
Dynamic-Data-Driven Real-Time Computational
Mechanics Environment

John Michopoulos1, Charbel Farhat2, and Elias Houstis3,4

1 Special Projects Group, Code 6303, U.S. Naval Research Laboratory, U.S.A.
john.michopoulos@nrl.navy.mil

2 Dept. of Aerospace Engineering Sciences, University of Colorado at Boulder, U.S.A
charbel.farhat@colorado.edu

3 Computer Sciences Department, Purdue University, U.S.A.
4 Dept. of Comp. Eng. and Telecommunications, University of Thessaly, Greece

enh@cs.purdue.edu

Abstract. The proliferation of sensor networks in various areas of tech-
nology has enabled real-time behavioral monitoring of various physi-
cal systems in various length and time scales. The opportunity to use
these data dynamically for improving speed, accuracy, and general per-
formance of predictive behavior modeling simulation is of paramount im-
portance. The present paper identifies enabling modeling methods and
computational strategies that are critical for achieving real-time simu-
lation response of very large and complex systems. It also discusses our
choices of these technologies in the context of sample multidisciplinary
computational mechanics applications.

1 Introduction

The main objective of the effort described in this paper is to establish and
use a strategy for selecting, generating, improving, and applying methodologies
capable of enabling data-driven real-time simulation of large, complex, multi-
field, multi-domain physical systems. This paper reports on the initial success in
achieving this goal, under the additional fundamental requirement that sensor
networks will be providing live data originating from the actual physical systems
that are simulated by the exercise of their corresponding computational models.

This effort is a part of a larger effort of developing a Data Driven Environ-
ment for Multiphysics Applications (DDEMA) [1,2,3,4], as a computationally
implementable framework in the form of a Multidisciplinary Problem Solving
Environment (MPSE). Although DDEMA’s scope also entails utilizing dynamic
data for adaptive modeling or model selection, this paper only discusses data
usage for adaptive simulation, steering, and short future behavioral prediction
assuming that the model is known and well established. This model approximates
the behavior of a system that belongs in the continuum mechanics engineering
domain.

The rest of the paper is organized as follows. In Section 2, we describe the
context and required enabling technologies achieving this objective. In Section

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 693–700, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



694 J. Michopoulos, C. Farhat, and E. Houstis

3, we specify the technologies we selected for DDEMA: precomputed solution
synthesis and model reduction, along with multidimensional computational par-
allelism. Finally, Section 4 presents two preliminary sample applications and
concludes this paper.

2 Modeling Methods and Computational Strategies for
Improving Simulation Performance

Discussion in this section is limited only to the systemic modeling methodologies
that capture system-behavior representation, and the computational strategies
of their usage. We do not intend to discuss computational, networking, infras-
tructure and process mobility strategies and methodologies. However, it should
be recognized that these can also have a considerable effect on the performance
of a simulation environment. This task has been discussed in [1,2,3,4].

To achieve the main objective as described in the introduction, one has first to
define the context of the problem at hand. Figure 1 provides a generic description
of this context. It shows a schematic representation of the dataflow relationship
among the actual physical system and the corresponding sensor network, the
computational model, and the associated simulation environment along with
the simulated system. In addition, the data-flow paths have been labeled to
allow the distinction of both the real-time solving (RTS) and the precomputed
solving and real-time solution synthesis (PS-RTSS) modes of simulation usage.
All components in this figure are generic and do not express the architecture of
a particular system or technology.

Fig. 1. Relationship among physical system, sensor data, and computational infra-
structure for behavioral simulation.

