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Abstract. Mutation Testing is an error-based criterion that provides
mechanisms to evaluate the quality of a test set and/or to generate test
sets. This criterion, originally proposed to program testing, has also been
applied to specification testing. In this paper, we propose the application
of Mutation Testing for testing SDL specifications. We define a mutant
operator set for SDL that intends to model errors related to the behav-
ioral aspect of the processes, the communication among processes, the
structure of the specification and some intrinsic characteristics of SDL.
A testing strategy to apply the mutant operators to test SDL specifica-
tions is proposed. We illustrate our approach using the Alternating-Bit
protocol.
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1 Introduction

Testing is an important activity to guarantee the quality and the reliability
of a product under development. The main objective of testing activity is to
identify errors that were not yet discovered in software products. To obtain a
reliable software, specification testing is as important as program testing since
the earlier the errors are detected in the life cycle the less onerous is the process
to remove them. The success of the testing activity depends on the quality of a
test set. The quality of the testing activity is by itself an issue in the software
development process. One way to evaluate the quality of a test case set T is to
use coverage measures based on testing criteria.

Mutation Testing is a criterion initially proposed to program testing but some
works have shown this criterion can also be applied to specification testing and
conformance testing [6, 15, 16, 17, 18, 20, 25, 26, 29]. Mutation Testing consists
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of generating mutants of the program/specification, based on a mutant operator
set that intents to model common, typical errors made during the development.
The objective is to select test cases that are capable to distinguish the behavior
of the mutants from the behavior of the original program/specification. Muta-
tion Testing provides mechanisms to evaluate the quality of a test set and/or
to generate test sets [11]. Mutation Testing has also been explored to support
Integration Testing [10, 19]. Delamaro et al. [10] proposed Interface Mutation
to explore interface errors related to the connections among program units, in a
pairwise approach, and Ghosh and Mathur [19] proposed Interface Mutation to
explore errors in the interface of components in a distributed application.

Formal techniques have been used to specify safety critical systems like
bank control, air traffic control, metro control, patient hospital monitoring and
communication protocols. Examples of these techniques are Statecharts, Petri
Nets, Estelle and SDL. SDL (Specification and Description Language) is a lan-
guage standardized and maintained by ITU-T (International Telecommunica-
tions Union) for the specification and description of telecommunications sys-
tems. Although this initial intention, SDL has been used to describe reactive
systems such as real-time, event-driven and communicating systems. The be-
havior of a system modelled by SDL is described by processes, that behave like
Communicating Extended Finite State Machines (CEFSMs).

Different techniques have been proposed to generate test cases from the SDL
specifications [7, 20, 21, 32]. These techniques are applied to the conformance
testing, that uses the test set generated to test the implementation of the system.
In conformance testing it is supposed the specification is correct. An usual formal
verification technique applied to guarantee the correctness of the specification is
model checking. Model checking is based on state exploration and allows to verify
some software properties. Although by using model checking some information of
the structural coverage can be obtained, this technique do not stress to provide
evidences about how much the specification was tested that could provide a
quantitative measure about the testing being executed.

Motivated by previous researches that have investigated Mutation Testing to
validate specifications based on formal techniques such as Finite State Machines
[14, 16], Statecharts [18, 30], Petri Nets [17, 27, 28], Estelle [26, 29], in this
paper we propose the Mutation Testing to test specifications written using SDL.
We present a mutant operators set and a mutation-based testing strategy to
guide the tester to apply the mutant operators and to explore the behavioral
aspect, the communication among the processes and the structure of the SDL
specification. To illustrate our definitions we use the well known Alternating-Bit
protocol [31].

This paper is organized as follow: Section 2 contains an overview of some
related works. In Section 3 we present an overview of basic concepts of SDL.
The main concepts related to Mutation Testing are discussed in Section 4. The
mutant operators set and a proposed Incremental Testing Strategy are presented
in Section 5. In that section we also illustrate examples of application of some
mutant operators. Our final comments are discussed in Section 6.
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2 Related Work

Probert and Guo [26] proposed a technique to test Estelle specifications based on
mutation, named E-MPT (Estelle-directed Mutation-based Protocol Testing).
This technique validates the EFSMs defined in the specification. It generates
the mutants from the specification and translates, using an Estelle compiler, the
original specification and its mutants to C programs. The codes generated by
the compiler are not completed and they need to be completed by the tester.
The C programs generated are executed and the obtained results are compared.

