [A:Set].
Parameter hist : Set → Set.
Parameter hist_unit : A → (hist A).
Parameter hist_less : ∀ <A:(relation A). (relation (hist A)).
Parameter ∈hist : A →(hist A) →Prop.
Axiom ∀ x:A.(x ∈hist (hist_unit x)).

Parameter hist_foldr : ∀ B:Set.(A→B→B) → B→(hist A)→ B.
Axiom ∀ B:Set. ∀ f:(A →B →B). ∀ <B:(relation B).
(∀ a:A.(decreases <B (f a))) →
(∀ a:(hist A).(decreases <B (λ b:B.(hist_foldr B f b a)))).

Definition ∃hist := λ P:(predicate A) λ s:(hist A)
∃ a.(P a) ∧ (a ∈hist s).

Axiom ∀ <A:(relation A). ∀ P:(predicate A).
(down_closed <A P) →(down_closed (hist_less <A) (∃hist P)).

End History_Struct.

In the following, we will use the notation <hist
A for the extension

(hist_less <A) of a relation <A.
The definition of stackmaps is included in a module of stackmap structures.

Essentially, a stackmap structure consists of an abstract virtual machine, of a
history structure, and of a unification function that merges states and that is
decreasing and monotone w.r.t. the order inherited from the history structure.
In order to construct a fixpoint structure from a stackmap structure, we also
require histories <hist

A to be well-founded and a supremum for <A.

Definition 5. The module SMS of stackmap structures is defined as:

Module Type SMS.
Declare Module avm : Abstract_VM. Import avm.
Declare Module hs : (History_Struct state). Import hs.

Parameter unify : state → (hist state) → (hist state).
Axiom ∀ s:state.(decreases <hist

state (unify s)).
Axiom ∀ s:state.(monotone <hist

state (unify s)).
Axiom ∀ s:state.∀ s’:(hist state).(unify s s’)=s’ →
∃ y.(y ≤state s) ∧ (y ∈hist s’).

5 In reality, Coq modules type can only be parameterized by other modules, so one
has to use a module that is “isomorphic” to Set.



106 Gilles Barthe and Guillaume Dufay

Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom (well_founded <hist
state).

End SMS.

One can define the type stackmap of stackmaps over a stackmap structure
sms as list (sms.avm.loc * (sms.hs.hist sms.avm.state)), and an exe-
cution function over stackmaps sms_exec: stackmap →stackmap which corre-
sponds to the recursive procedure in Kildall’s algorithm [13]. It is straightforward
to derive a fixpoint structure, and hence a bytecode verifier, for the TSE induced
by sms_exec: stackmap →stackmap. In order to conclude that the resulting
fixpoint structure also yields a bytecode verifier for the TSE induced by the
AVM, one needs to observe that the following diagram commutes:

avm.loc*avm.state

make stackmap

��

avm.exec∗avm.next �� avm.loc*avm.state

≤make stackmap

��
stackmap

sms exec �� stackmap

Here make_stackmap denotes the function that takes as input a pair 〈l, a〉, and
returns as output the stackmap in which the program point l is associated to
the singleton history hist_unit a, and every other program point is associated
to �.

5 Correctness of Bytecode Verification

In the previous section, we have shown that programs that pass bytecode veri-
fication do not go wrong when executed on an abstract virtual machine which
satisfies minimal requirements. The purpose of this section is to lift this result to
a defensive virtual machine: more precisely, we are going to show that programs
that pass bytecode verification do not go wrong when executed on a defensive
virtual machine which satisfies minimal requirements. It involves relating a de-
fensive and an abstract virtual machine, and proving that no difficulty arises
through exception handling (which is performed by the defensive virtual ma-
chine, but ignored by the abstract one), or through method invokation (which
remains within the same frame for the abstract virtual machine, as explained
below). We begin by defining defensive virtual machines.