As shown in Fig. 1, path [2 − 4 − 3 − 8] and path [1 − 9 − 3 − 8] represent
the RTS mode, while path [2 − 4] ∧ [(5, 6) − 7 − 8] corresponds to the PS-
RTSS mode. The latter path consists of the conjunction of the precomputed
solving part represented by the sub-path [2 − 4], and the real-time solution
synthesis part represented by the sub-path [(5, 6) ∧ 7 − 8]. The path syntax



Dynamic-Data-Driven Real-Time Computational Mechanics Environment 695

used here has been devised to avoid the complications of temporal logic syntax
while allowing the ability to capture synchronicity and asynchronicity. Paths in
regular parentheses separated by a coma represent synchronous parallel-in-time
dataflow, while square brackets are used to denote complete paths, and ∧ is used
to denote asynchronous logical conjunction of paths.

The two-way dataflow between the Basis Solutions Database and Compu-
tational Model in Fig.1 underscores the complexity of the relationship that can
exist between these two modules. Indeed, computational models generate in gen-
eral a basis database, but such a database can also be exploited to construct,
for example, reduced-order models (ROM). Furthermore, a key property of the
Computational Model module is that it may include inside it many levels of re-
cursive application of the entire Simulation Environment operating in PS-RTSS
mode. The difference from the current incarnation of the Computational Model
module is that for each level below, a ROM participates in the corresponding
instance of the Computational Model module.

Dynamic-data can improve the simulation via a number of various man-
ners. These include the updating of computational models and the reduction of
simulation uncertainty to enhance simulation validity, and the enabling of orig-
inal ideas for parallel processing in the time-domain and of the construction of
reduced-order models to improve computational efficiency.

Thus, it is important to select, create, and utilize methodologies and strate-
gies that can inherently take advantage of real-time data. The most important
aspect of what is referred to as real-time simulation is that the time between
the time of user action (or the arrival of new data into the system), and the
time the system responds back with the corresponding adjustment of behavioral
simulation, has to be as small as possible. Therefore, the common requirement
for all processes involved in the simulation is that they have to be as fast as
possible. Here we examine how the modeling methods and the computational
strategies can be combined for achieving real-time simulation response. Thus, a
distinction between a computational strategy and a modeling methodology needs
to be drawn here. A computational strategy refers to the abstract methodology
employed for optimal usage of the computational and networking infrastructure.
A modeling methodology refers to the particular behavior model (usually in
equational form) and its corresponding computational implementation.

A detailed survey of behavior-modeling methods capable of enabling real-
or near-real-time simulation lies well outside the scope of the present paper.
However, before selecting, inventing, improving, or implementing a method, it is
reasonable to expect that certain common attributes have been identified and a
taxonomic classification has been constructed.

We have identified 36 behavior modeling methods to date that lend them-
selves to accelerated systemic behavior computations. Our list [5] is continuously
growing, thus not allowing us to include it in the present paper. We have also cre-
ated a classification taxonomy based on certain attributes of these methods, and
have established four classes of selection criteria based on required attributes.



696 J. Michopoulos, C. Farhat, and E. Houstis

The first classification level contains the Dimensional Reduction Methods
(DRM); all those which do not fall in this category are the Rest. The common
characteristic of all DRMs that classifies them as such is that they all attempt to
project some quantifiable feature (state-variable field and space- or time-domain
of applicability) of the problem to a discrete lower-dimensional space. They
subsequently recover the global systemic behavior via appropriate reconstruction
from the reduced projections.

The DRMs are further subdivided into the Reduced Basis Behavior Decom-
position Methods (RBBDM), and the Reduced Domain Decomposition Methods
(RDDM). The common characteristic of all RBBDMs is that they often rep-
resent behavioral field variables as a composition of sub-behaviors defined in
lower-dimensional spaces, mostly through the use of specialized basis functions.
Similarly, the common characteristic of all RDDMs is that they decompose the
domain space of application of behavior to subdomains, and subsequently recon-
struct systemic behavior from the composition of the subdomains.