Bousquet et al. [6] applied Mutation Testing in the conformance testing.
In their experiment, the criterion is used to verify if the implementation of a
conference protocol is according to its specification. The specification was written
using Lotos. The test cases are generated based on the Lotos specification and
the implementation is tested when using this test case set generated.

Ammann and Black use Mutation Testing and model checking to automati-
cally produce tests from formal specifications [3] and measure test coverage [2].
The system is specified by Finite State Machines. To the former, each transition
of the state machine is represented as a clause in temporal logic. To generate
tests, the mutant operators are applied to all temporal logic clauses, result-
ing in a set of mutant clauses. The model checker compares the original state
machine specification with the mutants. When an inconsistent clause is found,
the model checker produces a counterexample if possible, and it is converted
to a test case. To measure the coverage of a test set, each test is turned into
a finite state machine that represents only the execution sequence of that test.
Each state machine is compared by the model checker with the set of mutants
produced previously. A mutation adequacy coverage metric is the number of
mutants killed divided by the total number of mutants. Black et al. [5] refined
the mutant operators set defined in Ammann et al. [3] and proposed new ones
to be applied in the same approach that combines mutation testing and model
checking.

Kov cs et al. [20] have used Mutation Testing to generate and select test cases
to be applied at the conformance testing of communication protocols specified
using SDL. The test cases generated at specification level are used to test the
programs implemented based on the specification and its mutants. Two algo-
rithms were proposed to select test cases. The first one has an SDL specification
as input and the result is a test case set that is Mutation Testing-adequate. The
second one has two inputs, an SDL specification and a finite test case set. This
algorithm analyzes the initial test case set and only those ones that identify
the mutants are selected. A tool was implemented using Java to automate the
second algorithm.

Fabbri et al. [15, 16, 17, 18] have explored Mutation Testing at the specifi-
cation level, analyzing the adequacy of this criterion on testing the behavioral
aspects of reactive systems specified using Finite State Machines [16], Statecharts
[18] and Petri Nets [17]. Fabbri et al. defined mutant operators for these three
formal techniques. Mutants are generated by applying the mutant operators to
the specification being tested. The mutant operators set models the more typical
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errors related to the specification technique in use. After the mutants genera-
tion, each mutant is simulated and the results are compared to the results of
the original specification. These steps contribute to the analysis of the mutation
testing adequacy.

Souza et al. [29] investigated the application of Mutation Testing to validate
Estelle specifications, exploring with this criterion the behavioral aspect, the
communication among the modules and the structure of the specification. Souza
et. al present a more complete mutant operators set than the one proposed by
Probert and Guo [26], considering aspects such as the interface among modules,
the hierarchical structure and the parallelism of the specification.

Fabbri et al. [18] and Souza et al. [29] established Incremental Testing Strate-
gies to aid the application of Mutation Testing to Statecharts and Estelle, respec-
tively. By using these strategies it is possible to prioritize some specific aspects,
according to the features the tester wants to explore in the testing activity.

3 SDL: Overview

SDL is a language standardized and maintained by ITU-T (International
Telecommunications Union) for the specification and description of telecommu-
nications systems. Its first version is from 1976 and since then the language has
been modified and improved to be as complete as possible. The newest version is
SDL 2000. Although SDL was initially proposed to telecommunications systems,
it has been used to describe reactive systems such as real-time, event-driven and
communicating systems.

An SDL specification consists of a system, blocks, processes and channels. An
SDL system specification is compounded by blocks, which exchange messages or
signals with each other and the environment through the channels. The blocks
can be decomposed recursively into sub-blocks and in the last level of this decom-
position are the processes. Communication between processes is asynchronous
and is also through channels. Channels can be uni or bi-directional. All the sig-
nals received by a process are merged into the individual process First In First
Out (FIFO) queue, in the order of their arrivals.

