
Integrating Meta-modelling Aspects
with Graph Transformation for Efficient Visual
Language Definition and Model Manipulation

Roswitha Bardohl1, Hartmut Ehrig1, Juan de Lara2, and Gabriele Taentzer1

1 Computer Science Department
Technische Universitat Berlin

Berlin, Germany
{rosi,ehrig,gabi}@cs.tu-berlin.de

2 Escuela Politécnica Superior
Ingenierı́a Informática

Universidad Autónoma de Madrid
Juan.Lara@ii.uam.es

Abstract. Visual languages (VLs) play a central role in modelling various sys-
tem aspects. Besides standard languages like UML, a variety of domain-specific
languages exist which are the more used the more tool support is available for
them. Different kinds of generators have been developed which produce visual
modelling environments based on VL specifications. To define a VL, declarative
as well as constructive approaches are used. The meta modelling approach is a
declarative one where classes of symbols and relations are defined and associated
to each other. Constraints describe additional language properties. Defining a VL
by a graph grammar, the constructive way is followed where graphs describe the
abstract syntax of models and graph rules formulate the language grammar.
In this paper, we extend algebraic graph grammars by a node type inheritance
concept which opens up the possibility to integrate both approaches by identi-
fying symbol classes with node types and associations with edge types of some
graph class. In this way, declarative as well as constructive elements may be used
for language definition and model manipulation. Two concrete approaches, the
GENGED and the AToM3 approach, illustrate how VLs can be defined and mod-
els can be manipulated by the techniques described above.

1 Introduction

Visual languages (VLs) play a central role in modelling various system aspects. One,
if not the main visual modelling language is the UML [19] which integrates a num-
ber of different diagram techniques, useful to describe structural as well as behavioural
aspects of object-oriented software systems. Although the UML defines a standard in
visual modelling, there are of course various further visual modelling techniques, of-
ten domain-specific and often for specific aspects. Especially for those domain-specific
solutions which are not widely known, a generator for visual modelling environments
is useful. After specifying the VL in mind, a supporting modelling environment con-
sisting of visual editors, simulators, compilers and animators is generated automatically
and does not have to be coded by hand. Thus, rapid prototyping is supported.

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 214–228, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Integrating Meta-modelling Aspects with Graph Transformation 215

There are mainly two different lines to define a VL: the declarative way and the
constructive way. UML is defined by the Meta Object Facilities (MOF) approach [19]
which uses classes and associations to define symbols and relations of a VL. Within this
meta modelling approach, multiplicities and OCL constraints [23] are additionally used
to formulate desired language properties. While constraint-based formalisms provide a
declarative approach to VL definition, grammars are more constructive, i.e. closer to
the implementation. In [18] for example, textual as well as graph grammar approaches
are considered for VL definition. Due to its appealing visual form, graph grammars
can directly be used as high-level visual specification mechanism for VLs [4]. Defin-
ing the abstract syntax of visual forms as graphs, a graph grammar defines directly
the language grammar. The induced graph language determines the corresponding VL.
Visual language parsers can be immediately deduced from such a graph grammar. Fur-
thermore, abstract syntax graphs are also the starting point for model simulation and
transformation, i.e., model manipulation [5, 10, 22, 13]. Also here, it is very natural to
use graph transformation to come up with a high-level and constructive specification.

In this paper, we consider the integration of meta modelling with graph transforma-
tion. As common basis we take into account the types of visual symbols and relations
within a VL, i.e. the visual alphabet. While constraints describe additional requirements
on this alphabet, transformation rules formulate a constructive procedure. In the MOF
approach, classes of symbols can be inherited, meaning that their attribute lists and
their associations are also present at all their descendants. Considering graph transfor-
mation on the other hand, an additional type graph [8] is used to ensure a certain type
safety on nodes and edges. Supporting node type inheritance in addition, leads to a
more dense form of a graph transformation system, since similar transformation rules
can be abstracted into one. We believe this work can be very valuable for the Model
Driven Arquitecture [19] (MDA), where model transformation plays a central role. In
Section 2, we present algebraic graph transformation with node type inheritance facil-
ities and show how this kind of graph transformation can be flattened to simply typed
graph transformation.

The MOF and the graph transformation approach can be integrated by identifying
symbol classes with node types and associations with edge types. In this way, declara-
tive as well as constructive elements may be used for language definition, but it is still
open how single parts of a VL specification are defined. In Section 3, we discuss two
possible approaches, the AToM3 and the GENGED approach, which are quite different
to each other.

All new concepts are illustrated at a running example which is a variant of UML
Statecharts. We focus on the abstract syntax definition of the language as well as the
simulation of concrete state models. Last but not least, we compare our approaches to
further ones in the literature.

2 Typed Graph Transformation with Node Type Inheritance

In this section we present our new concepts of typed graph transformation with node
type inheritance. Due to the space limitations, we omitted all proofs and details. The
interested reader is asked to consult [2].

216 Roswitha Bardohl et al.

2.1 Type and Instance Graphs

The basic idea for specifying node type hierarchies is to introduce a special kind of
(directed) edges, hierarchy edges, into type graphs. The source node of a hierarchy edge
is said to be a sub-type of the target node, which is called the former one’s super-type.
Nodes are marked either as concrete or abstract. In host graphs only nodes of concrete
types shall occur, while graphs in rules may contain nodes of both types.