RBBDMs are model reduction methods subdivided further into those which
are physics-based, and those which are physics-blind. Examples of physics-
based RBBDMs are methods such as Proper Orthogonal Decomposition (POD),
Hankel-norm approximation, balanced truncation, Singular perturbation, Cross
grammian methods, Principal Components, Karhunen-Loeve, Multiresolution
Green’s Function, Hierarchical Multiresolution, Differential Geometry Compo-
nents, Examples of physics-blind RBBDMs are methods such as Multilayered
Perceptrons, Radial Basis Networks, Local Polynomials (Splines etc.), Neural
Networks, Polynomial Chaos, Support Vector Machines, etc.

Examples of RDDMs are methods like the partial realization, Padé meth-
ods, multi-resolution geometry patches, general domain decomposition and the
recently-developed PITA [6].

Examples in the category of all of the Rest methods are Recursive Kalman
Filtering Estimation, Capacitance Matrix, Reaction and Lagrangian Constraint
Optimization, and Equationless Lifting Operator.

All these methods have a great potential for enabling real-time computations,
but are often reliable only for time-invariant systems. Dynamic data enables
their adaptation, when the system simulated is time-varying, using interpolation
and/or sensitivity approaches. Certain common desired attributes of all of the
above methods can be used to construct selection criteria. We marked [5] all
methods according to the following performance criteria: capability for real-
time simulations in terms of both RTS and PS-RTSS, capability for modeling
uncertainty, capability for adaptive model formation, and finally capability for
parallel implementation.

3 Data-Driven Acceleration Choices of DDEMA

According to the behavioral model classification of the previous section, we have
limited ourselves to those methods which satisfy only the first and last criteria
of our selection strategy. The dynamic-data-driven aspect of the system to be



Dynamic-Data-Driven Real-Time Computational Mechanics Environment 697

simulated is relevant to the applied methods and strategies both trivially and
non-trivially, depending on our particular choices. For example, the RTS strat-
egy can utilize the dynamic data to alter initial and/or boundary conditions, to
construct or update a ROM, and to provide seed values to a PARAREAL (par-
allel real-time) solution method [7] or PITA (parallel implicit time-integrator
algorithm) [6] that parallelizes in the time-domain the dynamic solution of a
ROM problem. It should be noted that for a ROM, a time-parallel solution ap-
proach is more efficient than a conventional degree-of-freedom-parallel approach
(also known as space-parallel approach) because by definition a ROM contains
few degrees of freedom and therefore can benefit only to a certain extent from
parallel processing at the degree-of-freedom level.

The PS-RTSS strategy utilizes the data only at the synthesis stage in their
capacity to select proportions of precomputed solutions. It is important to re-
member that PS-RTSS is a computational strategy and not a modeling method.
It still requires utilizing a behavioral model of the system. It uses this model
to compute and store in a database behavioral solutions corresponding to the
bases of low-dimensional space parameterizations of the generalized input as it is
exercised by the actions of the user- or the sensor-data. At the time of real-time
usage of the simulator, the Solution Composer module takes the sensor data
or/and the user’s actions and synthesizes a solution that corresponds to these
choices, based on the stored database content. The solution synthesis is done
as a postprocessing of elementary solutions, and therefore involves evaluative
computation — and not solving computation which is only performed in the
precomputation stage. This strategy uses models in an off-line mode prior to the
real-time simulation period, and therefore is more insensitive to the efficiency of
the computational method that implements the behavioral model of the system
to be simulated. Clearly, all possible computational methods for implementing
the systemic behavior are acceptable in this strategy. However, it is reasonable
to expect that the more efficient a method is, the more it contributes to the
creation of an efficient system that is inexpensive to use from an overall perspec-
tive, regardless of the distinction between the precomputation solving and the
real-time computation modes.