The behavior of an SDL system specification is described by processes, that
behave like Communicating Extended Finite State Machines. A process consists
of a set of states and transitions that connect the states. When in a state, a
process initiates a transition by consuming an expected signal from its input
queue. Non expected signals in a state are implicitly consumed, that means to
discard them and remains in the same state. Sometimes, it can be interesting to
keep a signal in the queue to be consumed later by the process. In this case, the
save construction can be used and just change the order of signals consumption
by a process. Consuming a signal can result in another signals and update in the
variables values.

SDL process can access the global timer using now which returns the current
time. A timer is set to expire after a certain time from the current time defined
by now. When a timer expires it sends a signal with its name to the process and
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this signal arrives at the input queue of the process. After the timer signal is
consumed the timer is reset.

4 Mutation Testing

Mutation Testing is used to increase the confidence that a software product
P is correct by producing, through small syntactic changes, a set of mutant
elements that are similar to P, and creating test cases that are capable of causing
behavioral differences between P and each one of its mutants. These changes
are based on an operators set called mutant operators. To each operator it is
associated an error type or an error class that we want to reveal in P.

The definition of mutant operators is a crucial factor for the success of Muta-
tion Testing. Very simple operators are usually defined based on the competent
programmer hypothesis, which states that a program produced by a competent
programmer is either correct or near correct. The tester must construct test
cases that show that these transformations lead to incorrect programs. Another
hypothesis considered by Mutation Testing is the coupling effect that, accord-
ing to DeMillo et al. [12], can be described as “test data that distinguishes all
programs differing from a correct one by only simple errors is so sensitive that
it would also implicitly distinguish more complex errors”.

Mutation Testing consists of four steps: mutant generation; execution of the
program P based on a defined test case set T; mutant execution; and adequacy
analysis. All the mutants are executed using a given input test case set. If a
mutant M presents results different from P, it is said to be dead, otherwise, it is
said to be alive. In this case, either there are no test cases in T that are capable
to distinguish M from P or M and P are equivalent, that means they have the
same behavior (or output) for any data of the input domain. The objective must
be to find a test case set T to kill all non-equivalent mutants; in this case T is
considered adequate to test P.

DeMillo [11] notes that Mutation Testing provides an objective measure for
the confidence level of the test case set adequacy. The Mutation Score, obtained
by the relation between the number of mutants killed and the total number of
non-equivalent mutants generated, allows the evaluation of the adequacy of the
test case set used and therefore of the program under testing. A test case set
T is adequate to a program P with respect to mutation testing coverage if the
mutation score is 1.

The computational cost can be an obstacle to the use of Mutation Testing
due to the high number of mutants generated and to be analyzed so that the
equivalent ones can be identified. Since, in general, the equivalence is an unde-
cidable question the equivalent mutants are interactively obtained by the tester.
Some alternatives were proposed to program testing [4, 23, 34]. Wong et al. [34]
provide evidences that examining only a small percentage of the mutants may
be an useful heuristic for evaluating the test sets. Offutt et al. [23] and Bar-
bosa et al. [4] have proposed the use of an essential operator set, so that a high
mutation score against this essential set would also determine a high mutation
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score against the full set of mutant operators. Another option is to automati-
cally generate test cases and determine equivalent mutants [13, 24]. Simão and
Maldonado [27] proposed an algorithm to generate test cases based on Muta-
tion Testing to validate Petri Nets. Although it is undecidable, in some cases
equivalent mutants can be identified using this algorithm.

Although Mutation Testing, as mentioned before, was proposed for program
testing, it can be of help for validating a specification even considering that there
is no mutation that would “restore” the correct behavior of the specification. The
mutations can lead the tester to an error-revealing mutant without leading to
the correct behavior. If k-mutants (more than a single change in the mutant) are
considered it can be argued that would exist a mutant that presents the correct
behavior but always depending on the quality of the specification under test. By
defining a set of mutant operators and considering just a single change in each
mutant, in fact, the space of possible wrong specifications has been reduced,
reducing the cost of the Mutation Testing and assuming that single errors would
lead to discover multiple and more complex errors. This assumption has to be
explored in further studies.

5 Mutation Testing Applied to SDL

Earlier researches on testing specifications using Mutation Testing indicate that
this criterion may contribute to the improvement of these activities [16, 26, 29],
since it can complement other testing methods. This fact motivates the analysis
of the adequacy of Mutation Testing in the context of SDL specifications.