Definition 1. (Type Graph with Inheritance) A type graph with inheritance is a triple
(TG, I, A) consisting of a type graph TG = (N, E, s, t) (with a set N of nodes, a
set E of edges, a source and a target function s, t : E → N), an inheritance graph I
sharing the same set of nodes N , and a set A ⊆ N , called abstract nodes.
For each node n in I the inheritance clan is defined by clanI(n) = {n′ ∈ N |
∃ path n′ ∗−→ n in I} where path of length 0 is included, i.e. n ∈ clanI(n).
The sub-graph spanned by the hierarchy edges must be acyclic.

To benefit from the well-founded theory of graph transformation [8], type graphs
with inheritance can be flattened to ordinary ones.

Definition 2. (Closure of Type Graph with Inheritance) Given (TG, I, A) with TG =
(N, E, s, t), the abstract closure of (TG, I, A) is the graph TG = (N, E, s, t) with

– E = {(n1, e, n2) | n1 ∈ clanI(s(e)), n2 ∈ clanI(t(e)), e ∈ E},
– s((n1, e, n2)) = n1,
– t((n1, e, n2)) = n2, and
– projE((n1, e, n2)) = e for e ∈ E.

The graph T̂G = TG|N−A is called concrete closure of (TG, I, A).
Given a graph G = (N, E, s, t) and a set X ⊆ N , we denote by G|X the sub-graph
(X, EX = {e ∈ E | s(e), t(e) ∈ X}, s|EX , t|EX).

The discrimination between the abstract and the concrete closure of a type graph is
necessary, since there are instance graphs with respect to either one. The left-hand side
(LHS) and right-hand side (RHS) of abstract rules are typed over the abstract closure,
while ordinary host graphs and concrete rules (see section 2.2 for rules) are typed over
the the concrete closure. Due to the existence of the canonical inclusion incTG : T̂G ↪→
TG all graphs typed over T̂G are also typed over TG.

Definition 3. (Instance Graph of Type Graph with Inheritance) An abstract instance
graph (G, type) of (TG, I, A) is an instance graph of TG, i.e. (G, type : G → TG).
Analogously, a concrete instance graph of (TG, I, A) is typed over T̂G.

The choice of triples for the edges of a type graph’s closure allows expressing a
typing property with respect to the type graph with inheritance. The instance graph can
be typed over the type graph with inheritance (for convenience) by a pair of functions,
one assigning a node type to each node and the other one assigning an edge type to
each edge. Both are defined canonically. A graph morphism is not obtained this way,
but some mapping that will be introduced as clan morphism, uniquely characterizing
the type morphism into the flattened type graph.

Integrating Meta-modelling Aspects with Graph Transformation 217

Definition 4. (Clan Morphism) Given a type graph with inheritance (TG, I, A),
type′ : G→ TG is a clan-morphism, if for all e ∈ GE holds

– type′N ◦ sG(e) ∈ clanI(sTG ◦ type′E(e)) and
– type′N ◦ tG(e) ∈ clanI(tTG ◦ type′E(e)).

type′ is called concrete, if type′N(n) /∈ A for all n ∈ GN .

The notion of a type refinement is used in order to formalize the relationship between
abstract and concrete rules as they are proposed in Section 2.2. It defines an order over
possible typing morphisms for a given instance graph. A typing morphism is said to
be finer than another one, if it assigns more concrete node types to the nodes of the
instance graph.

Definition 5. (Type Refinement)
(G, type′ : G→ TG) is a type refinement of (G, type : G→ TG), if

– type′N(n) ∈ clan(typeN(n)) for all n ∈ GN and
– type′E = typeE .

type′ is respectively called finer than type, denoted type′ ≤ type.

Applying graph transformation with node type inheritance to visual language def-
inition, usually needs attributed nodes. Thus, we have to clarify how the concept of
node type inheritance can be extended to node attributes. Assuming node type A has
attributes, a descendant node type B inherits not only all adjacent edge types but also
its attribute list. Of course, it should be possible to enlargen the inherited list by new
attributes.

If we use attributes only as labels, i.e. they are not changed during a transformation,
this kind of typed attributed graphs can be defined by ordinary typed graphs. (Poten-
tially infinite) sets of data values are considered as nodes. They are called data nodes
in contrast to object nodes denoting all other nodes of an attributed graph. Data nodes
and object nodes are linked by attributes, i.e. edges with an object node as source and
a data node as target. We assume that there are no edges starting at some data node. If
this property is satisfied within the type graph, it also holds for the instance graphs due
to the typing morphisms.

Summarising, graphs and graph transformation with node attributes which are not
changed are already captured by our formalisation. If we need a more general attribution
concept where computations can take place on attributes, future work is needed to extent
the formal approach.

Example: Type Graph for a Statechart Variant. Fig. 1 shows a type graph with
inheritance for a slightly modified sub-set of the Statecharts meta model proposed in
the UML specification [19]. For space limitations, the following simplifications have
been performed. Only PseudoStates of the initial kind (attribute ind) are considered, i.e.,
we eliminated classes SynchState, StubState and concurrent states and concentrate on
CallEvent and SignalEvent classes. Events are associated to the transitions they trigger
(and not to states). For simulation, objects need to receive events, so we modelled an
event queue (by relationships receives and next); the last event is a special one depicting
its end. Additionally, we added a relationship current to depict the state a particular
object is in. Note how the triple (TG, I, A) has been expressed in a single graph, where
the nodes of TG and I are the same, regular edges represent edges in TG, hollow
arrow-head edges represent edges in I and the elements of A are represented in italics.