4 Sample Applications

4.1 PS-RTSS of an Underwater Composite Vessel

Preliminary results of this strategy have been obtained for the case of a cylin-
drical I-beam ring-stiffened composite pressure vessel with semi-spherical steel
end-caps (see Fig. 2). The model of this vessel represents one of the components
of a submarine-attached “Dry-Deck-Shelter” (DDS) utilized in underwater naval
missions. Embedded sensors provide datastreams that encode strain-field mea-
surements used to assess generalized loading conditions on the vessel in terms of
three basis loading cases that span the loading space [8]. The first is the exter-
nal pressure that is proportional to the depth of the submerged cylinder. The
other two basis cases are bending moments about axis-x Lx and axis-y Ly (see



698 J. Michopoulos, C. Farhat, and E. Houstis

Fig. 2. Material softening distributions from precomputed basis solutions and sensor-
controlled reconstruction for an underwater composite pressure vessel, under conditions
of hydrostatic pressure and explosion-induced horizontal and vertical bending.

Fig.2). They can correspond to maneuvering inertial loads, or to the quasi-static
bending effect of a pressure wave induced by a remote underwater explosion.

In precomputation mode, the simulator computes and stores into the
database the material softening and other state-variable field distributions over
the entire geometry of the structure loaded by each one of the three loading
cases. This was done by finite element analysis (FEA) of the associated model
for the three distinct loading conditions. The results are shown in Fig. 2. For the
bending cases, both the tensile and compressive sides of the vessels are shown.
The difference between the tension and compression sides of the vessel is due to
the nonlinear constitutive response of the composite material that was predeter-
mined by a mechatronically driven automated approach [9,10].

In the real-time mode, our simulator received strain measurement input from
at least three sensors [8]. A hypothetical data report from these three sensors
determined that the applied loading condition on the structure is defined by the
loading vector (40P , 250Lx, 250Ly) as shown in Fig. 2. The intrinsic power of
this strategy is that the simulator does not have to run an additional FEA to
determine the corresponding state variable field distributions and pay the so-
lution cost. The Solution Composer module described in Fig. 1 multiplies the
basis solutions stored in the database by the coefficients of the components of
the loading vector bases and sums the results in just one pass. The visualization
results through the Visualization module are instantaneous and satisfy the tech-
nical needs of the user. In this case, the user may be the submarine commander,
in which case the simulator is on-board the structure it simulates and can be
used as data-driven computational decision support system [2,3,4].



Dynamic-Data-Driven Real-Time Computational Mechanics Environment 699

4.2 Combined RTS/PS-RTSS of the Aeroelastic Behavior of the
AGARD Wing 445.6

Preliminary results of this hybrid strategy have been obtained for a flutter anal-
ysis of the AGARD Wing 445.6. This wing is an AGARD standard aeroelastic
configuration with a 45 degrees quarter-chord sweep angle, a panel aspect ratio
of 1.65, a taper ratio of 0.66, and a NACA 65A004 airfoil section. The model
selected here is the so-called 2.5-ft weakened model 3 whose measured modal fre-
quencies and wind-tunnel flutter test results are reported in [11], and for which a
full-order aeroelastic computational model with 178,758 degrees of freedom is de-
scribed in [12]. Embedded sensors provide datastreams that encode free-stream
pressure, density, and Mach number.

Fig. 3. AGARD Wing 445.6: flutter speed indices simulated by a hybrid RTS/PS-RTSS
strategy.

In a first precomputation mode, the simulator used the POD approach de-
scribed in [13] to generate and store in the Basis Solutions Database four aeroe-
lastic ROMs with 200 degrees of freedom each, at the following four free-stream
Mach numbers: M∞ = 0.499, M∞ = 0.901, M∞ = 0.957, and M∞ = 1.141.
Then, it considered a scenario of flight acceleration from the subsonic regime
(M∞ = 0.499) to the supersonic regime (M∞ = 1.141). During this accelera-
tion, it received eight requests from the Mach number sensor for predicting the
flutter speed in order to clear the target flight envelope. Four of these requests
were at the Mach numbers mentioned above, and four others at M∞ = 0.678,
M∞ = 0.954, M∞ = 0.960, and M∞ = 1.072. For each of the latter free-stream
Mach numbers, the Solution Composer generated in near-real-time a correspond-
ing new ROM by interpolating the angles between the subspaces of the stored
ROMs [13], and predicted in real-time the corresponding flutter speed index.
The visualization results through the Visualization module are reported in Fig.
3 and compared with the flutter speed index curve obtained from wind-tunnel
test data [11]. The aeroelastic results generated by this RTS/PS-RTSS hybrid
strategy are shown to be in good agreements with the test data.