As commented before, the definition of mutant operators is a key factor for
the success of this criterion. Like Fabbri et al. [15, 16, 17, 18] and Souza et al.
[29], we propose a mutant operators set for SDL based on some previous works:
the control structure sequencing error classes defined by Chow [8], the mutant
operators for boolean expressions defined by Weyuker et al. [33] and the mutant
operator set for C language defined by Agrawal [1], Delamaro and Maldonado
[9], Delamaro et al. [10]. Added to them, we explore some intrinsics features of
SDL like save and task commands.

To illustrate the application of Mutation Testing in an SDL specification we
use the well known Alternating-Bit protocol, which is a simple form of the “slid-
ing window protocol” with a window size of 1 [31]. This protocol provides a reli-
able communication over a non-reliable network service using a one-bit sequence
number (which alternates between 0 and 1) in each message or acknowledgement
to determine when messages must be retransmitted. This protocol is composed
of a sender and a receiver processes that communicate through two channels
(Medium1 and Medium2). Figure 1 illustrates the Alternating-Bit protocol at
the system level, with three blocks: sender block, medium and sender block.

The mutant operators are divided into three different classes: Process Mu-
tant Operators, Interface Mutant Operators and Structure Mutant Operators.
Table 1 illustrates the set of mutant operators defined for SDL and the number
of mutants generated by them for the Alternating-Bit protocol. All of the opera-
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Fig. 1. System Level of the Alternating-Bit Protocol Specification in SDL

tors generated 261 mutants: 77, 51 and 133 by the Process Operators, Interface
Operators and Structure Operators, respectively. Some operators do not gener-
ate any mutant since the syntactic structures that these operators act on do not
occur in this protocol specification.

Given a specification S, a mutant set of S is generated, φ(S). A test set T is
adequate for S with relation to φ(S) if for each specification Z of φ(S), either
Z is equivalent to S, and in this case Z and S have the same behavior for T ,
or Z differs from S at least on a test point. To distinguish the mutant behavior
from the original one, we analyze the final states of all processes reached after
the execution with the test case set. Considering s a statement in a specification
S and sm the same statement but containing some mutation to generate the
mutant Z. Three conditions must be satisfied by a test case T to distinguish Z
from S [13]:

1. Reachability: sm must be executed.
2. Necessity: The state of the mutant Z immediately after some execution of

sm must be different from the state of the original specification S after the
execution of s.

3. Sufficiency: The difference in the states of S and Z immediately following
the execution of sm and s must be propagated until the end of execution of
S or Z so that the final states reached by them when executed with T are
different.

For SDL we consider that a typical test sequence is constituted by the se-
quence of signals exchanged during the execution of the specification. For ex-
ample, a possible test sequence for the Alternating-Bit protocol is ts = ¡put(m),
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Table 1. Mutant Operators for SDL

Process Mutant Operators
1. Origin State Replacement 03 15. Coverage of Code 15
2. State Definition Exchanged 01 16. Question of Decision Negation 04
3. Destination State Replacement 09 17. Answer of Decision Exchanged 04
4. State Missing 02 18. Answer of Decision Missing 08
5. Transition Missing 08 19. Stop Process Missing 0
6. Condition Missing 0 20. Save Missing 01
7. Negation of Condition 0 21. Signal Saved Missing 0
8. Boolean Assignment Replacement 0 22. Signal Saved Replacement 0
9. Variable by Variable Replacement 12 23. SET TIMER Missing 0
10. Variable by Constant Replacement 0 24. RESET TIMER Missing 0
11. Variables/Constants Increment/Decrement 0 25. CREATE Process Missing 0
12. Unary Operator Inclusion in Variables 0 26. Arithmetic Operator Replacement 0
13. Task Replacement 0 27. JOIN/LABEL Replacement 0
14. Task Missing 02 28. Relational Operator Replacement 08