218 Roswitha Bardohl et al.

subvertex

State

to
p

behaviour

name: Name

target

source

StateVertex

ModelElement

Transition

SignalEvent CallEventSimple
StateState

Composite

PseudoState

ind: PseudostateKind

StateMachine

re
ce

iv
es

current

next

Event

Instance

Object

trigger

Final
State

Fig. 1. Type graph with inheritance for a part of UML Statecharts.

2.2 Rules and Derivations
Transformations of graphs are described by graph rules. We follow the so-called Dou-
ble Pushout approach to graph transformation [8]. It is desired to allow abstract node
instances in rules, such that abstract rules actually represent a set of structurally similar
rules, we call concrete rules. To get all concrete rules for an abstract rule, any combi-
nation of node replacements in the rule’s LHS (being of concrete or abstract type) by
instances of respective concrete sub-types (reflexive and transitive, i.e. the type’s clan)
must be considered. The rule morphism’s image of an LHS node must always be re-
placed by an instance of the same type. The other nodes in the RHS remain the same
and therefore must be instances of concrete types. Concrete rules are structurally equal
to the abstract rule, their typing morphisms are finer (cf. Def. 5) than the ones of the
abstract rule and are concrete clan morphisms.

Definition 6. (Abstract and Concrete Rules)

An abstract rule typed over a type graph TG with inheritance is given by r = (L l←−
K

r−→ R, type, NAC), where l and r are graph morphisms, type is a triple of typing
clan morphisms type = (typeL : L → TG, typeK : K → TG, typeR : R → TG),
and NAC is a set of triples nac = (N, n, typeN) with N being a graph, n : L → N
an injective graph morphism, and typeN : N → TG a typing clan morphism, such that
the following conditions hold:

– typeL ◦ l = typeK = typeR ◦ r
– typeR,N(R′

N) ∩A = ∅, where R′
N := RN − rN (KN)

– typeN ◦ n ≤ typeL for all (N, n, typeN) ∈ NAC

A concrete rule rt with respect to an abstract rule r is given by rt = (L l←− K
r−→

R, t, NAC), where t is a triple of concrete typing clan morphisms t = (tL : L →
TG, tK : K → TG, tR : R→ TG) such that the following conditions hold (cf. Fig. 2):

– tL ◦ l = tK = tR ◦ r
– tL ≤ typeL, tK ≤ typeK , tR ≤ typeR, and
– tR,N (x) = typeR,N(x)∀x ∈ R′

N .

The set of all concrete rules rt with respect to an abstract rule r is denoted by r̂.

Integrating Meta-modelling Aspects with Graph Transformation 219

N

typeN

��

tNi

��

L
n��

typeL

���
��

��
��

��
��

��
��

�

tL

���
��

��
��

��
��

��
��

� K

typeK

��

tK

��

l�� r �� R

typeR

����
��

��
��

��
��

��
��tR

����
��

��
��

��
��

��
��

TG

Fig. 2. Abstract and concrete rules.

The main idea for the application of an abstract rule is to apply one of its concrete
rules. Both the host graph and the concrete rule are typed by concrete clan morphisms
such that we can define the application of concrete rules. Later we will also define the
application of an abstract rule and the equivalence of both (cf. Theorem 1).

Definition 7. (Matching and Application of Concrete Rules)

Let rt = (L l←− K
r−→ R, t, NAC) be a concrete rule, (G, typeG) a typed graph,

with typeG : G → TG being a concrete clan morphism, and m : L → G a graph
morphism. m is a match with respect to rt and (G, typeG), if

– m is a match with respect to the untyped rule L
l←− K

r−→ R and the graph G,
– typeG ◦m = tL, and
– m satisfies the negative application conditions NAC, i.e. for each (N, n, typeN) ∈

NAC it holds, that there does not exist a morphism o : N → G, such that o◦n = m
and typeG ◦ o ≤ typeN .

Given a match m, the concrete rule can be applied to the typed graph (G, typeG) via
m. A direct derivation step is denoted by (G, typeG)

rt,m
=⇒ (H, typeH) and can be

constructed similar to the classical theory of graph transformations [8].

In [2] we have shown that it is equivalent to apply concrete rules where typing
is given by concrete clan morphisms or to apply classical rules with typing morphisms
over a given type graph which is the concrete closure over a type graph with inheritance.
Nevertheless, it makes sense to examine whether it is possible to find a more direct
way to apply an abstract rule, because it is impractical for a tool implementing graph
transformation with node type inheritance to hold all concrete rules of an abstract rule in
memory or for each of them to find a match morphism into a host graph. Since abstract
and concrete rules differ only in typing, but have the same structure, a match morphism
from the LHS of the concrete rule into a given instance graph is also a match morphism
for the abstract rule, for the latter one not being compatible with typing, though. Using
the notion of type refinement, however, we can express a compatibility property.

Definition 8. (Matching and Application of Abstract Rules)

Let r = (L l←− K
r−→ R, type, NAC) be an abstract rule typed over TG, (G, typeG)

a typed graph with typeG : G→ TG being a concrete clan morphism, and m : L→ G
a graph morphism. Then m is a match with respect to r and (G, typeG), if

220 Roswitha Bardohl et al.

– m is a match with respect to the untyped rule L
l←− K

r−→ R and the graph G.
– typeG ◦m ≤ typeL.
– tK,N (x1) = tK,N (x2) for tK = typeG ◦ m ◦ l and all x1, x2 ∈ KN with

rN (x1) = rN (x2).
– m satisfies NAC, i.e. for each nac = (N, n, typeN) ∈ NAC it holds that it does

not exists a morphism o : N → G such that o ◦ n = m and typeG ◦ o ≤ typeN .