Definition 6. A defensive virtual machine (DVM) is given by a type state of
states, an execution function exec, a type frame of frames, an accessor function
getstack that associates to each state a list of frames (i.e. its stack), another
accessor function getinstr that associates to each state the nature of the next
execution to be executed, and a set err_frame of error frames. Formally,



A Tool-Assisted Framework for Certified Bytecode Verification 107

Module Type DVM.
Parameter state : Set.
Parameter exec : state → state.
Parameter frame : Set.
Parameter getstack : state → (list frame).
Parameter getinstr : state → type_of_instr.
Parameter err_frame : (predicate frame).
End DVM.

The function getinstr distinguishes between 4 cases: execution is intra-
procedural sameframe (that acts only in the current frame, e.g. for arithmetic in-
struction, branching instruction, etc), execution is a method invokation invoke;
execution is a return step return (pops a frame); or execution raises an excep-
tion exception.

We now turn to formulating a set of general properties about method in-
vokation and exception handling, and proving that such properties ensure that
programs that pass bytecode verification will not go wrong. These properties
involve an abstract virtual machine and an abstraction function.

Abstract Virtual Machine. We assume given an abstract virtual machine avm,
with a function init that returns for each method or exception the correspond-
ing initial state. Furthermore, we assume given a decomposition of abstract
method invokation in two functions, so as to be able to simulate the modifi-
cations made by the concrete virtual machine on a frame when the control flow
is given to the invoked method and when it returns to the invoker method.
Formally, we assume given two functions exec_invk and exec_ret whose com-
position is equal to avm.exec for states a such that getinstr a = invoke.

Abstraction Function. We assume given a function that maps a frame to an
abstract state and a location α: dvm.frame →avm.state. The function is ex-
tended a function β: dvm.state →avm.state. on defensive states by abstract-
ing the topmost frame of the stack (if the stack is empty, we return a default
error value).

Safe States. We now turn to the definition of safe abstract states. A abstract
state will be safe if it is greater than a state belonging to the history structure
computed by the abstract bytecode verifier at the location of the given state.
This notion is extended to defensive frames by abstraction.

The notion of safety for a defensive state must guarantee that the stack is
well-formed, i.e. that all the frames below the top one are in an “intermediate”
state which is not reached by the abstract virtual machine until the invoked
method returns. Then, a defensive state s will be safe if lstinline!getstack s = []
! or if getstack a = f::lf and each frame in lf is of the form exec_invk f’

where f’ is a safe frame.
We now show that safe states are closed under execution and are not bad.



108 Gilles Barthe and Guillaume Dufay

Lemma 1. Let s be a defensive state. Suppose:

– if getinstr s = sameframe, then the following property holds:

(avm.exec (β s)) ≤state(β (dvm.exec s))

– if getinstr s = invoke and getstack s = f::lf, then the following
properties hold:

∃ f’:frame. getstack (dvm.exec f’) = f’::(exec_add f)::lf

(init (β s)) ≤state(β s)

– if getinstr s = return and getstack (dvm.exec s) = f::lf, then
there exists two frames f’ and f’’ such that the following properties hold:

getstack s = f’::f’’::lf

(aexec_ret (α f’’)) ≤state(α f)

– if getinstr s = exception and getstack s = f::(lf@lf’), then the
following properties hold:

∃ f’:frame. getstack s = f’::lf’

(init (β s)) ≤state(β s)

If furthermore s is safe, then dvm.exec s is also safe.

This lemma if proved using properties on the bytecode verifier and property
on exec_invk and exec_ret w.r.t. avm.exec. Then one can easily construct a
bytecode verifier for a defensive virtual machine dvm. Formally, from a module
type Comp_Struct, that contains all the assumptions of Lemma 1, we are able
to define a functor module BCV_dexec satisfying the module type BCV for the
execution dvm.exec. The function check of the module type BCV is defined
assuming that the given defensive state is safe and that the result of bytecode
verification for all initial states (methods and exceptions) of the program does
not contain an error state. Finally, by Lemma 1, we can prove the property
check_ok of the module type BCV, stating that if the verification check was
successful, we can not reach with the defensive virtual machine an error state.