TOTAL 77
Interface Mutant Operators

Group I: Calling Point Group II: Called Process
1. Output Missing 11 9. Interface Variables Replacement 08
2. Output Replacement 15 10. Non-Interface Variable Replacement 0
3. Output Destination Replacement 0 11. Variable Increment/Decrement 0
4. Signal Route of Output Replacement 06 12. Unary Operators Inclusion in Variable 0
5. Parameters Replacement 0 13. Boolean Assignment Replacement 0
6. Parameters Increment/Decrement 0 14. Input Missing 07
7. Order of the parameters Exchanged 0 15. Input Replacement 04
8. Unary Operators Inclusion in Parameters 0

TOTAL 51
Structure Mutant Operators

1. Signal of Signal List Inclusion 44
2. Signal of Signal List Missing 12
3. Signal of Signal List Exchanged 35
4. Signal routes/Channels Missing 16
5. Connection between Channels and Signal routes Missing 08
6. Connected Channels/Signal routes Replacement 18

TOTAL 133

dm(m,0), dm(m,0), get(m) ∧ am(0), am(0)¿. This sequence corresponds to the
following steps: Sender sends a message to Receiver (put(m) signal). The message
(m) is packed and it is sent to the Medium1 (dm(m, 0)) with an identifier bit
(0). Medium1 sends the message to Receiver (dm(m, 0)). The message arrives to
Receiver that verifies that it is the message it was expecting, stores the message
(get(m)) and sends the acknowledgement to Sender (am(0)) through Medium2.
Medium2 receives the acknowledgment and sends it to Sender (am(0)). The ac-
knowledgment is received by the Sender and it is recognized as the expected
acknowledgment.

For the test sequence ts, the final states activated are sa = ¡ ( [(wait -
put)], [(wait dm), (wait am)], [(wait dm)] ) ¿, considering the following order
of processes: ([Sender], [Medium1,Medium2], [Receiver]).

In the following we describe the three classes of mutant operators and
present an informal definition of one mutant operator for each class. For each
one of these mutant operators we illustrate one mutant generated and execute
them with the test sequence ts.
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5.1 Process Mutant Operators

The operators of this class model errors related to the behavior of processes that
is similar to the Communicating Extended Finite State Machines (CEFSMs)
behavior. To define this class of operators, we consider the particular features
of SDL and two previous works: the set of mutant operators to Extended Finite
State Machines (EFSMs) defined by Fabbri et al. [18] and the set of operators
defined by Souza et al. [29] to explore mutation on modules of Estelle specifica-
tions that behave like EFSMs. Our mutant operators set models: transitions and
states errors; expressions, mathematic operators, variables and constants errors,
and; timers errors (set and reset).

– Example: Destination State Exchanged
This operator models state errors by exchanging the destination of each
transition. The state defined at the nextstate command is mutated by other
states defined in the same process and by the - symbol.
This operator is applied to the Sender process of the Alternating-Bit proto-
col. The transition fired by am(j) event when in the wait am state has as
destination state wait put. To generate the mutants this state is replaced
by the other state in the process, that is wait am, and by the - symbol.
Figure 2 illustrates the part of the original specification where one mutation
is done and one of the mutants generated.
When this mutant is executed with ts the final states activated are sa =
¡ ([wait am], [wait dm, wait am], [wait dm]) ¿. The wait am state in
Sender process is different from the expected one which was the wait put
state. As a result, the mutant is distinguished from the original specification
and so is considered dead. In other case, if the mutant is executed with tsi

= ¡put(m), dm(m,0), dm(m,0), get(m) ∧ am(0), medium error¿, the final
states activated are sa = ¡ ([wait am], [wait dm, wait am], [wait dm]) ¿.
The same final states are activated when the original specification is executed
with tsi. Thus, the test case tsi is not able to distinguish this mutant from
the original specification.

Original Specification Mutant Specification

STATE wait am; STATE wait am;
INPUT am ( j ); INPUT am ( j );
DECISION j = i; DECISION j = i;
( TRUE ): ( TRUE ):
TASK i := inv( i ); TASK i := inv( i );
NEXTSTATE wait put; → NEXTSTATE WAIT AM;
ELSE: ELSE:
. . . . . .