Given a match m, the abstract rule can be applied to (G, typeG) yielding an abstract
direct derivation (G, typeG)

r,m
=⇒ (H, typeH) with concrete type graph (H, typeH) as

follows:

1. Construct the untyped direct derivation G
r,m
=⇒ H in the sense of [9].

2. Construct typeD and typeH as follows
– typeD = typeG ◦ l′

– typeH(x) = if x = r′(x′) then typeD(x′) else typeR(x′′),
where m′(x′′) = x and x ∈ HE or x ∈ HN

Theorem 1. (Equivalence of Abstract and Concrete Direct Derivations)
Given an abstract rule r = (L ←− K −→ R, type, NAC) over a type graph TG
with inheritance, a concrete typed graph (G, typeG) and a structural match morphism
m : L → G (i.e. a match with respect to the untyped rule L ←− K −→ R). Then
the following statements are equivalent, where (H, typeH) is the same concrete typed
graph in both cases:

1. m : L→ G is a match with respect to the abstract rule r yielding an abstract direct
derivation: (G, typeG)

r,m
=⇒ (H, typeH).

2. m : L→ G is a match with respect to the concrete rule rt = L←− K −→ R with
rt ∈ r̂ and tL = typeG ◦m yielding a concrete direct derivation: (G, typeG)

rt,m=⇒
(H, typeH).

Theorem 1 allows us to use the dense form of abstract rules for model manipulation
instead of generating and holding all concrete rules, i.e., abstract derivations are much
more efficient than concrete derivations. In this sense, Theorem 1 allows us to use on
the one hand an efficient procedure and on the other hand we are sure that the result
is the same as in the classical theory using concrete rules. Moreover, as a consequence
of Theorem 1, graph languages built over abstract rules and mechanisms are equivalent
to graph languages that are built over a corresponding set of concrete rules. In general,
rules together with a start graph define a graph grammar building up a graph language.

In the case of attribute labels, it might be convenient to add variable nodes of data
types to rule graphs which are matched by concrete labels when applying such a rule.
Please note that in the following figures for our example, the same variable might occur
several times in a rule. It corresponds to one variable node which has to be matched by
one data node. (Compare e.g. rule 2 in Fig. 3.)

Example: Generation of Statecharts. The graph grammar for generating valid State-
chart instances according to the type graph with inheritance presented in Fig. 1 is shown
in Fig. 3, where especially the type StateVertex (SV) is abstract. Please note that we omit
the gluing graph K for illustrational reasons. The start graph contains a node of type

Integrating Meta-modelling Aspects with Graph Transformation 221

StateMachine (SM) connected to an object (OB). The UML specification establishes
that a StateMachine has a unique top state of type State, but the UML well-formedness
rules establish that its type should be further refined into a CompositeState (CS). For
this purpose, rule 1 checks whether the StateMachine SM has already a top state and
if this is not the case, it creates a top state together with a CompositeState (CS) and a
PseudoState (PS) of the initial kind.

NAC

OB

SM

CS CS CS CS

SM CS SM SM name=CSname

CS

name=SSname

SS

name=FSname

FS

CS name=CSname

CS PS
name=’’
ind=initial

sub sub
1
RHS

CS
1

LHS
Rule 4: Create Composite State (CSname: Name)

name=Ename

name=Ename
SEV

CEV

SV

SV

SV

SV

SV
2

SV
1LHS

FS
1NACPS

ind=initial

2

SVTR
PS

ind=initial
ts

1NAC

CSSM

1
top

NAC

Rule 5: Connect States SignalEvent (TRname, Ename: Name)

s

s
1

1
TR

TR t

t

2

2

name=TRname

name=TRname

trigger

trigger

RHS

RHSNAC

SV
2

SV
1LHS

FS
1NACPS

ind=initial
2

SVTR
PS

ind=initial
ts

1NAC

CSSM

1
top

NAC

b

Start Graph

LHS
1

RHS
1 sub

Rule 2: Create Simple State (SSname: Name)

1
LHS RHS

1 sub

sub

Rule 3: Create Final State (FSname: Name)

LHSNAC

top1

Rule 1: Create Initial State (CSname: Name)

1

RHS

top1

3

PS
name=’’
ind=initial

Rule 6: Connect States CallEvent (TRname, Ename: Name)

Fig. 3. Graph grammar for generating valid Statecharts.

Rules 2, 3 and 4 create new SimpleState (SS), FinalState (FS) and CompositeState
(CS) objects inside a given CompositeState. In contrast to rule 1 (where the multiplicity
of relationship top in the side of the State class is “1..1”) the multiplicity of the sub-
vertex relationship (from CompositeState to StateVertex in the side of the latter class)
is “0..*”. This implies that there is no need for a negative application condition check-
ing the multiplicity. Additionally, each StateVertex should be connected to at most one
CompositeState through relationship subvertex. This is achieved by the graph grammar
as each newly created state is attached to a single CompositeState, and this relationship
cannot be modified later.