700 J. Michopoulos, C. Farhat, and E. Houstis

Acknowledgments. The authors acknowledge the support by the National
Science Foundation under grant ITR-0205663.

References

1. Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne,
M., Lechenault, F., DDEMA: A Data Driven Environment for Multiphysics Ap-
plications,in: Proceedings of International Conference of Computational Science -
ICCS’03, Sloot, P.M.A., et al. (Eds.) Melbourne Australia, June 2-4, LNCS 2660,
Part IV, Springer-Verlag, Haidelberg, (2003) 309-318

2. Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne,
M., Lechenault, F., Design Architecture of a Data Driven Environment for
Multiphysics Applications, in: Proceedings of DETC’03, ASME DETC2003/CIE
Chicago IL, Sept. 2-6 2003, Paper No DETC2003/CIE-48268, (2003).

3. Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice,
J., Joshi, A., On a Data Driven Environment for Multiphysics Applications, Future
Generation Computer Systems, in-print (2004).

4. Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice,
Design of a Data-Driven Environment for Multi-field and Multi-Domain Appli-
cations, book chapter in Darema, F. (ed.), Dynamic Data Driven Applications
Systems, Kluwer Academic Publishers, Netherlands, in-print (2004).

5. DDEMA-group, Taxonomic Classification of Reduced Order Models, available from
http://ddema.colorado.edu/romtaxonomy, (2004).

6. Farhat, C., Chandesris, M., Time-Decomposed Parallel Time-Integrators: Theory
and Feasibility Studies for Fluid, Structure, and Fluid-Structure Applications, In-
ternat. J. Numer. Meths., Engrg. 58, (2003) 1397-1434.

7. Lions, J. L., Maday, Y., Turinici, G., Résolution d’EDP par un Schéma en Temps
“Pararéel”, C. R. Acad. Sci. Paris, Serie I Math. 332, (2001) 661-668.

8. Michopoulos, J.G., Mast, P.W. , Badaliance, R., Wolock, I., Health Monitoring of
smart structures by the use of dissipated energy, ASME proc. 93 WAM on Adaptive
structures and material systems, G.P. Carman/E. Garcia, eds., ASME, AD-Vol.
35, (1993) 457-462.

9. Michopoulos, J., Computational and Mechatronic Automation of Multiphysics Re-
search for Structural and Material Systems, Invited paper in ”Recent advances in
Composite Materials” in honor of S.A. Paipetis, by Kluwer Academic publishing
(2003) 9-21.

10. Mast, P. , Nash, G., Michopoulos, J., Thomas, R. , Wolock, I., Badaliance, R.,
Characterization of strain-induced damage in composites based on the dissipated
energy density: Part I. Basic scheme and formulation, J of Theor. Appl. Fract.
Mech., 22, (1995) 71-96

11. Yates, E., AGARD Standard Aeroelastic Configuration for Dynamic Response,
Candidate Configuration I. – Wing 445.6, NASA TM-100492, 1987.

12. Lesoinne, M., Farhat, C., A Higher-Order Subiteration Free Staggered Algorithm
for Nonlinear Transient Aeroelastic Problems, AIAA Journal 36, No. 9, (1998)
1754-1756.

13. Lieu, T., Lesoine, M., Parameter Adaptation of Reduced Order Models for Three-
Dimensional Flutter Analysis, 42nd AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, (2004).


	Introduction
	Modeling Methods and Computational Strategies for Improving Simulation Performance
	Data-Driven Acceleration Choices of DDEMA
	Sample Applications
	PS-RTSS of an Underwater Composite Vessel
	Combined RTS/PS-RTSS of the Aeroelastic Behavior of the AGARD Wing 445.6