Fig. 2. Process Mutant Operator Example: Destination State Exchanged
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5.2 Interface Mutation

At program level, Delamaro et al. [10] defined Interface Mutation to test the
interactions between the units compounding a software. Based on this concept,
Souza et al. [29] defined interface mutant operators to Estelle applying the In-
terface Mutation to the specification level. In the same way, we propose an in-
terface mutant operators set modelling communication errors among processes
of an SDL specification, considering all the possible signals exchanges. Following
these previous works, we divide the interface mutant operators in two groups:
Group I, that explores the points where a process is called, i.e., at the output
command; and Group II, that explores the process called, but the mutation
is done in the input command and where computations are executed with the
received signals.

– Example Group I: Output Missing
This operator models output errors by excluding each output defined in the
state transitions.
One of the mutants generated when applying this operator to the Sender
process of the Alternating-Bit protocol is presented in Figure 3. To generate
this mutant, the operator is applied to the output of the transition of the
wait put state, excluding the “OUTPUT dm ( m , i );” command.
When this mutant is executed with ts the final states activated are sa = ¡
([wait am], [wait dm, wait am], [wait dm]) ¿. The wait am state is dif-
ferent from the expected one, the wait put state. As a result, the mutant
is distinguished from the original specification and so is considered dead.
In this case, the test sequence tsi = ¡put(m), dm(m,0), dm(m,0), get(m)
∧ am(0), medium error¿ also distinguishes this mutant because the second
signal dm(m,0) is not generated and the final states are sa = ¡ ([wait am],
[wait dm, wait am], [wait dm]) ¿.

Original Specification Mutant Specification

STATE wait put; STATE wait put;
INPUT put ( m ); INPUT put ( m );
OUTPUT dm ( m , i ); →
NEXTSTATE wait am; NEXTSTATE wait am;
ENDSTATE; ENDSTATE;

Fig. 3. Interface Mutant Operator Example: Output Missing

5.3 Structure Mutation

Structure Mutation explores errors in the architecture of the SDL specification
that represents the hierarchical composition of the software components, their
interaction and the data exchanged by them. The data flow is expressed by input



Mutation Testing Applied to Validate SDL Specifications 203

and output signals and the local variables of the processes. It is worth to note
that some interface aspects are presented by the software structure, then we can
also consider interface errors in the structure mutation context.

The structure mutant operators set models errors in the definitions of signal
routes and channels, in the connections between them and in the list of signals
declared.

– Example: Signal routes/Channels Missing
This operator models errors related to the signal routes or channels defi-
nitions. It excludes each signal route and channel that links processes and
blocks of the SDL specification.
Figure 4 illustrates the definition of one signal route and one of the mutants
generated when applying this operator to it. This mutant does not have the
signal route that links the environment to the Sender process.
When executing this mutant with ts the final states activated are sa = ¡
([wait am], [wait dm, wait am], [wait dm]) ¿. The wait am state of the
Sender process is different from the expected one which was the wait put
state. As a result, the mutant is distinguished from the original specifica-
tion and so is considered dead. The test sequence tsi = ¡put(m), dm(m,0),
dm(m,0), get(m) ∧ am(0), medium error¿ also distinguishes this mutant
because the last signal medium error is not received by the Sender process
and the final states are sa = ¡ ([wait am], [wait dm, wait am], [wait -
dm])¿.

Original Specification Mutant Specification

SIGNALROUTE sender lower interface SIGNALROUTE sender lower interface
FROM ENV TO sender process →
WITH am , medium error;
FROM sender process TO ENV WITH dm; FROM sender process TO ENV WITH dm;

Fig. 4. Structure Mutant Operator Example: Signal Routes/Channels Missing

5.4 Incremental Testing Strategies and Automation Aspects

Incremental Testing Strategies can be established to orient the application of the
mutant operators to the SDL specifications. We can consider the three classes of
operators and prioritize some aspects such as: behavior of the processes, commu-
nication among processes and structure of the specification. We can also select a
subset of operators in each step of the strategy. The steps of one possible testing
strategy are:

1. to validate the behavior of processes of the SDL specification, for each process
a) apply the Process Mutant Operators and determine an adequate test

set;
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2. to validate the communication among the processes, for each process
a) apply the Interface Mutant Operators and determine an adequate test

set;
3. to validate the structure of the SDL specification

a) for each signal route and channel definition
– apply the Structure Mutant Operator (operators 1 to 4) and deter-

mine an adequate test set
b) for each connection between a channel and a signal route

– apply the Structure Mutant Operators (operators 5 and 6) and de-
termine an adequate test set

This testing strategy can be applied either top-down or bottom-up. In case
an error is found during the application of this strategy, the specification should
be corrected and the strategy applied again.