Finally, rules 5 and 6 allow connecting two objects of type StateVertex (SV). Rule
5 describes the insertion of a transition with SignalEvent (SEV), while rule 6 handles
the case of CallEvent (CEV). They are abstract rules as StateVertex is an abstract class.
Additionally, the UML specification establishes (by means of constraints expressed in
OCL) that a FinalState should not have any outgoing connection, that an PseudoState
of the initial kind should not have any incoming connection and at most one outgoing

222 Roswitha Bardohl et al.

connection, and that the top state should not have any outgoing connection. We graph-
ically modelled these constraints by means of negative application conditions (NACs).
The advantages of using abstract rules here are clear, as otherwise we would have to
model rules for the valid combinations of the states we want to connect. Additionally,
the typing in NACs is more concrete than the corresponding typing in the LHS.

Fig. 4 shows a Statechart obtained through the derivation of the previous graph
grammar. The concrete syntax of the final Statechart is shown in the lower right corner.
In the third step in the derivation, abstract rule 5 is applied. Abstract types of nodes 1
and 2 in the rule instantiate to PseudoState PS and SimpleState (node called ‘SS1’ in
the graph), respectively. In the example, abstract rules 5 and 6 have been applied with
other instantiations to connect nodes ‘SS1’ (type SS) and ‘CS2’ (type CS), ‘CS2’ (type
CS) and ‘FS1’ (type FS), ‘SS2’ (type SS) and ’SS1’ (type SS), as well as PseudoState
PS and ‘SS2’ (type SS). Without the possibility to model abstract rules, we would have
had to create concrete rules for these combinations.

sub

OB SM CS
’CS1’

PS

’’
initial

OB SM

Start Graph

b

R
ul

e
1(

’C
S

1’
)

OB SM CS
’CS1’ SS

’SS1’

PS

’’
initial

SS1

CS1

TR3: E2

FS1

Concrete Syntax

TR2: E1

T
R
5
:

E
1

SS2

CS2
TR4:

TR1:

SS
’SS1’

PS

’’
initial

SEV
’ ’

TR
’TR1’

CS
’CS2’

PS

’’
initial

OB SM CS
’CS1’

b top
OB SM CS

’CS1’ SS
’SS1’

PS

’’
initial

TR
’TR1’

s

t

sub trigger

sub
sub

sub

s

t

b top

sub

sub trigger

SEV
’ ’

R
ul

e
4

(’C
S

2’
)

R
ul

es
 2

, 3
, 6

(t
w

ic
e)

an
d

5
(t

w
ic

e)

OB SM CS
’CS1’

b top

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

PS

’’
initial

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

b top sub (’S
S

1’
)

R
ul

e
2

R
ul

e
5

(’T
R

1’
, ’

’)b top

sub

sub

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

trigger

trigger

trigger

trigger

trigger

Fig. 4. A derivation of the graph grammar for generating Statecharts.

Example: Simulation of Statecharts. Fig. 5 shows a rule set for simulating our sub-
set of Statecharts. The first rule adds the current relationship (c) to an object (OB) if
it does not already have one. The initial state is the only InitialState node which is a
subvertex (sub) of the top state. Rule 2 models a state change due to a transition from
the current state. This is an abstract rule, as StateVertex nodes are abstract. This feature
allows us to condense in a single abstract rule the combinations of all concrete sub-
types of StateVertex nodes. Rule 3 is similar to the previous one, but models a state
change into a composite state. In this case, the current state should be its initial state

Integrating Meta-modelling Aspects with Graph Transformation 223

(that is, the PseudoState node is subvertex of the CompositeState). Rule 4 moves from
the initial state to another one without considering events (one does not have to wait
for an event to move from this PseudoState.) Finally, rule 5 models the fact that we
can change the state due to transitions departing from any of the super-states of the
current state. Thus, this rule allows going up in the subvertex hierarchy starting from
the current state. We cannot apply this rule, if the current state is already a subvertex
of the top state, or if the current state is indeed a PseudoState of the initial kind. The
latter restriction is modelled by assigning type State (ST) to the current state in rule 5
(PseudoStates are not sub-classes of State but of StateVertex). The reason for forbidding
this is that a transition in a PseudoState is still not finished, we have to end up in a node
sub-class of State.

Rule 4: Change from Initial State

OB

SV

1

c

OB SM

CS

PS

ind=initial

top

sub

3

5

6

7

4

b

2

1

LHS
OB SM

CS

PS

ind=initial

EVOB

SV
2

SVTR

name=x

EV
RHS 8

rec

1

s

3

6
t

5

7

trig8

c

OB

SV
2

name=x

EV

SVTR

name=x

EV

5

6
t

4

7

trig8

EV
1

c

s

3

rec

next

8

CS

Rule 2: Change State

LHSNAC

6

name=x

EV
OB

TRSV CS

name=x

EV

trig9
10

EV

PS

ind=initial

rec

1

s t
42 6

53

sub

7

c

next
9LHS

8
TRSV CS

name=x

EV

trig9
10

PS

ind=initial

EVOB

s t
42 6

53

sub

7

8

c

9
rec1

CS

SM

4
top

OB

STCS

OB

CS ST

NAC

Rule 5: Hierarchy up
1

sub

4 2
c

3

LHS RHS

sub

3
24

1

c

PS

ind=initial

TR SV

OB
2 4

3

s t

5

6

c1RHS

TR SVPS

ind=initial

OB

5

t
6

s

3

2

1

c
4

LHS

NAC
Rule 1: Create current

RHS

c

top

sub

3

5

6

7

4

b

2

1

Rule 3: Change to Initial State

RHS

Fig. 5. Graph grammar for simulating Statecharts.