6 Instantiation of History Structures

The previous section describes the construction of a correct bytecode verifier
for a defensive virtual machine. The construction is parameterized by a struc-
ture that records the history of the computations performed by the verifier. The
purpose of this section is to present different instantiations of our framework,
focusing on different choices of history structures that correspond to the algo-
rithms described in Section 2. We use these instantiations as convenient entry
points in our formalization, see Subsection 7.2.



A Tool-Assisted Framework for Certified Bytecode Verification 109

Monovariant Analysis. A monovariant analysis (MA) is given by a well-
founded order on states with a supremum, and by proofs that the execution
function is monotone w.r.t. the order on states and the unification is decreasing
and monotone. Formally,

Module Type Monovariant_Analysis_Struct.
Declare Module avm : Abstract_VM. Import avm.

Parameter unify : state → state → state.

Axiom ∀ s:state.(decreases <state (unify s)).
Axiom ∀ s:state.(monotone <state (unify s)).
Axiom ∀ s,s’:state.(unify s s’)=s’ →∃ y.(y ≤state s) ∧ (y ∈hist s’).

Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom (well_founded <state).
Axiom ∀ l:loc.(monotone <state (exec l)).
End Monovariant_Analysis_Struct.

The construction of a stackmap structure from a monovariant analysis is done
by a functor module Monovariant_Analysis from the previous module type
definition. It mainly proceeds by instantiating the parametric history structure
to the identity history structure, in which hist A is defined as A, and the other
fields are instantiated in the obvious way.

Polyvariant Analysis. A polyvariant analysis is given by a natural number
max_length_set that fixes the maximal size of the set of abstract states asso-
ciated to each program point, by a supremum state �, by an error state err_st
and by a proof that execution is monotone. Formally,

Module Type Polyvariant_Analysis_Struct.
Declare Module avm : Abstract_VM. Import avm.

Parameter max_length_set : nat.
Parameter err_st : state.
Axiom (err err_st).
Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom ∀ l:loc.(monotone <state (exec l)).
End Polyvariant_Analysis_Struct.

One proceeds by instantiating the history structure in such a way that hist A

is defined as the set of elements of A of cardinal less than max_length_set (the
other fields are instantiated in the obvious way). Then, this module is used with
the functor Polyvariant_Analysis to construct a stackmap structure, defining
the function unify as:



110 Gilles Barthe and Guillaume Dufay

λ a:state λ s:(hist state)
(if ((set_size (set_add a s)) < max_length_set)
then (set_add a s)
else (set_add err_st s))

In that case, hist_less does not use the order <state and is defined as set
inclusion. It is interesting to notice that the polyvariant analysis is by far the
simplest algorithm to instantiate.

Hybrid Analysis. An hybrid analysis is given combining elements needed
by monovariant and hybrid analysis and adding an optimization function
opt_unify to discriminate in which cases the unification of states must take
place. Formally,

Module Type Hybrid_Analysis_Struct.
Declare Module avm : Abstract_VM. Import avm.

Parameter opt_unify : state → state → bool.
Parameter unify : state → state → state.

Axiom ∀ s:state.(decreases <state (unify s)).
Axiom ∀ s:state.(monotone <state (unify s)).
Axiom ∀ s,s’:state.(unify s s’)=s’ →∃ y.(y ≤state s) ∧ (y ∈hist s’).

Parameter max_length_set : nat.
Parameter err_st : state.
Axiom (err err_st).
Parameter � : state.
Axiom ∀ a:state.(a ≤state �).

Axiom (well_founded <state).
Axiom ∀ l:loc.(monotone <state (exec l)).
End Hybrid_Analysis_Struct.

The same history structure as polyvariant analysis is used for the hybrid analysis.
The function unify is then defined as follow :

λ a:state λ s:(hist state)
(Case (set_map_bool opt_unify unify a s) of
(Some res) ⇒ res |
None ⇒ (if ((set_size (set_add a s)) < max_length_set)

then (set_add a s)
else (set_add err_st s))

end)

where set_map_bool ranges over elements of s, performs unification depending
on the result of opt_unify and returns the resulting set if unification has oc-
curred or None otherwise. In that case, hist_less combines the order <state on
states and set inclusion.