A testing tool to support the application of Mutation Testing is crucial since
this activity can be error prone and unproductive if applied manually. Our work
group has developed a family of tools to support Mutation Testing at the pro-
gram and specification levels [22]. For testing C programs we have Proteum and
Proteum/IM tools [9, 10]. For testing at the specification level, there are Pro-
teum/FSM for the Finite State Machines based specifications [16]; Proteum/ST
for Statecharts based specifications [18, 30]; and Proteum/PN for Petri Nets
based specifications [28]. All these tools support the main functions related to
the Mutation Testing: definition of a test case set, execution of the specification
(or program), mutants generation, execution of the mutants, analysis of the mu-
tants, computation of the mutation score and reports generation. When using
these tools, the tester works in test sessions. In this way, the tester can start a test
session, stop it at his/her convenience and resume the test session later from the
point he/she has stopped. To allow this, the tools record the intermediate states
of the test session. Information about mutants and test cases are maintained in
a database. It is possible to select a subset of the mutant operators (constrained
mutation) [23] or specify a percentage to be applied to generate the mutants.
To analyze the mutants, the results obtained by their execution are compared
to the result obtained by the original specification (or program) execution. Con-
sidering these features, we will develop a tool to support Mutation Testing to
test SDL specifications. The preliminary results we present in this paper were
obtained manually, but this was a very simple example and the development
of a supporting tool is required. In fact we intend to add these functionalities
into an existing tool named CATSDL [35], a coverage analysis tool that aids in
testing specifications written in SDL. This tool supports control flow and data
flow-based criteria.

Some problems existing in program testing also occur in specification testing,
for example the oracle problem. The oracle problem remains in specification
testing, either there is a formal mechanism to specify the expected behavior of
the specification under test and then having an automated process to check the
output or a human expertise is required. Other problem related to Mutation
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Testing is the high computational cost caused by the large number of mutants
that can be generated. To overcome this problem at the program level, Offutt
et al. [23] and Barbosa et al. [4] proposed the determination of an essential
operators set. In the same vein, we intend to investigate an essential operators set
to SDL, based on our initial mutant operators set. At specification level, Simão
and Maldonado [27] proposed as an alternative to overcome the computational
cost of Mutation Testing applied to Petri Nets, the automatic generation of test
sequences that in some cases identify equivalent mutants. We also intend to
investigate this approach in the context of SDL specification testing.

6 Final Remarks

In this paper we proposed the use of Mutation Testing to test specifications
written in SDL. We use this criterion as a mechanism for assessing the SDL
specifications testing adequacy. Kov cs et al. [20] use the test set generated
by applying Mutation Testing to an SDL specification to test and validate the
related implementation, i.e., it is applied in the conformance testing. Differently,
we are interested in testing the specification itself. This is relevant so that the
quality of the product can be guaranteed earlier in the development process.
We were motivated by other works of our research group that have investigated
Mutation Testing in the context of some formal techniques such as Finite State
Machines, Statecharts, Petri Nets and Estelle. Although we are interested in
specification testing, the test set generated based on the mutants can also be
used to the conformance testing of implementations that claim to be conformed
to the specification.

To propose a mutant operators set we took into account intrinsics features
of SDL, the behavioral aspect of the processes, the communication among the
processes and the structure of the SDL specification. These aspects were divided
in three classes of mutant operators, that define a fault model to SDL: Process
Mutation, Interface Mutation and Structure Mutation. Priority can be given to
some aspects when the testing activity is conducted by a testing strategy. We
also presented an incremental testing strategy for application of the Mutation
Testing in this context.

The short term goals of our work on this subject is directed to three lines of
research: improvement and refinement of the mutant operators (determining an
essential operators set in the same line of Offutt et al. [23]), development of a
tool to support Mutation Testing in the context of SDL and conduct empirical
studies to compare Mutation Testing and Control and Data flow-based criteria.
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