Fig. 6 shows an execution of the previous grammar to the Statechart we built in
Fig. 4. In the first step, we apply rule 1, setting the current state pointer to the Pseu-
doState (initial kind) of the top state. Then, abstract rule 4 moves the current state to
node ‘SS1’. Node 6 in the rule (StateVertex type) is matched to node ‘SS1’ in the graph,
typed over SimpleState. Next, abstract rule 3 is applied and the pointer is moved to the
initial state of composite state ‘CS2’. Node 2 (of type StateVertex) in the rule matches
node ‘SS1’ of type SimpleState in the graph; and the Event is of type CallEvent. Then,
abstract rule 4 can be applied, which moves the pointer to node ‘SS2’. The type instan-
tiation is from StateVertex in the rule to SimpleState in the graph. Now, abstract rule 5
is applied, moving the current pointer up in the hierarchy to node ‘CS2’. The type of

224 Roswitha Bardohl et al.

node 2 (CompositeState) in the rule is instantiated to SimpleState of node ‘SS2’ in the
graph. For the following step, abstract rule 2 can be applied, and the pointer is set to
node ‘FS1’. The type instantiation is from StateVertex and Event in the rules to Compos-
iteState, FinalState and CallEvent in the graph. Here, no rule can be applied anymore,
and the simulation finishes. Thus, this graph grammar models all possible simulations
of the initial model. Some derivations may lead to dead ends. This may happen for ex-
ample, going up in the hierarchy with rule 5, and finally discovering that none of the
super-states have any outgoing transition.

c

OB SM CS
’CS1’

b top

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

PS

’’
initial

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

CEV
’none’

CEV
’E1’

CEV
’E2’

rec

next

next

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

PS

’’
initial

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

OB SM CS
’CS1’

b top

CEV
’none’

CEV
’E1’

CEV
’E2’

rec

next

next

sub

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

trigger

trigger

trigger

trigger

trigger

c

Rule 3
OB SM CS

’CS1’

b top

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

PS

’’
initial

CEV
’E2’

CEV
’none’

rec

next

OB SM CS
’CS1’

b top

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

PS

’’
initial

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

CEV
’E2’

CEV
’none’

rec

next

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

trigger

trigger

trigger

trigger

trigger

c

sub

OB SM CS
’CS1’

b top

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

PS

’’
initial

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

CEV
’E2’

CEV
’none’

rec

next

sub

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

trigger

trigger

trigger

trigger

trigger

c

OB SM CS
’CS1’

b top

CS
’CS2’

PS

’’
initial

SS
’SS1’

TR
’TR2’

FS
’FS1’

SEV
’ ’

PS

’’
initial

SS
’SS2’

CEV
’E1’

CEV
’E2’

SEV
’E1’

SEV
’ ’

TR
’TR5’

TR
’TR4’

TR
’TR1’

CEV
’none’

sub

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

trigger

trigger

trigger

trigger

trigger

c

Rule 1 Rule 4

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

trigger

trigger

trigger

trigger

trigger

c

sub

Rule 4

Rule 5
Rule 2 sub

sub

sub

sub sub

s

t

s

t

t

s

s

t

TR
’TR3’t

s

sub

rec

trigger

trigger

trigger

trigger

trigger

Fig. 6. A derivation of the simulation graph grammar starting from the graph generated in Fig. 4.

3 Integration of Meta-modelling with Graph Transformation

The extension of algebraic graph transformation with node type inheritance facilitates
its integration with meta modelling. If we identify model element classes with node
types and associations with edge types, a unique basis for the description of symbols
and their relations is laid. Model elements can share common attributes and relations
to other model elements which is expressed by a generalisation relationship. Similarly,
an inheritance relation is supported for node types (see Sec.2). Summarising, the in-
formation expressed by class diagrams in the meta modelling approach is formulated
by type graphs (with node type inheritance) for graph transformation. On top of this

Integrating Meta-modelling Aspects with Graph Transformation 225

common basis, constraints are used to describe language properties in the meta mod-
elling approach. On the other hand, typed graph grammars describe the modelling lan-
guage as shown for the sample sub-language of Statecharts in Sec.2. In the following,
two approaches for visual language (VL) definition and model manipulation are pre-
sented which distinguish in exactly this design decision. We first shortly present these
approaches and compare them afterwards.

The GENGED Approach. In GENGED [1], a VL is defined (or generated) by an al-
phabet and a grammar. An alphabet establishes a type system for model elements (called
symbols) and their relations (called links), i.e. it defines the vocabulary of a VL. The ab-
stract syntax of symbols is represented by graph nodes, whereas graph edges represent
the abstract syntax of links. The layout of symbols is given by graphical objects defin-
ing node attributes, and for each edge (abstract link) at least one graphical constraint is
defined. An alphabet instance is given by an abstract syntax graph which is extended
by graphical objects for the layout; the corresponding graphical constraints are solved
accordingly. Usually, an abstract syntax graph is built up by VL rules (occurring in a
VL grammar) which are modeled as graph rules. The grammar definition as well as the
manipulation of models like Statecharts [3] is done purely by graph transformation as
GENGED uses the graph transformation engine AGG [11] for this purpose.

Up to now, neither meta modelling nor inheritance concepts are realized. For defin-
ing all the features of Statecharts as we did by the type graph in Fig. 1, this type graph
must be flattened in order to establish an alphabet. With the flatting, some more links
have to be added. Moreover, the set of VL rules would correspond to concrete rules,
i.e. the grammar contains many similar rules. Using node type inheritance concepts as
proposed in Sec. 2 would reduce the set of rules in a sense that the proposed abstract
rules have to be defined only. Such concise rule sets can be used to define concise ab-
stract grammar rules for different purposes then, like syntax-directed editing, parsing,
and simulation as it is supported by GENGED.