A Tool-Assisted Framework for Certified Bytecode Verification 111

7 Conclusions

7.1 Related Work

As mentioned in the introduction, there is a considerable body of machine-
checked specifications of execution platforms such as the JVM or .NET, many
of which use the methodology instrumented in our work. A notable exception is
the extensive account of bytecode verification developed by Klein, Nipkow, and
Wildermoser [14, 15] using the proof assistant Isabelle [18]. For lack of space, we
refer the reader to [11, 17] for a more comprehensive account of related work.

There are also machine-checked proofs of type soundness for .NET [10, 21].
This work is more closely related to ours in the sense that [21] explicitly aims at
developing tools to automate type soundness proofs. The major difference with
our work is that they do not pursue cross-machine validation, and opt instead
for a standard type soundness proof.

7.2 Perspectives

We have develop a general framework that establishes the correctness of a param-
eterized bytecode verifier, and justifies the compositional techniques of bytecode
verification. The framework has been instantiated for specific history structures
that are often considered in the literature and implementations. These instan-
tiations provide convenient entry points to our framework, and can be used in
combination with Jakarta to build and validate bytecode verifiers with a high
degree of automation. As illustrated in Figure 1, such a combination requires
the user to provide:

– a defensive virtual machine;
– the definition of abstraction functions, in the form of Jakarta abstraction

scripts, that are used to construct the abstract virtual machine and an of-
fensive virtual machine6. Scripts may contain some minimal amount of proof
information to carry cross-machine validation;

– a formal proof of the correctness w.r.t. bytecode verification of method
invokation and exception handling, i.e. an instantiation of the module
Struct_Comp of Section 5;

– an instantiation of the history modules to the abstract virtual machine gen-
erated by Jakarta;

and returns an offensive virtual machine, several bytecode verifiers, and a proof
that these bytecode verifiers are correct, in the sense that they will reject pro-
grams that go wrong on the defensive virtual machine, and that the offensive and
defensive virtual machines coincide on programs that are accepted by bytecode
verification.

Such a combination has been used to good purpose for validating the JavaC-
ard platform. Using Jakarta, we have generated from a defensive virtual machine
6 Such a machine manipulates untyped values, and relies on the bytecode verifier to

detect programs that may go wrong.



112 Gilles Barthe and Guillaume Dufay

Abstract VM
function
Abstraction

Defensive VM Hybrid
Analysis

Monovariant
Analysis

Polyvariant
Analysis

Stackmap
Structure

Method Comp
Structure

BCV for
Defensive VM

BCV for
Abstract VM

Jakarta

proofs
correctness
invokation

User Input

Fig. 1. Framework architecture

(10,000 lines of code), both an abstract and an offensive virtual machine (5,000
lines of code each), as well as more than 10,000 lines of proof scripts that es-
tablish cross-machine validation and the monotonicity of the generated abstract
virtual machine. We have provided another 1,500 lines of proof scripts which
concern the correctness w.r.t. bytecode verification of method invokation and
exception handling. Together with the output of Jakarta, these 1,500 lines pro-
vide all relevant information for the bytecode verifier to be proved correct –
without any further user interaction.

As to future work, we plan to instantiate our framework to enhanced bytecode
verifiers that guarantee a stronger security of applications. Indeed, there have
been many proposals of type systems for the JVM that provide stronger guar-
antees with respect to safety and security, and it would be interesting to adapt
our virtual machine specifications to such type systems, and use the framework
described here to derive certified bytecode verifiers based on these type systems.
In fact, we have started modeling a defensive JVM machine for an information
flow type system7, and intend to use the framework described in this paper, in
combination with Jakarta, to build and validate a bytecode verifier for informa-
tion flow. Likewise, it would be interesting to apply our methodology to other
execution platforms, such as the .NET platform.

References

1. Roadmap for European Research on Smartcard Technologies. See
http://www.ercim.org/reset

2. J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify Java Card Applet
Isolation Properties. In D. Basin and B. Wolff, editors, Proceedings of TPHOLs’03,
volume 2758 of Lecture Notes in Computer Science, pages 335 – 351. Springer-
Verlag, 2003.