The AToM3 Approach. AToM3 [10] is a multi-paradigm modelling tool, which in-
cludes meta modelling, multi-formalism and modelling at different abstraction levels.
Its main component is the kernel, responsible for loading, saving, creating and manip-
ulating models, as well as for generating code for the meta modelled formalisms. The
generated code must be loaded on top of the kernel again to allow the user building
models in the defined formalism. The tool uses a pure meta modelling approach for
VL definition, i.e. a VL is completely defined by a meta model, which is a type graph
with inheritance with additional constraints. Some of them are assigned (pre- or post-
conditions) to events (editing, connecting, etc.), the evaluation of which prohibits or
enables the execution of the events and guarantees model correctness by construction.

In AToM3, models can be manipulated by means of Python or with graph gram-
mars. Typical manipulations are simulation, optimization and formalism transforma-
tion (which produces an instance model of a different meta model). When defining
graph grammar rules, one may choose either an “exact type matching” or a “sub-type
matching”. In the latter case, rules are considered abstract and any node can be matched
with any of its sub-types. There is no distinction between abstract and concrete nodes
and sub-typing relationships are found at runtime (by comparing nodes attributes and
connections). This is due to the fact that some of the formalisms for meta modelling

226 Roswitha Bardohl et al.

do not provide for inheritance. This feature also allows applying transformation rules
to instances of meta models that are not explicitly related through inheritance relation-
ships. In this way, the inheritance concept can be mapped to the semantics defined in
this work, as AToM3 can be configured to work in the Double Pushout approach.

Comparison of Both Approaches. After having defined the classes or types of model
elements and their relations, AToM3 supports the meta modelling approach which yields
in a free editor where the model is checked according to given language constraints at
specific events. Instead, GENGED can generate two kinds of editors: Either editing is
done in a syntax-directed way where graph rules define the editor operations or free
editing is supported where a parser has to check, if the edited model is syntactically
correct. While the definition of a language by corresponding language constraints is
usually easier, a parser is normally more efficient than a constraint checker. Syntax-
directed editing assumes a language understanding which knows well about the struc-
ture and dependencies of its elements. Pure syntax-directed editors can be directly de-
duced from a language grammar. Combining both kinds of editing, the corresponding
specification can be purely rule-based or mixed in the sense that rules define complex
editing operations while language constraints define syntactic correctness.

Both approaches use graph transformation for model manipulations such as simula-
tion. Due to the availability of node type inheritance, graph transformation concepts can
build up directly on meta modelling concepts as in AToM3. In GENGED, several kinds
of graph transformation systems are used for different purposes as editing, parsing and
simulation. Node type inheritance can condense each of them.

4 Related Work

Considering the node type inheritance concept for graph transformation, there are al-
ready tools like [21, 20] which support this concept in the same or nearly the same way.
However, node type inheritance has been rarely considered in formal graph transfor-
mation approaches. The graph transformation-based language PROGRES is formalised
by programmed structure rewriting systems [21] where so-called schema consistent
structures are transformed. A schema corresponds to a type graph with node type inher-
itance, while a schema consistent structure corresponds to a well-typed instance graph.
Thus, a formalisation of node type inheritance is available for PROGRES, but there
is no theory building up on that. GME [16] e.g., is a meta modelling tool (for model
integrated computing) which has lately incorporated graph transformation techniques
for model manipulation, although its approach is not founded on the theory of graph
transformation and its formalization has not been shown.

At the “Symposium on Visual Languages and Formal Methods” in 2001 there was a
so-called “statechart modeling contest” where declarative as well as constructive meth-
ods have been used to define Statecharts and their behaviour. No winner was selected,
but the specific strengths of the different methods have been discussed. There was not
any approach integrating meta modelling with graph transformation, thus combining
declarative with constructive methods. A number of graph transformation-based ap-
proaches were presented where most of the approaches could have been simplified us-
ing the hierarchy concept proposed in the present work. In addition, there is the work

Integrating Meta-modelling Aspects with Graph Transformation 227

in [22] where Statecharts modelling is based on a meta model for extended hierarchical
automata and graph transformation rules for its simulation. A similar approach is taken
into account in [10] where a graph grammar is used to transform Statecharts to Petri
nets which can be simulated, but there is no connection to formal graph transformation
approaches.

The approach of [15] uses transformation units for generating and simulating stat-
echarts, and is a clear example where our approach could have simplified the graph
grammars. They encode the type hierarchy in graph grammar rules in such a way that
they define rules for replacing each super-type for each one of its sub-types. Nonethe-
less, embedding conditions are needed for these rules and are not directly applicable in
the standard Double Pushout approach.

5 Conclusions

In the literature, the main approaches to visual language definition are meta modelling
and grammar-based approaches. We discussed how to integrate meta modelling with
graph grammar concepts in order to support an efficient language definition and model
manipulation. We presented two concrete approaches which differ in the way how meta
modelling and graph transformation concepts are used and compared them.

The integration of meta modelling with graph transformation is based on a node
type inheritance concept for algebraic graph transformation. This concept allows the
definition of abstract rules, in which abstract nodes can appear. These can be matched
with nodes of any of its sub-types. The concept is extremely useful in practice as graph
grammars can be notably simplified. This has been demonstrated by showing a gen-
eration and a simulation grammar for a sub-set of UML Statecharts. The formalism
presented is restricted to attributes being labels. It is up to future work to extend this
work to attributed graph transformation where computations on attributes can take place
and also edges may be attributed.

Moreover, analysis techniques available for attributed graph transformation such as
constraint checking [14, 17] and critical pair analysis [13], should be lifted to graph
transformation with node type inheritance. Having e.g. constraint checking available,
language requirements could be expressed by syntactic consistency constraints in the
meta modelling approach first. If parsing rules are developed thereafter, their correct-
ness with respect to requirements could be checked. In this way we ensure that the
language defined by the parser is at least a sub-language of that defined by constraints.
Critical pair analysis can be useful to optimise the visual language parser (see [7]).

References

1. Bardohl, R., 2002 A Visual Environment for Visual Languages Science of Computer Pro-
gramming 44, pages 181-203. The GENGED home page: http://tfs.cs.tu-berlin.de/genged

2. Bardohl,R., Ehrig, H., de Lara, J., Runge, O., Taentzer, G., Weinhold, I. 2003. Node Type
Inheritance Concept for Typed Graph Transformation Technical Report 2003–19, TU Berlin.

3. Bardohl, R., and Ermel, C. 2001. Visual Specification and Parsing of a Statechart Variant
using GENGED. In Statechart Modeling Contest, part of VLFM 2001.

228 Roswitha Bardohl et al.

4. Bardohl, R., Taentzer, G., Minas, M., Schürr, A. 1999. Application of Graph Transformation
to Visual Languages. In Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Volume 2, H.Ehrig, G.Engels, H.-J.Kreowski, and G.Rozenberg (eds.), pages 105–
181. World Scientific.

5. Baresi, L., Pezze, M. 2002. A Toolbox for Automating Visual Software Engineering. In FASE
2002, R. Kutsche and H. Weber (eds.), pages 189 – 202. Springer LNCS 2306.

6. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G. 2001. A Visualization of OCL using
Collaborations. In UML 2001, M.Gogolla and C.Kobryn (eds.), Springer LNCS 2185.

7. Bottoni, P., Schürr, A., Taentzer, G. 2000. Efficient Parsing of Visual Languages based on
Critical Pair Analysis and Contextual Layered Graph Transformation. Technical Report no.
si-2000-06, University of Rome.

8. Corradini, A., Montanari, H., Rossi, F. 1996. Graph Processes. Special Issue of Fundamenta
Informaticae, Vol 26(3-4), pages 241–266.

9. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M. 1997 Algebraic
Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach.
In Handbook of Graph Grammars and Computing by Graph Transformation, Volume 1,
G.Rozenberg (ed.), pages 163–245. World Scientific.

10. de Lara, J., Vangheluwe, H., Alfonseca, M. 2003. Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3. To appear in Software and Systems Modelling.
Springer. See also the AToM3 home page at: http://atom3.cs.mcgill.ca

11. Ermel, C., Rudolf, M., Taentzer, G. 1999 The AGG Approach: Language and Tool Environ-
ment. In Handbook of Graph Grammars and Computing by Graph Transformation, Volume
2, H.Ehrig, G.Engels, H.-J.Kreowski, and G.Rozenberg (eds.), pages 551 – 603. World Sci-
entific. See also the AGG Home Page: http://tfs.cs.tu-berlin.de/agg

12. Harel, D. 1987. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231-274.

13. Heckel, R., Küster, J., Taentzer, G. 2002. Towards Automatic Translation of UML Models
into Semantic Domains. In Proc. AGT 2002, H.-J. Kreowski (ed.), pages 11 – 22.

14. Heckel, R., Wagner, A., 1995. Ensuring Consistency of Conditional Graph Grammars – A
constructive Approach. In ENTCS no. 2, Elsevier.

15. Kuske, S., 2001. A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In UML 2001, M.Gogolla and C.Kobryn (eds.), Springer LNCS 2185.

16. Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G. 2001.
Composing Domain-Specific Design Environments. IEEE Computer, pages 44-51. See also
the GME home page: http://www.isis.vanderbilt.edu/Projects/gme/default.html

17. Matz, M., 2002. Konzeption und Implementierung eines Konsistenznachweisverfahrens für
attributierte Graphtransformation. Master’s thesis, TU Berlin, Fak. IV.

18. Marriot, K., Meyer, B. 1998. Visual Language Theory. Springer.
19. MDA, MOF and UML specifications at the OMG web page: http://www.omg.org/
20. Nickel, U., Niere, J., Zündorf, A. 2000. The Fujaba Environment. In ICSE 2000, pages 742–

745. See also the Fujaba Home Page: http://www.fujaba.de/
21. Schürr, A. 1996. Programmed Graph Replacement Systems. In Handbook of Graph Gram-

mars and Computing by Graph Transformation, Volume 1, G.Rozenberg (ed.), pages 479–
546. World Scientific. See also the PROGRES home page: http://www-i3.informatik.
rwth-aachen.de/research/projects/progres/

22. Varro, D. 2002. A Formal Semantics of UML Statecharts by Model Transition Systems. In
ICGT 2002, A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.), pages 378–
392, Springer LNCS 2505.

23. Warmer, J. B., Kleppe, A. 1998. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Object Technology Services.

	1 Introduction
	2 Typed Graph Transformation with Node Type Inheritance
	2.1 Type and Instance Graphs
	2.2 Rules and Derivations

	3 Integration of Meta-modelling with Graph Transformation
	4 Related Work
	5 Conclusions
	References