7 Non-interference is a property about all program executions and thus it cannot
be completely enforced by a defensive virtual machine. However, we only use the
defensive virtual machine as a tool to prove that the bytecode verifier enforces non-
interference, without making any claim on the security guarantees provided by such
a defensive virtual machine.



A Tool-Assisted Framework for Certified Bytecode Verification 113

3. G. Barthe, P. Courtieu, G. Dufay, and S. Melo de Sousa. Tool-Assisted Specification
and Verification of the JavaCard Platform. In H. Kirchner and C. Ringessein,
editors, Proceedings of AMAST’02, volume 2422 of Lecture Notes in Computer
Science, pages 41–59. Springer-Verlag, 2002.

4. G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, and S. Melo de Sousa. A Formal
Executable Semantics of the JavaCard Platform. In D. Sands, editor, Proceedings
of ESOP’01, volume 2028 of Lecture Notes in Computer Science, pages 302–319.
Springer-Verlag, 2001.

5. G. Betarte, B. Chetali, E. Giménez, C. Loiseaux, and O. Ly. Formal Modeling
and Verification of the Java Card Security Architecture: from Static Checkings to
Embedded Applet Execution. In Proceedings of ESMART’02, 2002.

6. J. Chrzaszcz. Implementing Modules in the Coq System. In D. Basin and B. Wolff,
editors, Proceedings of TPHOLs’03, volume 2758 of Lecture Notes in Computer
Science, pages 270 – 286. Springer-Verlag, 2003.

7. A. Coglio. Simple Verification Technique for Complex Java Bytecode Subroutines.
In Proceedings of FTFJP’02, 2002.

8. Coq Development Team. The Coq Proof Assistant User’s Guide. Version 7.4,
February 2003.

9. S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language
and Verifier. Journal of Automated Reasoning, 30(3-4):271–321, December 2003.

10. A.D. Gordon and D. Syme. Typing a multi-language intermediate code. In Pro-
ceedings of POPL’01, pages 248–260. ACM Press, 2001.

11. P. Hartel and L. Moreau. Formalizing the Safety of Java, the Java Virtual Machine
and Java Card. ACM Computing Surveys, 33(4):517–558, December 2001.

12. L. Henrio and B. Serpette. A parameterized polyvariant bytecode verifier. In J.-C.
Filliatre, editor, Proceedings of JFLA’03, 2003.

13. G. A. Kildall. A unified approach to global program optimization. In Proceedings
of POPL’73, pages 194–206. ACM Press, 1973.

14. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science,
298(3):583–626, April 2002.

15. G. Klein and M. Wildmoser. Verified bytecode subroutines. Journal of Automated
Reasoning, 30(3-4):363–398, December 2003.

16. J.-L. Lanet and A. Requet. Formal Proof of Smart Card Applets Correctness. In
J.-J. Quisquater and B. Schneier, editors, Proceedings of CARDIS’98, volume 1820
of Lecture Notes in Computer Science, pages 85–97. Springer-Verlag, 1998.

17. X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning, 30(3-4):235–269, December 2003.

18. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

19. E. Rose and K. H. Rose. Lightweight bytecode verification. In Workshop “Formal
Underpinnings of the Java Paradigm”, OOPSLA’98, October 1998.

20. N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference
Manual. Computer Science Laboratory, SRI International, February 1993. Sup-
plemented with the PVS2 Quick Reference Manual, 1997.

21. D. Syme and A. D. Gordon. Automating type soundness proofs via decision pro-
cedures and guided reductions. In M. Baaz and A. Voronkov, editors, Proceedings
of LPAR’02, volume 2514 of Lecture Notes in Computer Science, pages 418–434,
2002.


	1 Introduction
	2 Preliminaries
	2.1 Principles and Algorithms of Bytecode Verification
	2.2 The Coq Proof Assistant

	3 Bytecode Verification as a Fixpoint Computation
	4 A Parameterized Bytecode Verifier
	5 Correctness of Bytecode Verification
	6 Instantiation of History Structures
	7 Conclusions
	7.1 Related Work
	7.2 Perspectives

	References



